Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
Add more filters











Publication year range
1.
Langmuir ; 40(37): 19861-19869, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39241230

ABSTRACT

In this study, a Janus BiTeCl/SnSe2 van der Waals (vdW) heterostructure is constructed and systematically investigated for its potential in solar cell applications using first-principles calculations. The heterostructure introduces distinct contact interfaces (Cl-Se and Te-Se), both exhibiting a type-II band alignment. However, the conduction band minimum (CBM) and valence band maximum (VBM) contributions vary, depending on the interface. The Cl-Se interface demonstrates a significantly higher power conversion efficiency (PCE) of 20.11%, attributed to the suitable bandgap of the SnSe2 donor material and a smaller conduction band offset. Both interfaces exhibit enhanced optical properties compared to those of isolated BiTeCl and SnSe2 monolayers. Additionally, the electronic structure of the heterostructure is tunable via biaxial strain and electric fields, enabling further optimization of the PCE. Moreover, optical absorption can be adjusted by biaxial strain and electric fields. These findings position the Janus BiTeCl/SnSe2 heterostructure, particularly the Cl-Se interface, as a promising candidate for next-generation photovoltaic devices, offering both high efficiency and an external tunability.

2.
J Phys Chem Lett ; 15(32): 8360-8366, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39113239

ABSTRACT

The continuous pursuit of novel two-dimensional (2D) materials with intriguing properties has been a driving force in advancing various scientific and technological frontiers. Here, based on a wide range of first-principles calculations, we predicted the existence of a novel family of 2D transition-metal oxides, the Ti3O MOenes (MXene-like 2D transition oxides), and determined its distinctive electronic and topological properties. A pair of 2D antiferromagnetic (AFM) Dirac points precisely located at the Fermi level in the absence of spin-orbit coupling (SOC) is observed in the 1T-Ti3O monolayer. Moreover, upon halogenation on a bare monolayer, 1T-Ti3OCl3 and 1T-Ti3OBr3 monolayers display the quantum spin Hall (QSH) effect with nontrivial helical edge states within the gapless bulk states. Specifically, single layer 1T-Ti3OF3 behaves as an indirect semiconductor with a gap of 0.81 eV, exhibiting a strong light-harvesting capability. The indirect-gap feature can be switched to a direct one by only exerting a small tensile strain of 1.5%. These findings broaden emerging phenomena in a rich family of MOenes, suggesting a novel platform for the development of next-generation nanodevices.

3.
Microorganisms ; 12(8)2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39203551

ABSTRACT

Osmia excavata is an excellent pollinator in nature and plays a vital role in the conservation of agro-ecosystems and food security. Given the important role of the gut bacterial community in host health and regulation of host growth and development, using 16S rRNA gene sequencing data, the present study explored the composition of the gut bacterial community and its diversity at different life stages (eggs, young larvae, old larvae, young pupae, old pupae, and 1-day-old adults in cocoons) of the solitary bee Osmia excavata. The results showed that the core phyla in the gut of O. excavata at different life stages were Proteobacteria, Firmicutes, Bacteroidota, and Actinobacteriota, and the core genera were Sodalis, Tyzzerella, and Ralstonia. The highest intestinal bacterial diversity was found in the Egg period, and the lowest bacterial alpha diversity was found in the 1-day-old Adult period; the bacterial diversity of O. excavata showed a process of decreasing, as it was growing from the Egg period to the 1-day-old Adult period. Our study found that O. excavata undergoes a significant change in the structure of the gut flora when it grows from the young pupae to old pupae stage, a period of growth that coincides with the process of cocooning and isolation from the external environment after food depletion. This suggests that food and environmental factors are key contributors to the structure of the bacterial community in the gut of solitary bees.

4.
Molecules ; 29(14)2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39064893

ABSTRACT

The electrochemical nitrogen reduction reaction (NRR) is an attractive pathway for producing ammonia under ambient conditions. The development of efficient catalysts for nitrogen fixation in electrochemical NRRs has become increasingly important, but it remains challenging due to the need to address the issues of activity and selectivity. Herein, using density functional theory (DFT), we explore ten kinds of triple transition metal atoms (M3 = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Zn) anchored on the C2N monolayer (M3-C2N) as NRR electrocatalysts. The negative binding energies of M3 clusters on C2N mean that the triple transition metal clusters can be stably anchored on the N6 cavity of the C2N structure. As the first step of the NRR, the adsorption configurations of N2 show that the N2 on M3-C2N catalysts can be stably adsorbed in a side-on mode, except for Zn3-C2N. Moreover, the extended N-N bond length and electronic structure indicate that the N2 molecule has been fully activated on the M3-C2N surface. The results of limiting potential screen out the four M3-C2N catalysts (Co3-C2N, Cr3-C2N, Fe3-C2N, and Ni3-C2N) that have a superior electrochemical NRR performance, and the corresponding values are -0.61 V, -0.67 V, -0.63 V, and -0.66 V, respectively, which are smaller than those on Ru(0001). In addition, the detailed NRR mechanism studied shows that the alternating and enzymatic mechanisms of association pathways on Co3-C2N, Cr3-C2N, Fe3-C2N, and Ni3-C2N are more energetically favorable. In the end, the catalytic selectivity for NRR on M3-C2N is investigated through the performance of a hydrogen evolution reaction (HER) on them. We find that Co3-C2N, Cr3-C2N, Fe3-C2N, and Ni3-C2N catalysts possess a high catalytic activity for NRR and exhibit a strong capability of suppressing the competitive HER. Our findings provide a new strategy for designing NRR catalysts with high catalytic activity and selectivity.

5.
Molecules ; 29(12)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38930861

ABSTRACT

Hydrogen generation by photocatalytic water-splitting holds great promise for addressing the serious global energy and environmental crises, and has recently received significant attention from researchers. In this work, a method of assembling GeC/MXY (M = Zr, Hf; X, Y = S, Se) heterojunctions (HJs) by combining GeC and MXY monolayers (MLs) to construct direct Z-scheme photocatalytic systems is proposed. Based on first-principles calculations, we found that all the GeC/MXY HJs are stable van der Waals (vdW) HJs with indirect bandgaps. These HJs possess small bandgaps and exhibit strong light-absorption ability across a wide range. Furthermore, the built-in electric field (BIEF) around the heterointerface can accelerate photoinduced carrier separation. More interestingly, the suitable band edges of GeC/MXY HJs ensure sufficient kinetic potential to spontaneously accomplish water redox reactions under light irradiation. Overall, the strong light-harvesting ability, wide light-absorption range, small bandgaps, large heterointerfacial BIEFs, suitable band alignments, and carrier migration paths render GeC/MXY HJs highly efficient photocatalysts for overall water decomposition.

6.
Phys Chem Chem Phys ; 26(24): 17315-17323, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38860395

ABSTRACT

Halide perovskites have distinguished themselves among the numerous optoelectronic materials due to their versatile processing technology and exceptional optical response. Unfortunately, their stability and toxicity from heavy metals severely hamper their development, in addition to the challenge of further improving photovoltaic performance. Hence, a lead-free perovskite-based heterojunction, C2N/CsGeI3, is investigated using a hybrid density functional, including electron structures, charge density differences, optical properties and more. The study reveals the presence of a built-in electric field directed from the CsGeI3 to the C2N layer. Moreover, based on the work function, it is confirmed that the electrons are transferred in a Z-scheme mechanism after the CsGeI3 contacts with the C2N layer. Under light irradiation, the construction of the C2N/CsGeI3 heterojunction significantly enhances optical absorption within the range of visible-light wavelengths. Additionally, the impact of interfacial strain on the C2N/CsGeI3 is explored and discussed. These findings not only suggest that the C2N/CsGeI3 heterojunction holds promise for photovoltaic applications but also provide a theoretical insight into lead-free perovskite-based functional materials.

7.
Insects ; 15(4)2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38667418

ABSTRACT

The timing of decocooning and nesting during the flowering period are crucial for the reproduction and pollination activities of Osmia excavata. In order to improve the pollination efficiency of O. excavata, it is crucial to find a way to break the cocoon quickly. Our results showed that the decocooning rates at 6, 12, 24, 36, 48, and 72 h after 30 min of water immersion (WI) were 28.67%, 37.33%, 37.33%, 41.33%, 44.33%, and 53.00%, respectively. The decocooning rate fold of 6 h was 14.33 compared with the control group. Transcriptome sequencing resulted in 273 differentially expressed genes (DEGs) being identified between the WI and control groups. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that muscle-related functions play important roles in O. excavata decocooning in response to WI. Cluster analysis also showed that DEGs in cardiac muscle contraction and adrenergic signaling in cardiomyocytes were up-regulated in response to WI-promoted decocooning. In conclusion, the rate of decocooning can be improved by WI in a short time. During WI-promoted decocooning, muscle-related pathways play an important role. Therefore, the application of this technology will improve the pollination effect of O. excavata.

8.
Langmuir ; 40(15): 7992-8001, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38561994

ABSTRACT

Two-dimensional (2D) materials with a pentagonal structure have many unique physical properties and great potential for applications in electrical, thermal, and optical fields. In this paper, the intrinsic thermal transport properties of 2D pentagonal CX2 (X = N, P, As, and Sb) are comparatively investigated. The results show that penta-CN2 has a high thermal conductivity (302.7 W/mK), while penta-CP2, penta-CAs2, and penta-CSb2 have relatively low thermal conductivities of 60.0, 36.9, and 11.8 W/mK, respectively. The main reason for the high thermal conductivity of penta-CN2 is that the small atomic mass of the N atom is comparable to that of the C atom, resulting in a preferable pentagonal structure with stronger bonds and thus a higher phonon group velocity. The reduction in the thermal conductivity of the other three materials is mainly due to the gradually increased atomic mass from P to Sb, which reduces the phonon group velocity. In addition, the large atomic mass difference does not result in a huge enhancement of the anharmonicity or weakening of the phonon relaxation time. The present work is expected to deepen the understanding of the thermal transport of main group V 2D pentagonal carbons and pave the way for their future applications, also, providing ideas for finding potential thermal management materials.

9.
Technol Health Care ; 32(4): 2619-2628, 2024.
Article in English | MEDLINE | ID: mdl-38517818

ABSTRACT

BACKGROUND: How to comprehensively evaluate the rationality of drug use is a challenging issue. OBJECTIVE: To establish the evaluation index of the effective use of tislelizumab, so as to ensure its higher rationality and normalization in clinical application. METHODS: Based on the indications, drug instructions, and relevant guidelines of the National Basic Medical Insurance Restriction Catalogue, a retrospective analysis and evaluation of 286 cases of using tislelizumab injection in our hospital from January to December 2022 were conducted using the weighted technique for order of preference by similarity to ideal solution (TOPSIS) method. RESULTS: Among the 286 medical records evaluated, the main irrational manifestations were inappropriate indications (90 cases, 31.47%), auxiliary examination and laboratory examination did not meet the minimum requirements of combination chemotherapy drugs (40 cases, 13.99%), the drug course was not standard (39 cases, 13.64%). Among the included cases, 57.34% were reasonable cases (Ci⩾ 0.8), 10.84% were basic reasonable cases (0.6 ⩽Ci< 0.8), and 31.82% were unreasonable cases (Ci< 0.6). CONCLUSION: The TOPSIS method, with its attribute hierarchical model (AHM)-weighted approach, can be employed as the rational assessment technique for the injection of tislelizumab. The clinical application of tislelizumab in our hospital is still insufficient, which needs to be further improved management.


Subject(s)
Antibodies, Monoclonal, Humanized , Humans , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal, Humanized/administration & dosage , Retrospective Studies , Female , Male , Middle Aged , Drug Utilization/statistics & numerical data , Adult , Aged
10.
J Phys Condens Matter ; 36(21)2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38364264

ABSTRACT

Antiferromagnetic (AFM) materials have potential advantages for spintronics due to their robustness, ultrafast dynamics, and magnetotransport effects. However, the missing spontaneous polarization and magnetization hinders the efficient utilization of electronic spin in these AFM materials. Here, we propose a simple way to produce spin-splitting in AFM materials by making the magnetic atoms with opposite spin polarization locating in the different environment (surrounding atomic arrangement), which does not necessarily require the presence of spin-orbital coupling. We confirm our proposal by four different types of two-dimensional AFM materials within the first-principles calculations. Our works provide an intuitional design principle to find or produce spin-splitting in AFM materials.

11.
Langmuir ; 40(6): 3095-3104, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38299976

ABSTRACT

Two-dimensional graphenelike material, hexagonal boron phosphide (h-BP), is a promising candidate for electronic and optoelectronic devices because of its suitable band gap and high carrier mobility. Especially from the ultrahigh lattice thermal conductivity (κl), it exhibits great potential to solve the challenges of future thermal management applications. Here, the excellent lattice thermal transport properties of the h-BP monolayer are systematically analyzed at the atomic level based on the first-principles method. The results show that the ultrahigh κl value of the h-BP monolayer is attributed to its high phonon group velocity and long phonon lifetime and the strong phonon hydrodynamic effect. We further explore the influence of the tensile strain on the thermal transport properties of the h-BP monolayer. As the strain increases from 0 to 8%, the κl value shows a trend of first increasing and then decreasing due to the coeffect of strain-driven changes for phonon harmonicity and anharmonicity. Under a strain of 6%, the κl value of the h-BP monolayer is as high as 795 W/mK at 300 K, which is about 2.22 times larger than that of 357 W/mK without strain. Such a significant increase in the κl value is mainly due to the increased phonon group velocity and decreased Grüneisen parameter caused by strain. This work is helpful to understand the critical role of tensile strain in lattice thermal transport of two-dimensional graphenelike materials. It is conducive to promoting the thermal management application of the h-BP monolayer.

12.
J Gene Med ; 26(1): e3664, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38282143

ABSTRACT

BACKGROUND: The primary reason for tumor-related deaths worldwide is lung adenocarcinoma (LUAD). The oncogene IQ motif-containing GTPase activating protein 3 (IQGAP3) is crucial for contributing to tumor initiation and progression. However, the precise function and molecular mechanism of IQGAP3 in LUAD remain unknown. The present study aimed to investigate the expression, prognosis, mechanism and tumor immunity associated with IQGAP3 in LUAD. METHODS: The relationship between IQGAP3 and the poor prognosis of LUAD was analyzed using The Cancer Genome Atlas (TCGA) database. This analysis was further validated on lung cancer tissues and cell lines. The function of IQGAP3 was investigated by silencing it in LUAD cell lines. To predict microRNA (miRNA) and long non-coding RNA associated with IQGAP3, the starBase database was utilized, and the predictions were verified by enhancing the function of miRNA. Finally, the relationship between IQGAP3 and tumor immunity was evaluated using Spearman's correlation analysis. RESULTS: TCGA database revealed that higher levels of IQGAP3 were associated with advanced tumor stage, N stage and poor prognosis in LUAD patients. To confirm that, we conducted experiments on lung cancer tissues and cell lines and found that silencing IQGAP3 significantly inhibited tumor cell proliferation and migration. The expression of IQGAP3 showed a negative correlation with has-miR-101-3p and has-miR-135a-5p, whereas it showed a positive correlation with GSEC, AC005034.3 and TYMSOS. Furthermore, the introduction of miRNA-mimics into lung cancer cell resulted in a significant inhibition of cancer cell growth and migration. Following that, the level of IQGAP3 showed a positive correlation with the infiltration of immune cells in tumors. CONCLUSIONS: These results reveal that IQGAP3 significantly promotes LUAD progression and could serve as a prognostic biomarker for LUAD. Furthermore, IQGAP3 is most likely regulated by the GSEC/TYMSOS-hsa-miR-101-3p axis and the AC005034.3-hsa-miR-135a-5p axis in LUAD.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , MicroRNAs , Humans , Adenocarcinoma of Lung/genetics , MicroRNAs/genetics , Lung Neoplasms/genetics , Cell Line , Cell Proliferation/genetics , Cell Transformation, Neoplastic , Gene Expression Regulation, Neoplastic , GTPase-Activating Proteins
13.
Front Chem ; 11: 1301690, 2023.
Article in English | MEDLINE | ID: mdl-38025073

ABSTRACT

Under the background of energy crisis, hydrogen owns the advantage of high combustion and shows considerable environment friendliness; however, to fully utilize this novel resource, the major hurdle lies in its delivery and storage. The development of the in-depth yet systematical methodology for two-dimensional (2D) storage media evaluation still remains to be challenging for computational scientists. In this study, we tried our proposed evaluation protocol on a 2D material, g-C3N5, and its hydrogen storage performance was characterized; and with addition of Li atoms, the changes of its electronical and structural properties were detected. First-principles simulations were conducted to verify its thermodynamics stability; and, its hydrogen adsorption capacity was investigated qualitatively. We found that the charges of the added Li atoms were transferred to the adjacent nitrogen atoms from g-C3N5, with the formation of chemical interactions. Thus, the isolated metallic sites tend to show considerable electropositivity, and can easily polarize the adsorbed hydrogen molecules, and the electrostatic interactions can be enhanced correspondingly. The maximum storage capacity of each primitive cell can be as high as 20 hydrogen molecules with a gravimetric capacity of 8.65 wt%, which surpasses the 5.5 wt% target set by the U.S. Department of Energy. The average adsorption energy is ranged from -0.22 to -0.13 eV. We conclude that the complex 2D material, Li-decorated g-C3N5 (Li@C3N5), can serve as a promising media for hydrogen storage. This methodology provided in this study is fundamental yet instructive for future 2D hydrogen storage materials development.

14.
Phys Chem Chem Phys ; 25(36): 24332-24341, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37670676

ABSTRACT

As a novel type of anisotropic two-dimensional material, extensive attention has been paid to the thermoelectric (TE) properties of FeOCl-type monolayers, such as Al2X2Se2 (X = Cl, Br, I), Sc2I2S2, and Ir2Cl2O2. Recently, theoretical works based on first-principles calculations have been powerful driving forces in field of TE research. In this work, we perform an investigation into the TE properties of Sc2X2Se2 (X = Cl, Br, I) monolayers based on density functional theory (DFT). A study on the stability, including AIMD simulation and phonon calculation, shows the stable structure of Sc2Cl2Se2, Sc2Br2Se2, and Sc2I2Se2 monolayers. Additionally, the electronic and thermal transport properties of Sc2X2Se2 monolayers are anisotropic along the x and y directions. Moreover, the combination of excellent Seebeck coefficient and ultralow lattice thermal conductivity contributes to outstanding ZT values, and the ZT values follow the order: Sc2I2Se2 > Sc2Br2Se2 > Sc2Cl2Se2. At 300 K, we obtained maximum ZT of 0.34, 0.77, and 1.97 for Sc2Cl2Se2, Sc2Br2Se2, and Sc2I2Se2, respectively, by n-type doping in the x direction. These results demonstrate that monolayer Sc2X2Se2 (X = Cl, Br, I) materials are promising thermoelectric materials, Sc2I2Se2 has more desirable properties along the x direction, and n-type doping can significantly enhance the ZT values. Our work lays a foundation for exploring the TE transport properties of FeOCl-type monolayers.

15.
ACS Appl Mater Interfaces ; 15(40): 47628-47639, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37751513

ABSTRACT

A novel chlorinated functional group-modified triphenylmethane derivative leveler BB1 is used to achieve superconformal electrodeposition in microvias. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) are performed to study the suppressing effect of BB1, while the convection-dependent adsorption of BB1 on the copper surface is analyzed by galvanostatic measurement, and a BB1 concentration window between 100 and 200 mg/L is beneficial for superfilling. The interactions among BB1, bis-(sodium sulfopropyl) disulfide (SPS), and poly(ethylene glycol) (PEG) are also investigated. Density functional theory (DFT) calculation and in situ Raman spectroscopy are coupled to study the suppression mechanism and synergistic suppression mechanism, namely, the adsorption effect between BB1 and copper substrate, as well as the coordination effect between the modified chlorinated functional group and Cu2+, is proposed. The copper layer becomes smoother and more compact with an increase in BB1 concentration, according to scanning electron microscopy (SEM) and atomic force microscopy (AFM), while X-ray diffraction (XRD) analysis shows that the introduction of BB1 is conducive to the formation of the copper (220) plane. Besides, the solution wettability is boosted by BB1. A copper interconnecting layer with high quality is achieved with 150 mg/L BB1, while the surface deposition thickness (SDT) is about 34 µm and filling percentages (FPs) for microvias with diameters of 100, 125, and 150 µm are 81.34, 82.72, and 81.39%, respectively.

16.
RSC Adv ; 13(34): 23590-23600, 2023 Aug 04.
Article in English | MEDLINE | ID: mdl-37555100

ABSTRACT

Recent studies have documented a rich phenomenology in twisted bilayer graphene (TBG), which is significantly relevant to interlayer electronic coupling, in particular to the cases under an applied electric field. While polarizability measures the response of electrons against applied fields, this work adopts a unique strategy of decomposing global polarizability into distributional contributions to access the interlayer polarization in TBG, as a function of varying twisting angles (θ). Through the construction of a model of twisted graphene quantum dots, we assess distributional polarizability at the first-principles level. Our findings demonstrate that the polarizability perpendicular to the graphene plates can be decomposed into intralayer dipoles and interlayer charge-transfer (CT) components, the latter of which provides an explicit measurement of the interlayer coupling strength and charge transfer potential. Our analysis further reveals that interlayer polarizability dominates the polarizability variation during twisting. Intriguingly, the largest interlayer polarizability and CT driven by an external field occur in the misaligned structures with a size-dependent small angle corresponding to the first appearance of AB stacking, rather than the well-recognized Bernal structures. A derived equation is then employed to address the size dependence on the angle corresponding to the largest values in interlayer polarizability and CT. Our investigation not only characterizes the CT features in the interlayer polarizability of TBG quantum dots, but also sheds light on the existence of the strongest interlayer coupling and charge transfer at small twist angles in the presence of an external electric field, thereby providing a comprehensive understanding of the novel properties of graphene-based nanomaterials.

17.
J Colloid Interface Sci ; 651: 805-817, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37572616

ABSTRACT

Heterojunctions have been proved to be the promising photocatalysts for hazardous contaminants removal, but the inferior interfacial contact, low carrier mobility and random carrier diffusion seriously hamper the photoactivity improvement of the conventional heterojunctions. Herein, SO chemically bonded p-n oriented heterostructure is fabricated via selectively anchoring of p-type Ag2S nanoparticles on the lateral facet of n-type Bi4TaO8Cl nanosheet. Such a p-n heterojunction engineering on specific facet of Bi4TaO8Cl semiconductor derives ingenious double internal electric field (IEF), which not only effectively creates the spatially separated oxidation and reduction sites, but also delivers the powerful driving forces for impactful spatial directed photocarrier transfer along the cascade path. Additionally, our experimental and theoretical analyses jointly signify that the interfacial SO bond could serve as an efficient atomic-level interfacial channel, which is conducive to encouraging the vectorial charge separation and migration kinetic. As a result, the Ag2S/Bi4TaO8Cl oriented heterojunction exhibits significantly enhanced visible light driven photocatalytic redox ability for tetracycline oxidation and hexavalent chromium reduction than those of single component and the traditional random/mixed heterojunctions. This study could provide a deeper insight into the synergistic effects of multi-IEF modulation and interfacial chemical bond bridging on optimizing the photogenerated carrier behaviors.

18.
Dalton Trans ; 52(31): 10662-10671, 2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37494114

ABSTRACT

Improving the efficiency of the anodic oxygen evolution reaction (OER) is important to solve the global energy crisis and greenhouse gas emission problems. In this paper, a preparation method for a MIL-53(Fe)@ZIF-67(Co) composite electrode is proposed. The hierarchical structure formed by the combination of MIL-53(Fe) and ZIF-67(Co) provides a rich channel for the transport of electrons and mass in the OER process. XPS analysis and DFT calculations revealed that Fe electrons in MIL-53(Fe) were transferred to Co in ZIF-67(Co) through O, which confirmed the rapid charge transfer effect of this transport channel. The MIL-53(Fe)@ZIF-67(Co) electrode has significant OER performance. When the current density reaches 10 mA cm-2, the overpotential is only 193 mV. This study inaugurates a new way for the rational design of a multiphase interface and the construction of new MOF channel structures.

19.
Sci Total Environ ; 871: 162157, 2023 May 01.
Article in English | MEDLINE | ID: mdl-36775174

ABSTRACT

The interaction of microplastics (MPs) and organic pollutants has recently become a focus of investigation. To understand how microplastic residues affect the migration of organic pollutants, it is necessary to examine the adsorption and desorption behavior of organic pollutants on MPs. In this study, integrated adsorption/desorption experiments and theoretical calculations were used to clarify the adsorption mechanism of 2-hydroxynaphthalene (2-OHN), naphthalene (NAP), phenanthrene (PHE), and pyrene (PYR) by polyvinyl chloride microplastics (PVC-MPs). Based on the phenomenological mathematical models, the rate-limiting step for analyte adsorption onto PVC-MPs was adsorption onto active sites (R2 = 0.865-0.995). Except for PHE, analyte adsorption isotherms were well described by the Freundlich model (R2 = 0.992-0.998), and adsorption thermodynamics showed that analyte adsorption on PVC-MPs was a spontaneous exothermic process (ΔH0 < 0; ΔG0 < 0). Based on the order of adsorption efficiency of 2-OHN < NAP < PHE < PYR, which is identical to the competitive adsorption experiment, polycyclic aromatic hydrocarbon (PAH) adsorption on PVC-MPs increased as the aromatic ring number increased and the hydroxyl content decreased. The release of 2-OHN (49 %-52 %) from PVC-MPs into the simulated gastrointestinal environment was greater than that of NAP (5.5 %-5.7 %). Theoretical calculations and adsorption tests indicated that hydrophobic interaction was the primary influence on the adsorption of PAHs and their hydroxylated derivatives by PVC-MPs. These findings improve our understanding of MPs' behavior and dangers as pollutant carriers in the aquatic environment and help us develop recommendations for the pollution control of MPs.


Subject(s)
Environmental Pollutants , Phenanthrenes , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Humans , Microplastics/chemistry , Plastics/chemistry , Polyvinyl Chloride , Water , Adsorption , Naphthalenes , Polycyclic Aromatic Hydrocarbons/analysis , Phenanthrenes/analysis , Pyrenes/analysis , Environmental Pollutants/chemistry , Water Pollutants, Chemical/analysis
20.
Phys Chem Chem Phys ; 25(3): 2274-2281, 2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36597784

ABSTRACT

Strong structural asymmetry is actively explored in two-dimensional (2D) materials, because it can give rise to many interesting physical properties. Motivated by the recent synthesis of monolayer Si2Te2, we explored a family of 2D materials, named Janus Si dichalcogenides (JSD), which parallel the Janus transition metal dichalcogenides and exhibit even stronger inversion asymmetry. Using first-principles calculations, we show that their strong structural asymmetry leads to a pronounced intrinsic polar field, sizable spin splitting, and large piezoelectric response. The spin splitting involves an out-of-plane spin component, which is beyond the linear Rashba model. The piezoelectric tensor has a large value in both in-plane d11 coefficient and out-of-plane d31 coefficient, making monolayer JSDs distinct among existing 2D piezoelectric materials. In addition, we find interesting strain-induced phase transitions in these materials. Particularly, there are multiple valleys that compete for the conduction band minimum, which will lead to notable changes in the optical and transport properties under strain. Our work reveals a new family of Si based 2D materials, which could find promising applications in spintronic and piezoelectric devices.

SELECTION OF CITATIONS
SEARCH DETAIL