Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 195
Filter
1.
Neural Regen Res ; 20(1): 242-252, 2025 Jan 01.
Article in English | MEDLINE | ID: mdl-38767489

ABSTRACT

JOURNAL/nrgr/04.03/01300535-202501000-00032/figure1/v/2024-05-14T021156Z/r/image-tiff Human brain development is a complex process, and animal models often have significant limitations. To address this, researchers have developed pluripotent stem cell-derived three-dimensional structures, known as brain-like organoids, to more accurately model early human brain development and disease. To enable more consistent and intuitive reproduction of early brain development, in this study, we incorporated forebrain organoid culture technology into the traditional unguided method of brain organoid culture. This involved embedding organoids in matrigel for only 7 days during the rapid expansion phase of the neural epithelium and then removing them from the matrigel for further cultivation, resulting in a new type of human brain organoid system. This cerebral organoid system replicated the temporospatial characteristics of early human brain development, including neuroepithelium derivation, neural progenitor cell production and maintenance, neuron differentiation and migration, and cortical layer patterning and formation, providing more consistent and reproducible organoids for developmental modeling and toxicology testing. As a proof of concept, we applied the heavy metal cadmium to this newly improved organoid system to test whether it could be used to evaluate the neurotoxicity of environmental toxins. Brain organoids exposed to cadmium for 7 or 14 days manifested severe damage and abnormalities in their neurodevelopmental patterns, including bursts of cortical cell death and premature differentiation. Cadmium exposure caused progressive depletion of neural progenitor cells and loss of organoid integrity, accompanied by compensatory cell proliferation at ectopic locations. The convenience, flexibility, and controllability of this newly developed organoid platform make it a powerful and affordable alternative to animal models for use in neurodevelopmental, neurological, and neurotoxicological studies.

2.
Molecules ; 29(10)2024 May 16.
Article in English | MEDLINE | ID: mdl-38792203

ABSTRACT

Narrowband afterglow materials display interesting functions in high-quality anti-counterfeiting and multiplexed bioimaging. However, there is still a limited exploration of these afterglow materials, especially for those with a full width at half maxima (FWHM) around 30 nm. Here, we report the fabrication of narrowband organic/inorganic hybrid afterglow materials via energy transfer technology. Coronene (Cor) with a long phosphorescence feature and broad phosphorescence band is selected as the donor for energy transfer, and inorganic quantum dots (QDs) of CdSe/ZnS with a narrowband emission are used as acceptors. Upon doping into the organic matrix, the resultant three-component materials exhibit a narrowband afterglow with an afterglow lifetime of approximately 3.4 s and an FWHM of 31 nm. The afterglow wavelength of the afterglow materials can be controlled by the QDs. This work based on organic/inorganic hybrids provides a facile approach for developing multicolor and narrowband afterglow materials, as well as opens a new way for expanding the features of organic afterglow for multifunctional applications. It is expected to rely on narrowband afterglow emitters to solve the "spectrum congestion" problem of high-density information storage in optical anti-counterfeiting and information encryption.

3.
RSC Adv ; 14(16): 11266-11275, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38595717

ABSTRACT

Bauxite is an important strategic resource, and it is facing with the problem of balance between high demand of bauxite ore and low resource of bauxite reserves in China. This research takes the Fuxin coal gangue as the object and extracts Al2O3 by medium-temperature calcination and acid pressure leaching process. The results show that at a calcination temperature of 650 °C, calcination time of 2 h, acid pressure leaching temperature of 160 °C and acid pressure leaching time of 6 h, the extraction ratio of Al2O3 reaches 80.19%. Furthermore, the research finding that the complete activation temperatures of kaolinite and muscovite are 650 °C and 850 °C, respectively, and the decomposition reactions of active Si, active Al, and metakaolinite occur above 800 °C, which leads to a low extraction ratio of Al2O3. The acid pressure leaching process can directly destroy the muscovite structure at a calcination temperature of 650 °C. The acid pressure leaching kinetic equations are studied by three kinetic models, and the apparent activation energies of the reactions are calculated by the Arrhenius formula. The results show that acid pressure leaching is subject to solid residue in-layer diffusion control, and the kinetic equation is "". The apparent activation energy is 13.48 kJ mol-1.

4.
Oncogene ; 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38671157

ABSTRACT

The long-term maintenance of leukaemia stem cells (LSCs) is responsible for the high degree of malignancy in MLL (mixed-lineage leukaemia) rearranged acute myeloid leukaemia (AML). The DNA damage response (DDR) and DOT1L/H3K79me pathways are required to maintain LSCs in MLLr-AML, but little is known about their interplay. This study revealed that the DDR enzyme ATM regulates the maintenance of LSCs in MLLr-AML with a sequential protein-posttranslational-modification manner via CBP-DOT1L. We identified the phosphorylation of CBP by ATM, which confers the stability of CBP by preventing its proteasomal degradation, and characterised the acetylation of DOT1L by CBP, which mediates the high level of H3K79me2 for the expression of leukaemia genes in MLLr-AML. In addition, we revealed that the regulation of CBP-DOT1L axis in MLLr-AML by ATM was independent of DNA damage activation. Our findings provide insight into the signalling pathways involoved in MLLr-AML and broaden the understanding of the role of DDR enzymes beyond processing DNA damage, as well as identigying them as potent cancer targets.

5.
Heliyon ; 10(6): e28068, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38533059

ABSTRACT

In response to the problem of excessive power consumption during the furrowing operation of orchard furrowing fertilizer machines, an optimization experiment of furrowing operation parameters for orchard furrowing fertilizer machine was conducted based on discrete element simulations. This research focused on the impact of furrowing device operation parameters on furrowing power consumption under full machine operating conditions. Firstly, a kinematics analysis of the soil granules during cutting was done. The mathematical model of soil granules through three movement processes of rising, detachment, and falling was established to determine the main factors affecting the power consumption of furrowing. Secondly, in assessing the furrowing power consumption, the stability coefficient of the furrowing depth, and the percentage of soil cover, alongside the key parameters of furrowing depth, forward propulsion velocity, and furrowing blade rotation speed, a comprehensive quadratic orthogonal rotation regression experiment was meticulously conducted. It was established that test metrics and test parameters regress. Finally, the test parameters were comprehensively optimized after analyzing each factor's impact on the test metrics. The orchard furrowing fertilizer machine's optimal operating parameters were determined, and the verification test was performed. According to the field test findings, the forward propulsion velocity was 785 m/h, and the furrowing blade rotation speed was 190 r/min when the furrowing depth was 275 mm. At this point, the furrowing power consumption was 2.39 kW, the soil cover percentage was 69.06%, and the furrowing depth stability coefficient was 95.08%. These results were in line with the requirements of orchard furrowing operation. The findings of the study can be utilized as a guide for structural changes to orchard furrowing equipment and the management of furrowing operation parameters.

6.
Sci Rep ; 14(1): 7502, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38553501

ABSTRACT

Coal-series diatomite (CSD) is widely distributed in China and has poor functional and structural properties and exhibits limited utilization of high value-added materials, resulting in a serious waste of resources and tremendous pressure on the environment. Moreover, due to differences in the mineralogical characteristics of CSD, different particle size scales (PSSs) have different functional structures and exhibit different self-similarities. In this study, we took CSD as the research object and PSS as the entry point and carried out a self-similarity study based on gas adsorption and an image processing method to illustrate the microstructures and self-similarities of different PSSs. The results showed that the pore structure of the CSD was dominated by mesopores and macropores and basically lacked micropores. The fractal dimensions were calculated with the Frenkel-Haisey-Hill (FHH) model and Menger model, and the DF1 values for - 0.025 mm and - 2 mm were 2.51 and 2.48, respectively, and the DM1 values were 3.75 and 3.79, respectively, indicating that the mesopore structure of the fine PSS was complex, whereas macropores were present in the coarse PSS. MATLAB was programmed to obtain grayscale thresholds, binarized images, grayscale histograms, three-dimensional (3D) reconstruction images and box dimensions, which enabled us to observe the microstructures and self-similarities of the CSD. Self-similarity studies based on particle sizes are very important for functional application of CSD.Please note that article title mismatch between MS and JS we have followed MS, kindly check and cofirm.Yes, I have checked and confirmed.Kindly check and confirm corresponding author mail id are correctly identified.Yes, I have checked and confirmed.

7.
J Chem Phys ; 160(8)2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38391016

ABSTRACT

We construct correlation-consistent effective core potentials (ccECPs) for a selected set of heavy atoms and f elements that are currently of significant interest in materials and chemical applications, including Y, Zr, Nb, Rh, Ta, Re, Pt, Gd, and Tb. As is customary, ccECPs consist of spin-orbit (SO) averaged relativistic effective potential (AREP) and effective SO terms. For the AREP part, our constructions are carried out within a relativistic coupled-cluster framework while also taking into account objective function one-particle characteristics for improved convergence in optimizations. The transferability is adjusted using binding curves of hydride and oxide molecules. We address the difficulties encountered with f elements, such as the presence of large cores and multiple near-degeneracies of excited levels. For these elements, we construct ccECPs with core-valence partitioning that includes 4f subshell in the valence space. The developed ccECPs achieve an excellent balance between accuracy, size of the valence space, and transferability and are also suitable to be used in plane wave codes with reasonable energy cutoffs.

8.
World Neurosurg ; 185: e415-e420, 2024 May.
Article in English | MEDLINE | ID: mdl-38360206

ABSTRACT

OBJECTIVE: This study compared the clinical therapeutic efficacy of syringo-subarachnoid shunt placement with direct tube and T-tube via the dorsal root entry zone (DREZ) approach for treatment of eccentric syringomyelia. METHODS: A retrospective study was performed of 41 patients with idiopathic or secondary eccentric syringomyelia from November 2011 to December 2022. Syringo-subarachnoid shunt placement with direct tube or T-tube via the DREZ approach was performed. The modified Japanese Orthopaedic Association low back pain scale was used to investigate the severity of clinical symptoms. Magnetic resonance imaging was used to investigate therapeutic efficacy(reduction of the cavity volume by >10% was considered an improvement and 50% was considered a significant improvement). RESULTS: Incision length of the spinal cortex in the direct tube group was shorter than in the T-tube group (3.10 ± 0.28 cm vs. 5.03 ± 0.19 cm), with a significant difference between the 2 groups (t = -52.56, P < 0.001). Modified Japanese Orthopaedic Association score 3 months postoperatively was significantly better than the preoperative score in both the direct tube group(t = 40.954, P < 0.001) and the T-tube group(t = 24.769, P < 0.001). Statistical comparison revealed there was no difference in imaging improvement between the direct tube group and T-tube group 3 months (χ2 = 0.20, P = 0.655) and 12 months (χ2 = 0.21, P = 0.647) postoperatively. CONCLUSIONS: Syringo-subarachnoid shunt placement with direct tube via the DREZ approach for treatment of eccentric syringomyelia is safer than with T-tube via the DREZ approach due to smaller incision length and less of a space-occupying effect with same therapeutic efficacy.


Subject(s)
Cerebrospinal Fluid Shunts , Syringomyelia , Humans , Syringomyelia/surgery , Syringomyelia/diagnostic imaging , Female , Male , Retrospective Studies , Middle Aged , Adult , Cerebrospinal Fluid Shunts/methods , Treatment Outcome , Spinal Nerve Roots/surgery , Spinal Nerve Roots/diagnostic imaging , Subarachnoid Space/surgery , Subarachnoid Space/diagnostic imaging , Aged , Magnetic Resonance Imaging
9.
Chemistry ; 30(18): e202303834, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38267399

ABSTRACT

Blue afterglow constitutes of one of the primary afterglow colors and can convert into other afterglow colors through energy transfer. The reported studies show the fabrication of blue afterglow emitters, but most of them are formed by room-temperature phosphorescence mechanism and require UVB lights as excitation source (these high-energy lights may damage organic systems). Here we report visible-light-excitable blue thermally activated delayed fluorescence type (TADF-type) afterglow materials via delicate control of excited states in difluoroboron ß-diketonate (BF2bdk) systems. Tiny change of the substituents in BF2bdk system has been found to pose significant influence on excited state energy levels and consequently narrow the singlet-triplet splitting energy of the system. As a result, both forward and reverse intersystem crossing have been accelerated, leading to the emergence of BF2bdk's TADF-type organic afterglow in rigid crystalline matrices. The resultant TADF-type afterglow materials exhibit emission lifetimes of several hundred milliseconds, photoluminescence quantum yield (PLQY) of 24.7 % and display temperature responsive property.

10.
J Cell Physiol ; 239(4): e31187, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38219047

ABSTRACT

Neural stem cells (NSCs) are pluripotent stem cells with the potential to differentiate into a variety of nerve cells. NSCs are susceptible to both intracellular and extracellular insults, thus causing DNA damage. Extracellular insults include ultraviolet, ionizing radiation, base analogs, modifiers, alkyl agents and others, while intracellular factors include Reactive oxygen species (ROS) radicals produced by mitochondria, mismatches that occur during DNA replication, deamination of bases, loss of bases, and more. When encountered with DNA damage, cells typically employ three coping strategies: DNA repair, damage tolerance, and apoptosis. NSCs, like many other stem cells, have the ability to divide, differentiate, and repair DNA damage to prevent mutations from being passed down to the next generation. However, when DNA damage accumulates over time, it will lead to a series of alterations in the metabolism of cells, which will cause cellular ageing. The ageing and exhaustion of neural stem cell will have serious effects on the body, such as neurodegenerative diseases. The purpose of this review is to examine the processes by which DNA damage leads to NSCs ageing and the mechanisms of DNA repair in NSCs.


Subject(s)
Cellular Senescence , DNA Damage , Neural Stem Cells , DNA Repair , Neural Stem Cells/physiology , Neurons/physiology , Cellular Senescence/genetics , Humans
11.
Stem Cells Dev ; 33(3-4): 79-88, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38115601

ABSTRACT

The quiescence and activation of adult stem cells are regulated by many kinds of molecular mechanisms, and RNA alternative splicing participates in regulating many cellular processes. However, the relationship between stem cell quiescence and activation regulation and gene alternative splicing has yet to be studied. In this study, we aimed to elucidate the regulation of stem cell quiescence and activation by RNA alternative splicing. The upregulated genes in activated mouse neural stem cells (NSCs), muscle stem cells, and hematopoietic stem cells were collected for Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis. The genes from three tissue stem cells underwent Venn analysis. The mouse NSCs were used for quiescence and reactivation induction. The immunostaining of cell-specific markers was performed to identify cell properties. The reverse transcription-polymerase chain reaction and western blotting were used to detect the gene expression and protein expression, respectively. We found that the upregulated genes in activated stem cells from three tissues were all enriched in RNA splicing-related biological processes; the upregulated RNA splicing-related genes in activated stem cells displayed tissue differences; mouse NSCs were successfully induced into quiescence and reactivation in vitro without losing differentiation potential; serine and arginine-rich splicing factor 3 (Srsf3) was highly expressed in the activated mouse NSCs, and the overexpression of SRSF3 protein promoted the activation of quiescent mouse NSCs and increased the neural cell production. Our data indicate that the alternative splicing change may underline the transition of quiescence and activation of stem cells. The manipulation of the splicing factor may benefit tissue repair by promoting the activation of quiescent stem cells.


Subject(s)
Arginine , Neural Stem Cells , Animals , Mice , Neural Stem Cells/metabolism , RNA/metabolism , RNA Splicing Factors/metabolism , Serine
12.
J Phys Chem Lett ; 14(49): 11142-11151, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38054432

ABSTRACT

Dopant-matrix organic afterglow materials exhibit ease of fabrication and intriguing functions in diverse fields. However, a deep and comprehensive understanding of their photophysical behaviors remains elusive. Here we report manipulation of a room-temperature phosphorescence/thermally activated delayed fluorescence (RTP/TADF) afterglow mechanism via the mismatch/match of intermolecular charge transfer between dopants and matrices. When dispersed in inert crystalline matrices, the luminescent dopants show RTP lifetimes up to 2 s. Interestingly, when suitable organic matrices are selected, the resultant dopant-matrix materials display a TADF-type afterglow under ambient conditions due to the formation of dopant-matrix intermolecular charge transfer complexes. Detailed studies reveal that reverse intersystem crossing from dopants' T1 states to charge transfer complexes' S1 states, which features a moderate kRISC of 101-102 s-1, is responsible for the emergence of a TADF-type organic afterglow in rigid crystalline matrices. Such less reported delicate photophysics reveals a new aspect of the excited state property in dopant-matrix afterglow systems.

13.
Acta Cir Bras ; 38: e387023, 2023.
Article in English | MEDLINE | ID: mdl-38055403

ABSTRACT

PURPOSE: Cerebral ischemia-reperfusion (I/R) is a neurovascular disorder that leads to brain injury. In mice, Fasudil improves nerve injury induced by I/R. However, it is unclear if this is mediated by increased peroxisome proliferator-activated receptor-α (PPARα) expression and reduced oxidative damage. This study aimed to investigate the neuroprotective mechanism of action of Fasudil. METHODS: MCAO (Middle cerebral artery occlusion) was performed in male C57BL/6J wild-type and PPARα KO mice between September 2021 to April 2023. Mice were treated with Fasudil and saline; 2,3,5-Triphenyltetrazolium chloride (TTC) staining was performed to analyze cerebral infarction. PPARα and Rho-associated protein kinase (ROCK) expression were detected using Western blot, and the expression of NADPH subunit Nox2 mRNA was detected using real-time polymerase chain reaction. The NADPH oxidase activity level and reactive oxygen species (ROS) content were also investigated. RESULTS: After cerebral ischemia, the volume of cerebral necrosis was reduced in wild-type mice treated with Fasudil. The expression of PPARα was increased, while ROCK was decreased. Nox2 mRNA expression, NADPH oxidase activity, and ROS content decreased. There were no significant changes in cerebral necrosis volumes, NADPH oxidase activity, and ROS content in the PPARα KO mice treated with Fasudil. CONCLUSIONS: In mice, the neuroprotective effect of Fasudil depends on the expression of PPARα induced by ROCK-PPARα-NOX axis-mediated reduction in ROS and associated oxidative damage.


Subject(s)
Brain Ischemia , Reperfusion Injury , Mice , Male , Animals , PPAR alpha/physiology , Reactive Oxygen Species/metabolism , Neuroprotection , Reperfusion Injury/drug therapy , Reperfusion Injury/prevention & control , Reperfusion Injury/genetics , Mice, Inbred C57BL , Ischemia , Brain Ischemia/drug therapy , Brain Ischemia/prevention & control , NADPH Oxidases/genetics , NADPH Oxidases/metabolism , Reperfusion , Necrosis , RNA, Messenger
14.
Medicine (Baltimore) ; 102(45): e35953, 2023 Nov 10.
Article in English | MEDLINE | ID: mdl-37960754

ABSTRACT

Cervical cancer (CC) is the fourth most common cancer in women worldwide. It develops through precancerous lesions (cervical intraepithelial neoplasia (CIN), graded from low-grade (CIN1) to high-grade (CIN2-3)). It is well established that precancerous and cancerous cervical lesions are caused by a persistent infection with high-risk types of the human papilloma virus (hrHPV). To have a deeper understanding of the pathogenesis of CIN and CC, we systematically analyzed the landscape of genomic alterations and HPV integration profiles in high-grade CIN2/3. We performed deep whole genome sequencing on exfoliated cervical cells and matched peripheral blood samples from a cohort of 51 Chinese patients (of whom 35 were HPV+) with high-grade CIN from 3 ethnic groups and constructed strict integrated workflow of genomic analysis. In addition, the HPV types and integration breakpoints in the exfoliated cervical cells from these patients were examined. Genomic analysis identified 6 significantly mutated genes (SMGs), including CDKN2A, PIK3CB, FAM20A, RABEP1, TMPRSS2 and SS18L1, in 51 CIN2/3 samples. As none of them had previously been identified as SMGs in the Cancer Genome Atlas cervical squamous cell carcinoma and endocervical adenocarcinoma (TCGA-CESC) cohort, future studies with larger sample size of CINs may be needed to validate our findings. Mutational signature analysis showed that mutational signatures of CINs were dramatically different from CCs, highlighting their different mutational processes and etiologies. Moreover, non-silent somatic mutations were detected in all of the CIN2/3 samples, and 88% of these mutations occurred in genes that also mutated in CCs of TCGA cohort. CIN2 samples had significantly less non-silent mutations than CIN3 samples (P = .0006). Gene ontology and pathway level analysis revealed that functions of mutated genes were significantly associated with tumorigenesis, thus these genes may be involved in the development and progression of CC. HPV integration breakpoints occurred in 28.6% of the CIN2/3 samples with HPV infection. Integrations of common high risk HPV types in CCs, including HPV16, 52, 58 and 68, also occurred in the CIN samples. Our results lay the groundwork for a deeper understanding of the molecular mechanisms underlying the pathogenesis of CC and pave the way for new tools for screening, diagnosis and treatment of cervical precancerous and cancerous lesions.


Subject(s)
Carcinoma, Squamous Cell , Papillomavirus Infections , Precancerous Conditions , Uterine Cervical Dysplasia , Uterine Cervical Neoplasms , Humans , Female , Uterine Cervical Neoplasms/pathology , Carcinoma, Squamous Cell/pathology , Papillomavirus Infections/complications , Papillomavirus Infections/genetics , Papillomavirus Infections/pathology , Ethnicity , Precancerous Conditions/complications , Whole Genome Sequencing , Papillomaviridae/genetics
15.
Medicine (Baltimore) ; 102(47): e36179, 2023 Nov 24.
Article in English | MEDLINE | ID: mdl-38013375

ABSTRACT

BACKGROUND: Ischemic stroke (IS) is affected by a wide range of factors and has certain treatment limitations. Studies have reported that compound musk injection (CMI) is effective in the treatment of IS, however, its mechanism of action is still unclear. METHODS: The main active ingredients in CMI were retrieved from HERB, TCMSP and BATMAN databases, and the relevant targets were predicted by Swiss Target Prediction platform. MalaCards, OMIM, DrugBank, DisGeNET, Genecards and TTD databases were used to obtain the genes related to IS. The intersection of drugs and disease targets was used to construct protein-protein interaction networks, and gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were performed. AutoDock Vina software was used for molecular docking, and cell experiments were conducted to verify the results. Reverse transcription-polymerase chain reaction (RT-PCR) was used to detect the expression level of relative mRNA in cells. RESULTS: Network analysis and molecular docking results showed that the key targets of CMI in the treatment of IS were SRC, TP53, PIK3R1, MAPK3, PIK3CA, MAPK1, etc. KEGG pathway enrichment analysis mainly involved PI3K/Akt signaling pathway, Rap1 signaling pathway and MAPK signaling pathway. The molecular docking results all showed that the key ingredients were strong binding activity with the key targets. The quantitative RT-PCR results indicated that CMI may increase the expression of PIK3CA, MAPK3 mRNA and decrease the expression of SRC mRNA. CONCLUSIONS: CMI can treat IS by regulating pathways and targets related to inflammatory response and apoptosis in a multi-component manner.


Subject(s)
Drugs, Chinese Herbal , Ischemic Stroke , Humans , Ischemic Stroke/drug therapy , Molecular Docking Simulation , Phosphatidylinositol 3-Kinases , Class I Phosphatidylinositol 3-Kinases , RNA, Messenger
16.
Medicine (Baltimore) ; 102(46): e35919, 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-37986378

ABSTRACT

Ischemic strokes (ISs) are commonly treated by intravenous thrombolysis using a recombinant tissue plasminogen activator; however, successful treatment can only occur within 3 hours after the stroke. Therefore, it is crucial to determine the causes and underlying molecular mechanisms, identify molecular biomarkers for early diagnosis, and develop precise preventive treatments for strokes. We aimed to clarify the differences in gene expression, molecular mechanisms, and drug prediction approaches between IS and myocardial infarction (MI) using comprehensive bioinformatics analysis. The pathogenesis of these diseases was explored to provide directions for future clinical research. The IS (GSE58294 and GSE16561) and MI (GSE60993 and GSE141512) datasets were downloaded from the Gene Expression Omnibus database. IS and MI transcriptome data were analyzed using bioinformatics methods, and the differentially expressed genes (DEGs) were screened. A protein-protein interaction network was constructed using the STRING database and visualized using Cytoscape, and the candidate genes with high confidence scores were identified using Degree, MCC, EPC, and DMNC in the cytoHubba plug-in. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses of the DEGs were performed using the database annotation, visualization, and integrated discovery database. Network Analyst 3.0 was used to construct transcription factor (TF) - gene and microRNA (miRNA) - gene regulatory networks of the identified candidate genes. The DrugBank 5.0 database was used to identify gene-drug interactions. After bioinformatics analysis of IS and MI microarray data, 115 and 44 DEGS were obtained in IS and MI, respectively. Moreover, 8 hub genes, 2 miRNAs, and 3 TFs for IS and 8 hub genes, 13 miRNAs, and 2 TFs for MI were screened. The molecular pathology between IS and MI presented differences in terms of GO and KEGG enrichment pathways, TFs, miRNAs, and drugs. These findings provide possible directions for the diagnosis of IS and MI in the future.


Subject(s)
Ischemic Stroke , MicroRNAs , Myocardial Infarction , Humans , Gene Expression Profiling/methods , Tissue Plasminogen Activator , MicroRNAs/genetics , MicroRNAs/metabolism , Gene Regulatory Networks , Biomarkers , Myocardial Infarction/diagnosis , Myocardial Infarction/genetics , Computational Biology/methods
17.
Medicine (Baltimore) ; 102(44): e35771, 2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37933045

ABSTRACT

BACKGROUND: Naoshuantong capsule (NST capsule) is a classic Chinese patent medicine, which can treat ischemic stroke (IS) and has good clinical efficacy. However, its pharmacological mechanism remains to be further explored in the treatment of IS. METHODS: The bio-active components and potential targets of NST Capsules were obtained by ETCM and TCMSP databases. In addition, the related targets of IS were collected by Genecard, OMIM, DrugBank, TTD and DisGeNET databases. NST-IS common target was obtained by Venn platform. PPI network of NST-IS common target and the composition - target network diagram of NST Capsule were constructed by Cytoscape3.8.1. Finally, AutoDock was used for molecular docking. RESULTS: 265 targets were predicted from 32 active compounds in NST Capsule, 109 common targets were identified between NST Capsule and IS. The top 10 key targets of PPI network were ALB, TNF, TP53, VEGFA, CASP3, MYC, etc. Enrichment analysis showed that NST capsules treated IS mainly through lipid and atherosclerosis, fluid shear stress and atherosclerosis signaling pathways. CONCLUSION: Through the methods of network pharmacology and molecular docking, this study clarified that NST capsules play a role in the treatment of IS, which is multi-target, multi-channel and multi-component regulation. This study further explored the pharmacological mechanism of NST capsule in the treatment of IS, which can provide some references for the subsequent research in the pharmacological mechanism of NST capsule.


Subject(s)
Atherosclerosis , Drugs, Chinese Herbal , Ischemic Stroke , Humans , Network Pharmacology , Molecular Docking Simulation , Asian People
18.
Front Neurorobot ; 17: 1269447, 2023.
Article in English | MEDLINE | ID: mdl-37811356

ABSTRACT

With the development of machine perception and multimodal information decision-making techniques, autonomous driving technology has become a crucial area of advancement in the transportation industry. The optimization of vehicle navigation, path planning, and obstacle avoidance tasks is of paramount importance. In this study, we explore the use of attention mechanisms in a end-to-end architecture for optimizing obstacle avoidance and path planning in autonomous driving vehicles. We position our research within the broader context of robotics, emphasizing the fusion of information and decision-making capabilities. The introduction of attention mechanisms enables vehicles to perceive the environment more accurately by focusing on important information and making informed decisions in complex scenarios. By inputting multimodal information, such as images and LiDAR data, into the attention mechanism module, the system can automatically learn and weigh crucial environmental features, thereby placing greater emphasis on key information during obstacle avoidance decisions. Additionally, we leverage the end-to-end architecture and draw from classical theories and algorithms in the field of robotics to enhance the perception and decision-making abilities of autonomous driving vehicles. Furthermore, we address the optimization of path planning using attention mechanisms. We transform the vehicle's navigation task into a sequential decision-making problem and employ LSTM (Long Short-Term Memory) models to handle dynamic navigation in varying environments. By applying attention mechanisms to weigh key points along the navigation path, the vehicle can flexibly select the optimal route and dynamically adjust it based on real-time conditions. Finally, we conducted extensive experimental evaluations and software experiments on the proposed end-to-end architecture on real road datasets. The method effectively avoids obstacles, adheres to traffic rules, and achieves stable, safe, and efficient autonomous driving in diverse road scenarios. This research provides an effective solution for optimizing obstacle avoidance and path planning in the field of autonomous driving. Moreover, it contributes to the advancement and practical applications of multimodal information fusion in navigation, localization, and human-robot interaction.

19.
Chem Commun (Camb) ; 59(82): 12302-12305, 2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37752876

ABSTRACT

We report a multi-resonant thermally activated delayed fluorescent (MRTADF) afterglow emitter with unprecedented long emission lifetime > 100 ms, full-width at half-maximum < 40 nm, and deep-blue emission color of CIEy at 0.048. Such emitters remain rarely achieved and would show potential applications in multiplexed bioimaging and high-density information encryption.

20.
J Nanobiotechnology ; 21(1): 341, 2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37736726

ABSTRACT

Osteoarthritis (OA) is a degenerative joint disease involving cartilage. Exosomes derived from Mesenchymal stem cells (MSCs) therapy improves articular cartilage repair, but subcutaneous fat (SC) stromal cells derived exosomes (MSCsSC-Exos), especially engineering MSCsSC-Exos for drug delivery have been rarely reported in OA therapy. This objective of this study was to clarify the underlying mechanism of MSCsSC-Exos on cartilage repair and therapy of engineering MSCsSC-Exos for drug delivery in OA. MSCsSC-Exos could ameliorate the pathological severity degree of cartilage via miR-199a-3p, a novel molecular highly enriched in MSCsSC-Exos, which could mediate the mTOR-autophagy pathway in OA rat model. Intra-articular injection of antagomiR-199a-3p dramatically attenuated the protective effect of MSCsSC-Exos-mediated on articular cartilage in vivo. Furthermore, to achieve the superior therapeutic effects of MSCsSC-Exos on injured cartilage, engineering exosomes derived from MSCsSC as the chondrocyte-targeting miR-199a-3p delivery vehicles were investigated in vitro and in vivo. The chondrocyte-binding peptide (CAP) binding MSCsSC-Exos could particularly deliver miR-199a-3p into the chondrocytes in vitro and into deep articular tissues in vivo, then exert the excellent protective effect on injured cartilage in DMM-induced OA mice. As it is feasible to obtain human subcutaneous fat from healthy donors by liposuction operation in clinic, meanwhile engineering MSCsSC-Exos to realize targeted delivery of miR-199a-3p into chondrocytes exerted excellent therapeutic effects in OA animal model in vivo. Through combining MSCsSC-Exos therapy and miRNA therapy via an engineering approach, we develop an efficient MSCsSC-Exos-based strategy for OA therapy and promote the application of targeted-MSCsSC-Exos for drug delivery in the future.


Subject(s)
Exosomes , Mesenchymal Stem Cells , MicroRNAs , Osteoarthritis , Humans , Animals , Mice , Rats , MicroRNAs/genetics , Subcutaneous Fat , Osteoarthritis/therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...