Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 626
Filter
1.
Environ Res ; 263(Pt 1): 120043, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39307224

ABSTRACT

The biochar-loaded Fe-Cu layered double hydroxide (FeCu-LDH@BC) catalyst was synthesized via a simple hydrothermal method and used to activate peroxydisulfate (PDS) for penicillin G (PG) degradation under visible light. The physicochemical properties of FeCu-LDH@BC were characterized using SEM, XPS, UV-DRS, SEM-EDS, HRTEM, XRD, BET, PL spectrum, FT-IR, Raman spectrum, TG-DSC, TPD, and EIS, showing that biochar (BC) enhanced the optical properties of FeCu-LDH. Notably, the FeCu-LDH@BC + PDS + Light system achieved a 98.79% degradation efficiency for PG in just 10 min. Furthermore, FeCu-LDH@BC retained excellent activity after four reuse cycles. LSV results indicated enhanced electron transfer in the FeCu-LDH@BC + PDS + Light system, suggesting a synergistic effect between the photocatalytic and PDS activation systems. The interconversion of h+, SO4·â», 1O2, and ·OH species was found to play a key role in PG degradation. Density functional theory was used to identify PG sites susceptible to radical attack, and the possible degradation pathway was proposed based on liquid chromatography-mass spectrometry results. Toxicity evaluation using the TEST software confirmed that the intermediates formed were significantly less toxic than PG. Lastly, the FeCu-LDH@BC + PDS + Light system removed 37.45% of total organic carbon and 63.74% of chemical oxygen demand from real wastewater within 120 min. The type and transformation pathways of organic matter in the wastewater were analyzed using 3D Excitation Emission Matrix spectroscopy to assess the system's application potential.

2.
J Inflamm Res ; 17: 6583-6602, 2024.
Article in English | MEDLINE | ID: mdl-39318995

ABSTRACT

Background: Lung cancer is the most common type of cancer in the world. In lung adenocarcinoma (LUAD), studies on receptor tyrosine kinase ROS proto-oncogene 1 (ROS1) have mainly focused on the oncogenic effects of its fusion mutations, whereas ROS1 has been reported to be aberrantly expressed in a variety of cancers and can extensively regulate the growth, survival, and proliferation of tumor cells through multiple signaling pathways. The comprehensive analysis of ROS1 expression has not been fully investigated regarding its predictive value for LUAD patients. Methods: Gene expression profiles collected from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases were used to build and validate prognostic risk models. The association of ROS1 with overall survival and the immune landscape was obtained from the Tumor Immune Estimation Resource (TIMER) database. The following analyses were performed using the R package to determine the model's validity: pathway dysregulation analysis, gene set enrichment analysis, Gene Oncology analysis, immune invasion analysis, chemotherapy, radiotherapy, and immunotherapy sensitivity analysis. Finally, we conducted a pan-cancer analysis and performed in vitro experiments to explore the regulatory role of intercellular adhesion molecule 5 (ICAM5) in the progression of LUAD. Results: We constructed a 17-gene model that categorized patients into two risk groups. The model had predictive accuracy for tumor prognosis and was specific for patients with high ROS1 expression. Comprehensive analysis showed that patients in the high-risk group were characterized by marked dysregulation of multiple pathways (eg, unfolded protein response), immune suppression of the tumor microenvironment, and poor benefit from immunotherapy and radiotherapy compared with patients in the low-risk group. PLX4720 may be a suitable treatment for the high-risk patient population. The ICAM5 gene has been demonstrated to inhibit the proliferation, cell cycle, invasion, and migration of LUAD cells. Conclusion: We constructed a 17-gene prognostic risk model and found differences in immune-related cells, biological processes, and prognosis among patients in different risk groups based on the correlation between ROS1 and immunity. Personalized therapy may play an essential role in treatment. We further investigated the role of ICAM5 in inhibiting the malignant bioactivity of LUAD cells.

3.
Rep Prog Phys ; 87(10)2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39260394

ABSTRACT

Thechirality-controlled two-mode Lipkin-Meshkov-Glick (LMG) modelsare mimicked in a potential hybrid quantum system, involving two ensembles of solid-state spins coupled to a pair of interconnected surface-acoustic-wave cavities. With the assistance of dichromatic classical optical drives featuring chiral designs, it can simulate two-mode LMG-type long-range spin-spin interactions with left-right asymmetry. For applications, this unconventional LMG model can not only engineer both ensembles of collective spins into two-mode spin-squeezed states but also simulate novel quantum critical phenomena and time crystal behaviors, among others. Since this acoustic-based system can generate ion-trap-like interactions without requiring any additional trapping techniques, our work is considered a fresh attempt at realizing chiral quantum manipulation of spin-spin interactions using acoustic hybrid systems.

4.
Org Biomol Chem ; 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39290038

ABSTRACT

The metal-free BF3-catalyzed hydroamination of silylynamides with amines allows facile and efficient synthesis of α-silylmethylamidines in moderate to excellent yields (up to 99%) with a broad substrate scope and excellent functional group compatibility under mild reaction conditions. This protocol offers the first synthetic route to silyl-incorporated amidine compounds, which features the use of Lewis acid BF3 as the catalyst and easily available silylynamides as the silicon source. Considering the biological importance of amidine scaffolds and silyl groups, the easy incorporation of these two structural units should make great sense for medicinal chemistry. Notably, with this strategy, the installation of amidine scaffolds to drug-like molecules celecoxib and estrone is realized for the first time. A plausible mechanism involves the formation of vinyl-boron intermediates from BF3-activated ynamides, which after protodeboronation and tautomerization afford the desired products.

5.
Bioorg Chem ; 153: 107787, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39243738

ABSTRACT

(±)-Elodeoidileons A-L (1-12), 12 pairs of previously undescribed filicinic acid based meroterpenoids were isolated from Hypericum elodeoides with unique linear or angular 6/6/6 ring core. Modern spectroscopic techniques, modified Mosher's method and quantum chemical calculations were used to identify the planner structures and configurations of 1-12. Additionally, the potential biosynthetic pathways for 1-12 were anticipated. Moreover, biological activity assessments suggested that 1a, 5a, and 11b could activate Retinoid X receptor-α (RXRα) transcription and enhance the ATP-binding cassette transporter A1 (ABCA1) protein's expression. Fluorescence titration assay suggested that 1a might have a direct interaction with the RXRα-LBD protein, with an estimated Kd value of 5.85 µM. Moreover, molecular docking study confirmed the binding of 1a to RXRα and further validated by cellular thermal shift assay (CETSA). Thus, compound 1a may promote ß-amyloid (Aß) clearance by targeting RXRα and upregulating the expression of the ABCA1 protein, showing promise as anti-Alzheimer's agent.

6.
Bioinform Biol Insights ; 18: 11779322241272386, 2024.
Article in English | MEDLINE | ID: mdl-39239087

ABSTRACT

Breast cancer (BC) is a complex disease, which causes of high mortality rate in women. Early diagnosis and therapeutic improvements may reduce the mortality rate. There were more than 74 individual studies that have suggested BC-causing hub-genes (HubGs) in the literature. However, we observed that their HubG sets are not so consistent with each other. It may be happened due to the regional and environmental variations with the sample units. Therefore, it was required to explore hub of the HubG (hHubG) sets that might be more representative for early diagnosis and therapies of BC in different country regions and their environments. In this study, we selected top-ranked 10 HubGs (CCNB1, CDK1, TOP2A, CCNA2, ESR1, EGFR, JUN, ACTB, TP53, and CCND1) as the hHubG set by the protein-protein interaction network analysis based on all of 74 individual HubG sets. The hHubG set enrichment analysis detected some crucial biological processes, molecular functions, and pathways that are significantly associated with BC progressions. The expression analysis of hHubGs by box plots in different stages of BC progression and BC prediction models indicated that the proposed hHubGs can be considered as the early diagnostic and prognostic biomarkers. Finally, we suggested hHubGs-guided top-ranked 10 candidate drug molecules (SORAFENIB, AMG-900, CHEMBL1765740, ENTRECTINIB, MK-6592, YM201636, masitinib, GSK2126458, TG-02, and PAZOPANIB) by molecular docking analysis for the treatment against BC. We investigated the stability of top-ranked 3 drug-target complexes (SORAFENIB vs ESR1, AMG-900 vs TOP2A, and CHEMBL1765740 vs EGFR) by computing their binding free energies based on 100-ns molecular dynamic (MD) simulation based Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) approach and found their stable performance. The literature review also supported our findings much more for BC compared with the results of individual studies. Therefore, the findings of this study may be useful resources for early diagnosis, prognosis, and therapies of BC.

7.
Heliyon ; 10(16): e36396, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39262985

ABSTRACT

Accurately predicting freeway accident severity is crucial for accident prevention, road safety, and emergency rescue services in intelligent freeway systems. However, current research lacks the required precision, hindering the effective implementation of freeway rescue. In this paper, we efficiently address this challenge by categorizing influencing factors into two levels: human and non-human, further subdivided into 6 and 36 categories, respectively. Furthermore, based on the above factors, an efficient and accurate Freeway Accident Severity Prediction (FASP) method is developed by using the two-level fuzzy comprehensive evaluation. The factor and evaluation sets are determined by calculating the fuzzy evaluation matrix of a single factor. The weight matrix is calculated through the entropy method to compute the final evaluation matrix. Based on the maximum membership principle, the severity of the freeway accident is predicted. Finally, based on the experiments conducted with the traffic accident datasets in China and the US, it is shown that FASP is able to accurately predict the severity of freeway traffic accidents with thorough considerations and low computational cost. It is noted that FASP is the first attempt to achieve freeway accident severity prediction using the two-level fuzzy comprehensive evaluation method to the best of our knowledge.

8.
Neurosci Bull ; 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39266936

ABSTRACT

Stromal interaction molecules (STIM)s are Ca2+ sensors in internal Ca2+ stores of the endoplasmic reticulum. They activate the store-operated Ca2+ channels, which are the main source of Ca2+ entry in non-excitable cells. Moreover, STIM proteins interact with other Ca2+ channel subunits and active transporters, making STIMs an important intermediate molecule in orchestrating a wide variety of Ca2+ influxes into excitable cells. Nevertheless, little is known about the role of STIM proteins in brain functioning. Being involved in many signaling pathways, STIMs replenish internal Ca2+ stores in neurons and mediate synaptic transmission and neuronal excitability. Ca2+ dyshomeostasis is a signature of many pathological conditions of the brain, including neurodegenerative diseases, injuries, stroke, and epilepsy. STIMs play a role in these disturbances not only by supporting abnormal store-operated Ca2+ entry but also by regulating Ca2+ influx through other channels. Here, we review the present knowledge of STIMs in neurons and their involvement in brain pathology.

9.
J Hazard Mater ; 479: 135683, 2024 Nov 05.
Article in English | MEDLINE | ID: mdl-39216243

ABSTRACT

Hydrodechlorination has emerged as a promising technique for detoxifying chlorophenols (CPs) in wastewater, but it suffers from sluggish reaction kinetics and limited durability due to the lack of effective and stable catalysts. Herein, a composite filter consisting of melamine-sponge (MS), chitin fiber (CF) and ultrafine PdAu nanoparticles (PdAu/CF-MS) has been designed for continuous hydrodechlorination of CPs by using formic acid as a H-donor and sodium formate as a promoter. Benefitting from the dense active sites, rich porosity, and synergetic interaction of Pd/Au, the PdAu/CF-MS filter exhibits excellent hydrodechlorination performance (∼ 100 % conversion) towards 4-chlorophenol (1 mM, fluxes below 6100 mL·h-1·g-1) and outstanding durability (over 500 h at 61 mL·h-1·g-1), surpassing most reported counterparts (usually deactivated within 200 h or several cycles). Moreover, other CPs can also be effectively dechlorinated by the PdAu/CF-MS filter. The catalytic system proposed herein will provide a promising candidate for the detoxification of wastewater containing toxic CPs.

10.
Opt Lett ; 49(16): 4673-4676, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39146132

ABSTRACT

In this Letter, a surface wave, the Pearcey Talbot-like plasmon, which has the properties of self-imaging and multiple autofocusing, is presented as a novel, to the best of our knowledge, plasmonic bottle array generation scheme. With originality, the overall structure and the partial intensity of the plasmonic bottle array can be adjusted through the initial input, and modifying the Pearcey function enables the plasmonic bottle array to exhibit self-bending characteristics, which makes particle capture and manipulation easier and more flexible. A scheme to generate the plasmon is proposed, and we prove it by the finite-difference time-domain numerical simulations.

11.
Comput Biol Med ; 180: 108869, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39096607

ABSTRACT

Alzheimer's disease (AD) is a chronic neurodegenerative disease. Early diagnosis are very important to timely treatment and delay the progression of the disease. In the past decade, many computer-aided diagnostic (CAD) algorithms have been proposed for classification of AD. In this paper, we propose a novel graph neural network method, termed Brain Graph Attention Network (BGAN) for classification of AD. First, brain graph data are used to model classification of AD as a graph classification task. Second, a local attention layer is designed to capture and aggregate messages of interactions between node neighbors. And, a global attention layer is introduced to obtain the contribution of each node for graph representation. Finally, using the BGAN to implement AD classification. We train and test on two open public databases for AD classification task. Compared to classic models, the experimental results show that our model is superior to six classic models. We demonstrate that BGAN is a powerful classification model for AD. In addition, our model can provide an analysis of brain regions in order to judge which regions are related to AD disease and which regions are related to AD progression.


Subject(s)
Alzheimer Disease , Brain , Neural Networks, Computer , Alzheimer Disease/classification , Alzheimer Disease/diagnostic imaging , Humans , Brain/diagnostic imaging , Algorithms , Databases, Factual , Diagnosis, Computer-Assisted/methods
12.
Plant Cell Environ ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38946254

ABSTRACT

Plant pathogens cause devastating diseases, leading to serious losses to agriculture. Mechanistic understanding of pathogenesis of plant pathogens lays the foundation for the development of fungicides for disease control. Mitophagy, a specific form of autophagy, is important for fungal virulence. The role of cardiolipin, mitochondrial signature phospholipid, in mitophagy and pathogenesis is largely unknown in plant pathogenic fungi. The functions of enzymes involved in cardiolipin biosynthesis and relevant inhibitors were assessed using a set of assays, including genetic deletion, plant infection, lipidomics, chemical-protein interaction, chemical inhibition, and field trials. Our results showed that the cardiolipin biosynthesis-related gene MoGEP4 of the rice blast fungus Magnaporthe oryzae regulates growth, conidiation, cardiolipin biosynthesis, and virulence. Mechanistically, MoGep4 regulated mitophagy and Mps1-MAPK phosphorylation, which are required for virulence. Chemical alexidine dihydrochloride (AXD) inhibited the enzyme activity of MoGep4, cardiolipin biosynthesis and mitophagy. Importantly, AXD efficiently inhibited the growth of 10 plant pathogens and controlled rice blast and Fusarium head blight in the field. Our study demonstrated that MoGep4 regulates mitophagy, Mps1 phosphorylation and pathogenesis in M. oryzae. In addition, we found that the MoGep4 inhibitor, AXD, displays broad-spectrum antifungal activity and is a promising candidate for fungicide development.

13.
CNS Neurosci Ther ; 30(7): e14819, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39056208

ABSTRACT

AIMS: Astrocytic senescence is inextricably linked to aging and neurodegenerative disorders, including Parkinson's disease (PD). P7C3 is a small, neuroprotective aminopropyl carbazole compound that exhibits anti-inflammatory properties. However, the effects of P7C3 on astrocytic senescence in PD remain to be elucidated. METHODS: An in vitro, long culture-induced, replicative senescence cell model and a 1-methyl-4-phenylpyridinium (MPP+)/rotenone-induced premature senescence cell model were used to investigate the effects of P7C3 on astrocytic senescence. An in vivo, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse PD model was used to study the role of P7C3 in astrocytic senescence. Immunoblotting, real-time quantitative RT-PCR (qPCR), immunofluorescence, subcellular fractionation assays, and immunohistochemistry were utilized to confirm the effects of P7C3 on astrocytic senescence and elucidate its underlying mechanisms. RESULTS: This study determined that P7C3 suppressed the senescence-associated secretory phenotype (SASP) in both cell models, as demonstrated by the reduction in the critical senescence marker p16 and proinflammatory factors (IL-6, IL-1ß, CXCL10, and MMP9) and increased laminB1 levels, implying that P7C3 inhibited replicative astrocytic senescence and MPP+/rotenone-induced premature astrocytic senescence, Most importantly, we demonstrated that P7C3 prevented the death of dopamine (DA) neurons and reduced the behavioral deficits in the MPTP-induced mouse model of PD, which is accompanied by a decrease in senescent astrocytes in the substantia nigra compacta (SNc). Mechanistically, P7C3 promoted Nrf2/Sirt3-mediated mitophagy and reduced mitochondrial reactive oxygen species (mitoROS) generation, which contributed to the suppression of astrocytic senescence. Furthermore, Sirt3 deficiency obviously abolished the inhibitory effects of P7C3 on astrocytic senescence. CONCLUSION: This study revealed that P7C3 inhibited astrocytic senescence via increased Nrf2/Sirt3-mediated mitophagy and suppression of mitoROS, which further protected against DA neuronal loss. These observations provide a prospective theoretical basis for P7C3 in the treatment of age-associated neurodegenerative diseases, such as PD.


Subject(s)
Astrocytes , Cellular Senescence , Dopaminergic Neurons , Mice, Inbred C57BL , Animals , Mice , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/pathology , Dopaminergic Neurons/metabolism , Astrocytes/drug effects , Astrocytes/metabolism , Astrocytes/pathology , Cellular Senescence/drug effects , Cellular Senescence/physiology , Male , Neuroprotective Agents/pharmacology , Carbazoles/pharmacology , Disease Models, Animal
14.
Article in English | MEDLINE | ID: mdl-39067031

ABSTRACT

BACKGROUND: Arthroscopy-assisted closed reduction and percutaneous internal fixation is a minimally invasive technique for medial malleolus fracture treatment. The purpose of the study was to assess the quality and functional outcomes of this technique. METHODS: Seventy-eight patients with combined medial malleolus fractures were treated with arthroscopy-assisted closed reduction and percutaneous screw fixation technique. The surgical procedure was described in detail; the clinical efficacy of this method was evaluated in terms of time of operation, postoperative complications, and fracture healing time; and functional outcomes were analyzed. RESULTS: All of the patients were followed up for a minimum of 12 months without complications of the medial malleolus wound, and all of the medial malleolus fractures healed within 6 to 8 weeks. At the last follow-up, the visual analog scale scores ranged from 0 to 3 and the American Orthopaedic Foot and Ankle Society ankle and hindfoot function scores ranged from 75 to 95. CONCLUSIONS: Arthroscopy-assisted closed reduction and percutaneous internal fixation makes the treatment of medial malleolus fractures less invasive compared with traditional surgical methods and allows simultaneous exploration and management of the articular surface.


Subject(s)
Ankle Fractures , Arthroscopy , Fracture Fixation, Internal , Humans , Arthroscopy/methods , Fracture Fixation, Internal/methods , Male , Ankle Fractures/surgery , Female , Adult , Middle Aged , Bone Screws , Treatment Outcome , Fracture Healing/physiology , Young Adult , Retrospective Studies , Closed Fracture Reduction/methods , Aged , Follow-Up Studies , Minimally Invasive Surgical Procedures/methods
15.
Arch Virol ; 169(8): 164, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38990242

ABSTRACT

Upregulation of ADAMTS-4 has been reported to have an important role in lung injury, and ADAMTS-4 expression is regulated by miR-126a-5p in abdominal aortic aneurysms. The aim of this study was to investigate whether miR-126a-5p/ADAMTS-4 plays a role in influenza-virus-induced lung injury. Lung fibroblasts were infected with H1N1 influenza virus to detect changes in miR-126a-5p and ADAMTS-4 expression, and cell viability was measured by CCK-8 assay. Inflammatory factors and matrix protease levels were examined using ELISA kits, and cell apoptosis was assessed by measuring the levels of apoptosis-related proteins. A dual luciferase assay was used to verify the regulatory relationship between miR-126a-5p and ADAMTS-4. H1N1 influenza virus reduced fibroblast viability, inhibited miR-126a-5p expression, and promoted ADAMTS-4 expression. Overexpression of miR-126a-5p attenuated the cellular inflammatory response, apoptosis, matrix protease secretion, and virus replication. Luciferase reporter assays revealed that miR-126a-5p inhibited ADAMTS-4 expression by targeting ADAMTS-4 mRNA. Further experiments showed that overexpression of ADAMTS-4 significantly reversed the inhibitory effects of miR-126a-5p on fibroblast inflammation, apoptosis, matrix protease secretion, and virus replication. Upregulation of miR-126a-5p inhibits H1N1-induced apoptosis, inflammatory factors, and matrix protease secretion, as well as virus replication in lung fibroblasts.


Subject(s)
ADAMTS4 Protein , Apoptosis , Fibroblasts , Inflammation , Influenza A Virus, H1N1 Subtype , Lung , MicroRNAs , MicroRNAs/genetics , MicroRNAs/metabolism , Fibroblasts/virology , Fibroblasts/metabolism , Humans , Lung/virology , Lung/pathology , ADAMTS4 Protein/genetics , ADAMTS4 Protein/metabolism , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/physiology , Inflammation/genetics , Cell Survival , Virus Replication , Influenza, Human/virology , Influenza, Human/genetics , Influenza, Human/metabolism , Cell Line
16.
Analyst ; 149(18): 4663-4674, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39073090

ABSTRACT

To objectively quantify changes in steroid hormones in organisms caused by adverse environmental loads, we developed a simple and sensitive UPLC-MS/MS (ultra-performance liquid chromatography triple quadrupole mass spectrometry) method for the simultaneous determination of 18 steroid hormones on the HPG axis. This analytical method was based on liquid extraction and a multimode electrospray and atmospheric pressure chemical ionization (ESCi) source, which was optimized by mass spectrometry, liquid phase and pretreatment for the quantification of cholesterol (CH), aldosterone (A), cortisone (E), hydrocortisone (F), 21-deoxycortisol (21-DF), corticosterone (B), 11-deoxycortisol (11-DF), androstenedione (A2), estradiol (E2), estrone (E1), 2-methoxyestradiol (2-MeE2), 21-hydroxyprogesterone (21-OHP), 17-α hydroxyprogesterone (17α-OHP), testosterone (T), dehydroepiandrosterone (DHEA), progesterone (P4), dihydrotestosterone (DHT), and pregnenolone (P5). The method exhibits linearity in the analyte-concentration range 0.03-1000 µg mL-1 (r2 > 0.99), the spiked recoveries for the concentration range tested are 76.22-113.66%, and the relevant parameters of precision are 7.52-1.14%. Compared to other methods, this new method not only uses a small amount of serum (only 100 µL), but also permits the analysis of the challenging steroid, cholesterol. Furthermore, the method was successfully applied to the determination of steroids in Mus musculus, Carassius auratus, Rana catesbeiana Shaw, and Rana nigromaculata serum samples from randomly selected individuals. Therefore, this method is efficient and a very useful tool for assessing changes in steroid hormones.


Subject(s)
Limit of Detection , Tandem Mass Spectrometry , Animals , Tandem Mass Spectrometry/methods , Chromatography, High Pressure Liquid/methods , Mice , Steroids/analysis , Steroids/blood , Male , Female , Hypothalamus/chemistry , Pituitary Gland , Hypothalamic-Pituitary-Gonadal Axis , Liquid Chromatography-Mass Spectrometry
17.
Lab Chip ; 24(14): 3367-3376, 2024 07 10.
Article in English | MEDLINE | ID: mdl-38845509

ABSTRACT

Point-of-care testing of "sample in, answer out" is urgently needed for communicable diseases. Recently, rapid nucleic acid tests for infectious diseases have been developed for use in resource-limited areas, but they require types of equipment in central laboratories and are poorly integrated. In this work, a portable centrifugal microfluidic testing system is developed, integrated with magnetic bead-based nucleic acid extraction, recombinase-assisted amplification and CRISPR-Cas13a detection. The system, with the advantage of its power-supplied active rotating chip and highly programable flow control through integrated addressable active thermally-triggered wax valves, has a rapid turnaround time within 45 min, requiring only one user step. All reagents are preloaded into the chip and can be automatically released. By exploiting a multichannel chip, it is capable of simultaneously detecting 10 infectious viruses with limits of detection of 1 copy per reaction and 5 copies per reaction in plasmid samples and mock plasma samples, respectively. The system was used to analyse clinical plasma samples with good consistency compared to laboratory-based molecular testing. Moreover, the generalizability of our device is reported by successfully testing nasopharyngeal swabs and whole blood samples. The portable device does not require the operation of professional technicians, making it an excellent assay for on-site testing.


Subject(s)
CRISPR-Cas Systems , Lab-On-A-Chip Devices , Humans , Nucleic Acid Amplification Techniques/instrumentation , Equipment Design , Microfluidic Analytical Techniques/instrumentation , Limit of Detection
18.
Biosens Bioelectron ; 261: 116505, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38885536

ABSTRACT

Surface enhanced Raman spectroscopy (SERS) utilizes the fingerprint features of molecular vibrations to identify and detect substances. However, in traditional single focus excitation scenarios, its signal collection efficiency of the objective is restricted. Furthermore, the uneven distribution of samples on the SERS substrate would result in poor signal stability, while the excitation power is limited to avoid sample damage. SERS detection system always requires precise adjustment of focal length and spot size, making it difficult for point-of-care testing applications. Here, we proposed a SERS microfluidic chip with barium titanate microspheres array (BTMA) embedded using vacuum self-assembled hot-pressing method for SERS detection with simultaneous enhancement of sensitivity and stability. Due to photonic nano-jets and directional antenna effects, high index microspheres are perfect micro-lens for effective light focusing and signal collecting. The BTMA can not only disperse excitation beam into an array of focal points covering the target uniformly with very low signal fluctuation, but enlarge the power threshold for higher signal intensity. We conducted a proof-of-principle experiment on chip for the detection of bacteria with immuno-magnetic tags and immuno-SERS tags. Together with magnetic and ultrasonic operations, the target bacteria in the flow were evenly congregated on the focal plane of BTMA. It demonstrated a limit of detection of 5 cells/mL, excellent signal reproducibility (error∼4.84%), and excellent position tolerance of 500 µm in X-Y plane (error∼5.375%). It can be seen that BTMA-SERS microfluidic chip can effectively solve the contradiction between sensitivity and stability in SERS detection.


Subject(s)
Biosensing Techniques , Lab-On-A-Chip Devices , Microspheres , Spectrum Analysis, Raman , Spectrum Analysis, Raman/instrumentation , Spectrum Analysis, Raman/methods , Biosensing Techniques/instrumentation , Limit of Detection , Equipment Design , Titanium/chemistry , Lenses , Escherichia coli/isolation & purification
19.
Microbiol Resour Announc ; 13(7): e0035724, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-38898546

ABSTRACT

As a noteworthy biocontrol fungus, Clonostachys chloroleuca currently lacks a high-quality reference genome. Here, we present the first high-quality genome assembly of C. chloroleuca strain Cc878 achieved through Oxford Nanopore Long-Read sequencing. The nuclear genome of Cc878 was assembled into four contigs, totaling 59.38 Mb.

20.
Ecotoxicol Environ Saf ; 281: 116601, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38896905

ABSTRACT

In this study, a novel sulfur/zinc co-doped biochar (SZ-BC) stabilizer was successfully developed for the remediation of mercury-contaminated soil. Results from SEM, TEM, FTIR and XRD revealed that biochar (BC) was successfully modified by sulfur and zinc. In the batch adsorption experiments, the sulfur-zinc co-pyrolysis biochar displayed excellent Hg(II) adsorption performance, with the maximum adsorption capacity of SZ-BC (261.074 mg/g) being approximately 16.5 times that of BC (15.855 mg/g). Laboratory-scale static incubation, column leaching, and plant pot experiments were conducted using biochar-based materials. At an additional dosage of 5 % mass ratio, the SZ-BC exhibits the most effective stabilization of mercury in soil, leading to a significant reduction in leaching loss compared to the control group (CK) by 51.30 %. Following 4 weeks of incubation and 2 weeks of leaching with SZ-BC, the residual mercury in the soil increased by 27.84 %. As a result, potential ecological risk index of mercury decreased by 92 % compared to the CK group. In the pot experiment, SZ-BC significantly enhanced the growth of Chinese cabbage, with biomass and root dry weight reaching 3.20 and 2.80 times that of the CK group, respectively. Additionally, the Translocation Factor (TF) and Bioconcentration Factor (BF) were reduced by 44.86 % and 74.43 %, respectively, in the SZ-BC group compared to the CK group. Moreover, SZ-BC can effectively improve enzyme activities and increase microbial communities in mercury-contaminated soils. The mechanisms of adsorption and stabilization were elucidated through electrostatic adsorption, ion exchange, surface complexation, and precipitation. These findings provide a potentially effective material for stabilizing soils contaminated with mercury.


Subject(s)
Charcoal , Environmental Restoration and Remediation , Mercury , Soil Pollutants , Sulfur , Zinc , Charcoal/chemistry , Mercury/chemistry , Soil Pollutants/chemistry , Zinc/chemistry , Environmental Restoration and Remediation/methods , Adsorption , Sulfur/chemistry , Soil/chemistry , Brassica/chemistry , Biodegradation, Environmental
SELECTION OF CITATIONS
SEARCH DETAIL