Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 83
Filter
1.
Insect Sci ; 31(1): 173-185, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37269179

ABSTRACT

Pheromone receptors (PRs) are key proteins in the molecular mechanism of pheromone recognition, and exploring the functional differentiation of PRs between closely related species helps to understand the evolution of moth mating systems. Pheromone components of the agricultural pest Mythimna loreyi have turned into (Z)-9-tetradecen-1-yl acetate (Z9-14:OAc), (Z)-7-dodecen-1-yl acetate (Z7-12:OAc), and (Z)-11-hexadecen-1-yl acetate, while the composition differs from that of M. separata in the genus Mythimna. To understand the molecular mechanism of pheromone recognition, we sequenced and analyzed antennal transcriptomes to identify 62 odorant receptor (OR) genes. The expression levels of all putative ORs were analyzed using differentially expressed gene analysis. Six candidate PRs were quantified and functionally characterized in the Xenopus oocytes system. MlorPR6 and MlorPR3 were determined to be the receptors of major and minor components Z9-14:OAc and Z7-12:OAc. MlorPR1 and female antennae (FA)-biased MlorPR5 both possessed the ability to detect pheromones of sympatric species, including (Z,E)-9,12-tetradecadien-1-ol, (Z)-9-tetradecen-1-ol, and (Z)-9-tetradecenal. Based on the comparison of PR functions between M. loreyi and M. separata, we analyzed the differentiation of pheromone recognition mechanisms during the evolution of the mating systems of 2 Mythimna species.


Subject(s)
Moths , Receptors, Odorant , Sex Attractants , Female , Animals , Sex Attractants/metabolism , Receptors, Pheromone/genetics , Receptors, Pheromone/metabolism , Moths/physiology , Pheromones , Transcriptome , Receptors, Odorant/genetics , Receptors, Odorant/metabolism , Acetates/metabolism
2.
Int J Mol Sci ; 24(24)2023 Dec 09.
Article in English | MEDLINE | ID: mdl-38139113

ABSTRACT

The successful mating of the hoverfly and the search for prey aphids are of great significance for biological control and are usually mediated by chemical cues. The odorant receptor co-receptor (Orco) genes play a crucial role in the process of insect odor perception. However, the function of Orco in the mating and prey-seeking behaviors of the hoverfly remains relatively unexplored. In this study, we characterized the Orco gene from the hoverfly, Eupeodes corollae, a natural enemy insect. We used the CRISPR/Cas9 technique to knock out the Orco gene of E. corollae, and the EcorOrco-/- homozygous mutant was verified by the genotype analysis. Fluorescence in situ hybridization showed that the antennal ORN of EcorOrco-/- mutant lack Orco staining. Electroantennogram (EAG) results showed that the adult mutant almost lost the electrophysiological response to 15 odorants from three types. The two-way choice assay and the glass Y-tube olfactometer indicated that both the larvae and adults of hoverflies lost their behavioral preference to the aphid alarm pheromone (E)-ß-farnesene (EBF). In addition, the mating assay results showed a significant decrease in the mating rate of males following the knock out of the EcorOrco gene. Although the mating of females was not affected, the amount of eggs being laid and the hatching rate of the eggs were significantly reduced. These results indicated that the EcorOrco gene was not only involved in the detection of semiochemicals in hoverflies but also plays a pivotal role in the development of eggs. In conclusion, our results expand the comprehension of the chemoreceptive mechanisms in the hoverflies and offers valuable insights for the advancement of more sophisticated pest management strategies.


Subject(s)
Diptera , Receptors, Odorant , Animals , Female , Male , Odorants , Receptors, Odorant/genetics , In Situ Hybridization, Fluorescence , Diptera/genetics , Insecta/genetics , Pheromones , Mutagenesis , Insect Proteins/genetics
3.
Insects ; 14(8)2023 Aug 03.
Article in English | MEDLINE | ID: mdl-37623397

ABSTRACT

Heortia vitessoides Moore, 1885 (Lepidoptera: Crambidae) is an economically important lepidopteran pest that caused severe damage to the plantation area of Aquilaria sinensis (Lour.) Gilg, 1825 (Thymelaeaceae), resulting in extensive defoliation of the trees during an epidemic. In this study, we used scanning electron microscopy (SEM) to analyze the external morphology and ultrastructure of sensilla on various body parts of H. vitessoides. Specifically, seven, four, four, and five types of sensilla were found, respectively, on the antennae, proboscis, labial palps, and legs. We described the types, distributions, and sexual dimorphism of these sensilla on antennae, and found that the number and size of sensilla differed significantly between males and females. This study provides crucial information for future investigations into the function of these sensilla in H. vitessoides.

4.
Front Cell Neurosci ; 17: 1162349, 2023.
Article in English | MEDLINE | ID: mdl-37180945

ABSTRACT

Olfaction is important for mediating aphid behaviors and is involved in host location and mating. Antennal primary rhinaria play a key role in the chemoreception of aphids. The function of the peripheral olfactory system in the subfamily Aphidinae has been intensively studied, but little is known about other subfamilies of Aphididae. Therefore, three aphid species were selected to study the olfactory reception of plant volatiles: Cinara cedri (Lachninae), Eriosoma lanigerum (Eriosomatinae), and Therioaphis trifolii (Calaphidinae). In this study, the morphology and distribution of the antennal sensilla of apterous adults were observed by scanning electron microscopy. Three morphological types were identified (placoid sensilla, coeloconic sensilla, and trichoid sensilla); the first two were distributed on the antennal primary rhinaria. A pattern of primary rhinaria in C. cedri was found that differed from that of E. lanigerum and T. trifolii and consists of 1 large placoid sensillum (LP) on the 4th segment, 2 LPs on the 5th segment, and a group of sensilla on the 6th antennal segments. Later, we recorded and compared neuronal responses of the distinct placoid sensilla in the primary rhinaria of the three aphid species to 18 plant volatiles using a single sensillum recording (SSR) technique. The results indicated that the functional profiles based on the tested odorants of the primary rhinaria of the three investigated aphid species were clustered into three classes, and exhibited excitatory responses to certain types of odorants, especially terpenes. In C. cedri, the ORNs in LP6 exhibited the highest responses to (±)-citronellal across all tested chemicals, and showed greater sensitivity to (±)-citronellal than to (+)-limonene. ORNs in LP5 were partially responsive to α-pinene and (-)-ß-pinene in a dose-dependent manner. Across different species, E. lanigerum showed significantly stronger neuronal responses of LP5 to several terpenes, such as (-)-linalool and α-terpineol, compared to other species. In T. trifolii, the neuronal activities in LP6 showed a greater response to methyl salicylate as compared to LP5. Overall, our results preliminarily illustrate the functional divergence of ORNs in the primary rhinaria of aphids from three subfamilies of Aphididae and provide a basis for better understanding the mechanism of olfactory recognition in aphids.

5.
Int J Mol Sci ; 24(7)2023 Apr 01.
Article in English | MEDLINE | ID: mdl-37047591

ABSTRACT

Olfactory systems in eusocial insects play a vital role in the discrimination of various chemical cues. Odorant receptors (ORs) are critical for odorant detection, and this family has undergone extensive expansion in ants. In this study, we re-annotated the OR genes from the most destructive invasive ant species Solenopsis invicta and 2 other Formicidae species, Ooceraea biroi and Monomorium pharaonis, with the aim of systematically comparing and analyzing the evolution and the functions of the ORs in ant species, identifying 356, 298, and 306 potential functional ORs, respectively. The evolutionary analysis of these ORs showed that ants had undergone chromosomal rearrangements and that tandem duplication may be the main contributor to the expansion of the OR gene family in S. invicta. Our further analysis revealed that 9-exon ORs had biased chromosome localization patterns in all three ant species and that a 9-exon OR cluster (SinvOR4-8) in S. invicta was under strong positive selection (Ka/Ks = 1.32). Moreover, we identified 5 S. invicta OR genes, namely SinvOR89, SinvOR102, SinvOR352, SinvOR327, and SinvOR135, with high sequence similarity (>70%) to the orthologs in O. biroi and M. pharaonis. An RT-PCR analysis was used to verify the antennal expression levels of these ORs, which showed caste-specific expression. The subsequent analysis of the antennal expression profiles of the ORs of the S. invicta workers from the polygyne and monogyne social forms indicated that SinvOR35 and SinvOR252 were expressed at much higher levels in the monogyne workers than in the polygyne workers and that SinvOR21 was expressed at higher levels in polygyne workers. Our study has contributed to the identification and analysis of the OR gene family in ants and expanded the understanding of the evolution and functions of the ORs in Formicidae species.


Subject(s)
Ants , Receptors, Odorant , Animals , Ants/genetics , Receptors, Odorant/genetics , Exons
6.
J Agric Food Chem ; 71(6): 2795-2803, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36726240

ABSTRACT

Sex pheromones play an essential role when moths are searching for mates. Male olfactory receptor neurons (ORNs) are the primary determinant during peripheral pheromone recognition. Here, we identified the sex pheromones of a global agricultural pest, Mythimna loreyi, using gas chromatography coupled with mass spectrometry and electroantennographic detection. Nine pheromone components were identified, including (Z)-9-tetradecen-1-yl acetate (Z9-14:OAc), (Z)-7-dodecen-1-yl acetate (Z7-12:OAc), and (Z)-11-hexadecen-1-yl acetate (Z11-16:OAc), and the first two elicited electrophysiological activities in the male antennae. Trichoid sensilla were classified into four functional types on the basis of neuronal responses to pheromones by single sensillum recording. Five functional ORNs were involved in recognizing pheromones and pheromone analogues. Finally, a field bioassay revealed that a blend of Z9-14:OAc, Z7-12:OAc, and Z11-16:OAc at a ratio of 100:8.8:19.7 was highly efficient for trapping males. Our results uncover the pheromone recognition mechanism in M. loreyi and provide a novel angle for developing efficient sex attractants of pests on the basis of screening the peripheral olfactory neurons.


Subject(s)
Moths , Olfactory Receptor Neurons , Sex Attractants , Animals , Male , Pheromones/pharmacology , Pheromones/chemistry , Sex Attractants/pharmacology , Sex Attractants/chemistry , Gas Chromatography-Mass Spectrometry , Moths/chemistry , Olfactory Receptor Neurons/physiology
7.
J Agric Food Chem ; 71(4): 1837-1844, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36682010

ABSTRACT

Odorant receptors (ORs) in insects are crucial for the detection of chemical signals. However, the functions of the conserved OR genes among insect species are rarely studied. In this study, we analyzed a well-conserved OR clade in Diptera insects and cloned a gene from this clade, EcorOR4, in the hoverfly Eupeodes corollae. Real-time quantitative PCR showed that EcorOR4 was highly expressed in the antennae and upregulated in the mated females, and in vitro functional characterization showed that EcorOR4 was narrowly tuned to 1-octen-3-ol. Electroantennogram assays revealed that the antennal response of mated females to 1-octen-3-ol was significantly higher than that of mated males, but no significant differences were observed between male and female virgins. Finally, a Y-tube olfactometer bioassay showed that 1-octen-3-ol is an attractant for only mated female E. corollae adults. These results demonstrate that EcorOR4 is involved in the detection of 1-octen-3-ol and that this compound may affect the host-finding and oviposition behavior in female E. corollae.


Subject(s)
Diptera , Receptors, Odorant , Animals , Female , Male , Receptors, Odorant/genetics , Diptera/genetics , Octanols , Oviposition
8.
Insect Sci ; 30(2): 305-320, 2023 Apr.
Article in English | MEDLINE | ID: mdl-35932282

ABSTRACT

Moths possess an extremely sensitive and diverse sex pheromone processing system, in which pheromone receptors (PRs) are essential to ensure communication between mating partners. Functional properties of some PRs are conserved among species, which is important for reproduction. However, functional differentiation has occurred in some homologous PR genes, which may drive species divergence. Here, using genome analysis, 17 PR genes were identified from Spodoptera frugiperda, S. exigua, and S. litura, which belong to 6 homologous groups (odorant receptor [OR]6, 11, 13, 16, 56, and 62); of which 6 PR genes (OR6, OR11, OR13, OR16, OR56, and OR62) were identified in S. frugiperda and S. exigua, and 5 PR genes were identified in S. litura, excluding OR62. Using heterologous expression in Xenopus oocytes, we characterized the functions of PR orthologs including OR6, OR56, and OR62, which have not been clarified in previous studies. OR6 orthologs were specifically tuned to (Z,E)-9,12-tetradecadienyl acetate (Z9,E12-14:OAc), and OR62 orthologs were robustly tuned to Z7-12:OAc in S. frugiperda and S. exigua. The optimal ligand for OR56 was Z7-12:OAc in S. frugiperda, but responses were minimal in S. exigua and S. litura. In addition, SfruOR6 was male antennae-specific, whereas SfruOR56 and SfruOR62 were male antennae-biased. Our study further clarified the functional properties of PRs in 3 Spodoptera moth species, providing a comprehensive understanding of the mechanisms of intraspecific communication and interspecific isolation in Spodoptera.


Subject(s)
Moths , Sex Attractants , Male , Animals , Female , Spodoptera/physiology , Moths/genetics , Moths/metabolism , Sex Attractants/metabolism , Receptors, Pheromone/genetics , Receptors, Pheromone/metabolism , Gene Expression
9.
Insect Sci ; 30(1): 109-124, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35608046

ABSTRACT

The mechanism of sex pheromone reception in the male cotton bollworm Helicoverpa armigera has been extensively studied because it has become an important model system for understanding insect olfaction. However, the pathways of pheromone processing from the antenna to the primary olfactory center in H. armigera have not yet been clarified. Here, the physiology and morphology of male H. armigera olfactory sensory neurons (OSNs) were studied using single sensillum recording along with anterograde filling and intracellular recording with retrograde filling. OSNs localized in type A sensilla responded to the major pheromone component cis-11-hexadecenal, and the axonal terminals projected to the cumulus (Cu) of the macroglomerular complex (MGC). The OSNs in type B sensilla responded to the behavioral antagonist cis-9-tetradecenal, and the axonal terminals projected to the dorsomedial anterior (DMA) unit of the MGC. In type C sensilla, there were 2 OSNs: one that responded to cis-9-tetradecenal and cis-11-hexadecenol with the axonal terminals projecting to the DMA, and another that responded to the secondary pheromone components cis-9-hexadecenal and cis-9-tetradecenal with the axonal terminals projecting to the dorsomedial posterior (DMP) unit of the MGC. Type A and type B sensilla also housed the secondary OSNs, which were silent neurons with axonal terminals projected to the glomerulus G49 and DMP. Overall, the neural pathways that carry information on attractiveness and aversiveness in response to female pheromone components in H. armigera exhibit distinct projections to the MGC units.


Subject(s)
Moths , Olfactory Receptor Neurons , Sex Attractants , Male , Female , Animals , Olfactory Receptor Neurons/metabolism , Moths/physiology , Pheromones , Sex Attractants/metabolism
10.
J Agric Food Chem ; 70(32): 9845-9855, 2022 Aug 17.
Article in English | MEDLINE | ID: mdl-35917146

ABSTRACT

The oriental fruit moth, Grapholita molesta, is a worldwide pest that damages Rosaceae fruit trees. Sex pheromones play an important role in controlling this pest; however, the corresponding chemosensation mechanism is currently unknown. In this study, 60 candidate odorant receptors, including eight pheromone receptors (PRs), were identified by antennal transcriptome analysis. Expression profiles indicated that most PRs were highly expressed in the males, except GmolOR21 and GmolOR22, which were specifically expressed in the females. Among them, GmolOR2 was identified in response to the main sex pheromone Z8-12:OAc and E8-12:OAc, and its in vivo function was confirmed by RNA interference analysis. Electrophysiological analysis showed that the males had a significantly reduced sensitivity to the main pheromones after the knockdown of GmolOR2. Our research makes a better understanding of pheromone chemoreception and provides a theoretical basis to developing novel, efficient, and environmentally friendly insect attractants.


Subject(s)
Moths , Receptors, Odorant , Sex Attractants , Animals , Female , Fruit/genetics , Fruit/metabolism , Male , Moths/metabolism , Receptors, Odorant/genetics , Receptors, Odorant/metabolism , Receptors, Pheromone/genetics , Receptors, Pheromone/metabolism , Sex Attractants/metabolism , Sex Attractants/pharmacology
11.
Pest Manag Sci ; 78(7): 2995-3004, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35420250

ABSTRACT

BACKGOUND Sex pheromones of the fall armyworm, Spodoptera frugiperda, show differences in composition and proportions in different geographical populations, but always contain Z9-14:OAc as the major component. Odorant receptor neurons (ORNs) housed in the long trichoid sensilla (TS) of male antennae are essential to detect female-released sex pheromones in moths. RESULTS: In this study, we identified seven components from pheromone gland extracts of female S. frugiperda in the Yunnan population from China, including (Z)-7-dodecen-1-yl acetate (Z7-12:OAc), (Z)-9-tetradecenal (Z9-14:Ald), (Z)-9-dodecen-1-yl acetate (Z9-12:OAc), (Z)-9-tetradecen-1-yl acetate (Z9-14:OAc), (E)-11-tetradecen-1-yl acetate (E11-14:OAc), (Z)-11-tetradecen-1-yl acetate (Z11-14:OAc) and (Z)-11-hexadecen-1-yl acetate (Z11-16:OAc) at a ratio of 1.2:4:0.8:79.1:1.6:1.6:11.7 by gas chromatography coupled with mass spectrometry. Gas chromatography-electroantennographic detection showed that Z9-14:OAc, Z7-12:OAc and Z11-16:OAc are the male antennal active components. Peripheral coding of pheromones in males was investigated by single sensillum recording. Five functional neurons housed in three types of TS were identified based on profiles of neuronal responses, which are responsible for attractive component Z9-14:OAc, synergistic components Z7-12:OAc, Z11-16:OAc, interspecific pheromones (Z)-9-tetradecen-1-ol (Z9-14:OH) and (Z,E)-9,12-tetradecadien-1-yl acetate (Z9,E12-14:OAc), respectively. Wind tunnel and field tests demonstrated that a ternary combination of Z9-14:OAc, Z7-12:OAc and Z11-16:OAc at a ratio of 88:1:11 shows the strongest attractiveness to males. CONCLUSION: An optimized pheromone blend of Z9-14:OAc, Z7-12:OAc and Z11-16:OAc in an 88:1:11 ratio was identified for monitoring the invasive pest S. frugiperda in China. Five functional ORNs encoding intra- and interspecific pheromones were identified in male antennae, of which three neurons encode attractive component Z9-14:OAc, synergistic components Z7-12:OAc and Z11-16:OAc, respectively, and the other two neurons encode interspecific pheromones Z9-14:OH and Z9,E12-14:OAc, separately. © 2022 Society of Chemical Industry.


Subject(s)
Moths , Sex Attractants , Animals , China , Female , Gas Chromatography-Mass Spectrometry , Male , Moths/physiology , Pheromones/pharmacology , Sex Attractants/chemistry , Sex Attractants/pharmacology , Spodoptera
12.
Zhonghua Nan Ke Xue ; 28(5): 415-421, 2022 May.
Article in Chinese | MEDLINE | ID: mdl-37477480

ABSTRACT

OBJECTIVE: To evaluate the efficacy and safety of black tomato concentrate (BTC), which is rich in polyphenols, in the treatment of ED. METHODS: We conducted a prospective randomized open clinical study of 150 ED patients from December 2018 to February 2020, and treated the them with placebo (n = 50), BTC (n = 50) and Compound Xuanju Capsules (CXC) (n = 50), respectively, all for 8 weeks. Before and at 4 and 8 weeks after treatment, we obtained the scores of the patients on IIEF-5, Erection Hardness Score (EHS), Sexual Encounter Profile (SEP-2,3) and General Assessment Questionnaire (GAQ-1,2), related biochemical indexes and the T level, followed by comparison among the three groups. RESULTS: Totally, 120 of the patients completed the clinical trial, 37 in the placebo, 43 in the BTC and 40 in the CXC group. There were no statistically significant differences among the placebo, BTC and CXC groups in the baseline scores on IIEF-5 (12.03 �� 3.50 vs 11.70 �� 3.80 vs 11.42 �� 3.82), EHS, and SEP-2,3 (P > 0.05). At 8 weeks after treatment, the patients in the BTC group showed significant improvement in IIEF-5 (15.67 �� 3.63), EHS, SEP-2,3 and GAQ-1 positive response compared with those in the placebo group (P < 0.05) and similar improvement to that in the CXC group in IIEF-5 (15.67 �� 3.63 vs 15.65 �� 3.87), EHS, SEP-2,3 and GAQ-1,2 (P > 0.05). No statistically significant differences were observed in the incidence of adverse reactions among the placebo, BTC and CXC groups (4.7% vs 2.7% vs 5.0%, P > 0.05), and the symptoms were significantly relieved in the BTC group after change of the administration time to after meal. CONCLUSION: Black tomato concentrate is comparable to Compound Xuanju Capsules and better than placebo (P < 0.05) in improving the IIEF-5, EHS and SEP-2,3 scores of ED patients. And, with a high safety, it can be used as an alternative treatment of ED.


Subject(s)
Erectile Dysfunction , Solanum lycopersicum , Male , Humans , Erectile Dysfunction/drug therapy , Erectile Dysfunction/etiology , Penile Erection , Capsules/therapeutic use , Prospective Studies , Treatment Outcome , Double-Blind Method
13.
Insect Sci ; 29(3): 730-748, 2022 Jun.
Article in English | MEDLINE | ID: mdl-34427391

ABSTRACT

The sense of taste plays a crucial role in herbivorous insects by discriminating nutrients from complex plant metabolic compounds. The peripheral coding of taste has been thoroughly studied in many insect species, but the central gustatory pathways are poorly described. In the present study, we characterized single neurons in the gnathal ganglion of Helicoverpa armigera larvae using the intracellular recording/staining technique. We identified different types of neurons, including sensory neurons, interneurons, and motor neurons. The morphologies of these neurons were largely diverse and their arborizations seemingly covered the whole gnathal ganglion. The representation of the single neurons responding to the relevant stimuli of sweet and bitter cues showed no distinct patterns in the gnathal ganglion. We postulate that taste signals may be processed in a manner consistent with the principle of population coding in the gnathal ganglion of H. armigera larvae.


Subject(s)
Lepidoptera , Moths , Animals , Herbivory , Larva/physiology , Sensory Receptor Cells/metabolism , Taste/physiology
14.
Insect Sci ; 29(3): 657-668, 2022 Jun.
Article in English | MEDLINE | ID: mdl-34427396

ABSTRACT

Ionotropic receptors (IRs) were first found in Drosophila melanogaster, and derive from ionotropic glutamate receptors (iGluRs), which are implicated in detecting acids, ammonia, amine, temperature and humidity. Although IRs are involved in sensing acid odors in a few insects, such as D. melanogaster, Aedes aegypti, and Manduca sexta, the function of IRs in Helicoverpa armigera is still unknown. IR8a was confirmed to be a co-receptor associated with acid detection. From the results of phylogenetic analysis, HarmIR8a displayed high similarity compared to homologs in D. melanogaster, M. sexta, and A. aegypti, suggesting that HarmIR8a might have a consistent function as a co-receptor for acid detection. In this study, clustered regularly interspaced palindromic repeats (CRISPR) / CRISPR-associated protein 9 (Cas9)-mediated genome editing was implemented to knockout HarmIR8a for in vivo functional analysis. Electrophysiological and behavioral assays were performed to compare the differences between HarmIR8a knockout mutants and wild type individuals. From electroantennogram (EAG) analysis, we found that wild type H. armigera adults could detect short-chain carboxylic acids. In addition, wind tunnel experiments showed that 1% acetic acid attracted wild type H. armigera adults. However, acid sensing and attraction were reduced or abolished in the HarmIR8a knockout mutants. Our data suggest that HarmIR8a is important for H. armigera to detect short-chain carboxylic acids and mediate attraction behavior to acetic acid.


Subject(s)
Drosophila melanogaster , Moths , Acetic Acid/metabolism , Acetic Acid/pharmacology , Animals , Drosophila melanogaster/genetics , Gene Editing , Moths/genetics , Moths/metabolism , Phylogeny
16.
Int J Biol Macromol ; 184: 721-730, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-34174306

ABSTRACT

Aquaporin (AQP) transport solutes across cell membranes in both unicellular and multicellular organisms. In this study, the aquaporin CsPrip was identified in Chilo suppressalis, an important pest of rice. CsPrip was comprised of two variants, CsPrip_v1 and CsPrip_v2; the former variant was <103 bp was shorter than the latter, although both exhibited the same open reading frame (ORF). Transmembrane topology and protein structure analyses showed that CsPrip retained the conserved features of water-selective insect AQPs, including six transmembrane domains, two conserved hydrophobic asparagine-proline-alanine motifs and the aromatic/arginine constriction region. Expression in Xenopus oocytes revealed that CsPrip preferentially transported water and urea instead of trehalose and glycerol. The CsPrip transcript was expressed in multiple organs and tissues of C. suppressalis larvae and was most abundant in the hindgut and Malpighian tubules. CsPrip transcription was highest in male adults and was relatively stable throughout development. CsPrip expression in larvae was significantly altered by thermal stress, and relative humidity levels impacted CsPrip transcription in 3rd and 5th instar larvae. This study confirms that the aquaporin CsPrip performs multiple critical functions in maintaining water equilibrium in C. suppressalis.


Subject(s)
Aquaporins/genetics , Aquaporins/metabolism , Lepidoptera/metabolism , Oryza/parasitology , Alternative Splicing , Animals , Animals, Genetically Modified/growth & development , Aquaporins/chemistry , Female , Gene Expression Regulation , Insect Proteins/chemistry , Insect Proteins/genetics , Insect Proteins/metabolism , Lepidoptera/genetics , Male , Models, Molecular , Organ Specificity , Protein Conformation , Protein Domains , Sex Characteristics , Urea/metabolism , Water/metabolism , Xenopus/genetics , Xenopus/growth & development
17.
Insect Sci ; 28(2): 445-456, 2021 Apr.
Article in English | MEDLINE | ID: mdl-32369668

ABSTRACT

Sex pheromones serve a critical role in Lepidopterans finding mates. Male moths perceive and react to sex pheromones emitted by conspecific females through a delicate pheromone communication system. Pheromone receptors (PRs) are the key sensory elements at the beginning of that process. The codling moth (Cydia pomnonella) is an important pome fruit pest globally and a serious invasive species in China. Pheromone-based techniques have been used successfully in monitoring and controlling this species. We conducted ribonucleic acid sequencing analysis of the codling moth antennal transcriptome and identified 66 odorant receptors (ORs) in a population from Xinjiang province, China, of which 14 were PRs, including two novel PRs (CpomOR2e and CpomOR73). Four PRs that contain full-length open reading frames (CpomOR1, OR2a, OR5, OR7) and four PRs with ligands that have not been reported previously (CpomOR1, OR2a, OR5, OR7) were selected to deorphanize in the heterologous Xenopus oocyte expression system. Specifically, we found that CpomOR2a and CpomOR5 responded to (E,E)-8, 10-dodecadien-1-yl acetate (codlemone acetate). Furthermore, CpomOR5 (EC50 = 1.379 × 10-8 mol/L) was much more sensitive to codlemone acetate than CpomOR2a (EC50 = 1.663 × 10-6 mol/L). Since codlemone acetate is an important component of C. pomonella sex pheromone, our results improve the current understanding of pheromone communication in codling moths and will be helpful for the development of pest management strategies.


Subject(s)
Arthropod Antennae/metabolism , Insect Proteins/genetics , Moths/genetics , Receptors, Pheromone/genetics , Amino Acid Sequence , Animals , Female , Insect Proteins/chemistry , Insect Proteins/metabolism , Male , Moths/metabolism , Phylogeny , Receptors, Pheromone/chemistry , Receptors, Pheromone/metabolism , Sequence Alignment
18.
Front Neuroanat ; 15: 791900, 2021.
Article in English | MEDLINE | ID: mdl-34975421

ABSTRACT

The olfactory sensing system of the syrphid fly Eupeodes corollae is essential in pollination and prey localization, but little is known about the ultrastructural organization of their olfactory organs. In this study, the morphology, distribution, and ultrastructural organization of antennal sensilla of E. corollae in both sexes were observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Neuronal responses of a subtype of sensilla basiconica to floral scent compounds were recorded by single sensillum recording (SSR). Ten morphological types, including Böhm bristles, sensilla chaetica, microtrichiae, sensilla trichodea, sensilla basiconica, sensilla clavate, sensilla coeloconica, sensilla styloconica, sensilla placodea, and sensory pit, were identified. Except for Böhm bristles and sensilla chaetica, which were distributed on the scape and pedicel of E. corollae antennae, innervated sensilla were densely distributed on the flagellum, a vital sensory organ. Further, observing ultrastructural organization showed that the sensilla trichodea, basiconica, and clavate are single-walled with multiple nanoscale pores perforating the cuticle. Sensilla coeloconica are double-walled and have no wall pores, but instead, have longitudinal grooves along with the pegs. Sensilla chaetica, Böhm bristles, and microtrichiae did not have wall pores on the cuticle or sensory cells at the base. The SSR results indicated that neuron B housed in the subtype of sensilla basiconica I (SBI) mainly responded to methyl eugenol and other aromatic compounds. Overall, our results provide valuable information to understand the morphology and ultrastructure of antennal sensilla from E. corollae. These findings are beneficial for the studies of the neuronal function map of olfactory sensilla and for determining evolutionary relationships in Diptera.

19.
Front Microbiol ; 12: 812690, 2021.
Article in English | MEDLINE | ID: mdl-35003045

ABSTRACT

In this study, we evaluated the diagnostic accuracy of multiple cross displacement amplification (MCDA) combined with real-time PCR platform in pulmonary tuberculosis (PTB) patients. Total 228 PTB patients and 141 non-TB cases were enrolled. Based on the analysis of the first available sample of all participants, MCDA assay showed a higher overall sensitivity (64.0%), with a difference of more than 10% compared with Xpert MTB/RIF (Xpert) assay (51.8%, P < 0.05) and combined liquid and solid culture (47.8%, P < 0.001) for PTB diagnosis. In particular, MCDA assay detected 31 probable TB patients, which notably increased the percentage of confirmed TB from 57.9% (132/228) to 71.5% (163/228). The specificities of microscopy, culture, Xpert and MCDA assay were 100% (141/141), 100% (141/141), 100% (141/141), and 98.6% (139/141), respectively. Among the patients with multiple samples, per patient sensitivity of MCDA assay was 60.5% (52/86) when only the first available sputum sample was taken into account, and the sensitivity increased to 75.6% (65/86) when all samples tested by MCDA assay were included into the analysis. Therefore, MCDA assay established in this study is rapid, accurate and affordable, which has the potential in assisting the accurate and rapid diagnosis of PTB and speed up initiation of TB treatment in settings equipped with real-time PCR platform.

20.
J Agric Food Chem ; 68(44): 12212-12220, 2020 Nov 04.
Article in English | MEDLINE | ID: mdl-33103425

ABSTRACT

Flowering plants attract pollinators with volatile chemicals that include aromatic compounds. Syrphid flies are the largest group of flower visitors in Diptera, but little is known about how they detect floral scents at the molecular level. Here, electroantennogram (EAG) recordings from the antennae of Eupeodes corollae were used to measure responses from 14 aromatic compounds. To identify odorant receptors (ORs) of E. corollae tuned to aromatic volatiles, we analyzed functional profiles of Drosophila melanogaster odorant receptors (ORs), DmelOR46a and DmelOR71a, which are narrowly tuned to phenolic compounds and represent the orthologues of E. corollae OR25 and OR28, respectively. The two genes that are expressed in the antennae of both sexes were functionally characterized. EcorOR25 is narrowly tuned to several structurally related floral scent volatiles, including eugenol, p-cresol, and methyl eugenol. Finally, choice behavior assays showed that eugenol and methyl eugenol were attractants for both sexes of E. corollae adults. This study identified the odorant receptors used by E. corollae to detect aromatic volatiles, suggesting environmentally friendly strategies to attract these beneficial insects.


Subject(s)
Diptera/metabolism , Flowers/chemistry , Insect Proteins/metabolism , Receptors, Odorant/metabolism , Volatile Organic Compounds/chemistry , Animals , Diptera/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Flowers/parasitology , Insect Proteins/genetics , Odorants/analysis , Receptors, Odorant/genetics , Smell
SELECTION OF CITATIONS
SEARCH DETAIL