Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
Add more filters










Publication year range
1.
Microorganisms ; 12(5)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38792728

ABSTRACT

The liver fluke disease caused by Clonorchis sinensis is one of the most serious food-borne parasitic diseases in China. Many freshwater fish and shrimps can be infected with C. sinensis metacercariae as the second intermediate hosts in endemic regions. Owing to the lack of infected humans and the good administration of pet dogs and cats in cities of non-endemic regions, few fish are expected to be infected with C. sinensis metacercariae in urban lakes. To determine the infection of C. sinensis metacercariae in freshwater fish and shrimps in urban lakes, a total of 18 fish species and one shrimp species were investigated in the East Lake of Wuhan City. Metacercariae were isolated by artificial digestive juice and identified using morphology and rDNA-ITS2 sequences. Five species of fish, Pseudorasbora parva, Ctenogobius giurinus, Squalidus argentatus, Hemiculter leuciclus, and Rhodeus spp., were infected with C. sinensis metacercariae. The overall prevalence of C. sinensis was 32.5%. The highest prevalence was found in P. parva with 57.9%, while S. argentatus exhibited the highest mean abundance (13.9). Apart from the C. sinensis metacercariae, four species of other trematode metacercariae were also identified across twelve fish species in total. Owing to the consumption of undercooked fish and feeding cats with small fish caught by anglers, there is a potential risk that the small fish infected with C. sinensis metacercariae may act as an infection source to spread liver fluke. Given the complete life cycle of C. sinensis, stray cats and rats were inferred to act as the important final hosts of C. sinensis in urban lakes in non-endemic areas.

2.
Parasitol Int ; 101: 102893, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38588816

ABSTRACT

Three new species of Gyrodactylus are described from three species of bitterling in Donghu Lake, China: Gyrodactylus ocellorhodei n. sp. from Rhodeus ocellatus; G. sinenorhodei n. sp. from Rhodeus sinensis; and G. acheilorhodei n. sp. from Acheilognathus macropterus. All the three new species showed similar opisthaptor morphology, especially the marginal hooks: all had a slender and perpendicular sickle shaft, and flat sickle base with distinct heel and inner arch which was different from the G. rhodei-group species parasitic on bitterling. Multivariate analyses based on hamulus and marginal hooks suggested that these three new species cannot be completely distinguished, despite some morphology divergence observed in certain less reliable morphometric features, such as hamulus root length, ventral bar total length and process shape. These three new species shared an identical 18S ribosomal RNA gene sequence, while the variation in the Internal Transcribed Spacers (ITS1-ITS2) sequence among them (8.4-11.2%, K2P) far exceeded the 1% ITS sequence difference that had been suggested as a threshold for species delimitation of Gyrodactylus. Phylogenetic analysis based on ITS1-ITS2 showed that all these sequenced Gyrodactylus spp. parasitic on the subfamily Acheilognathinae host formed a monophyletic group. However, a clear differentiation (18.9-20.9%, K2P of ITS1-ITS2) could be found between the subgroup from China (G. ocellorhodei n. sp., G. sinenorhodei n. sp. and G. acheilorhodei n. sp.) and that from Europe (G. rhodei).


Subject(s)
Fish Diseases , Phylogeny , Trematoda , Trematode Infections , Animals , Fish Diseases/parasitology , China , Trematode Infections/parasitology , Trematode Infections/veterinary , Trematoda/classification , Trematoda/anatomy & histology , Trematoda/genetics , Trematoda/isolation & purification , RNA, Ribosomal, 18S/analysis , Cyprinidae/parasitology , DNA, Ribosomal Spacer/analysis , DNA, Helminth/analysis , Lakes/parasitology , Platyhelminths/classification , Platyhelminths/anatomy & histology , Platyhelminths/isolation & purification , Platyhelminths/genetics
3.
Folia Parasitol (Praha) ; 712024 Feb 07.
Article in English | MEDLINE | ID: mdl-38440897

ABSTRACT

Although parasitic copepods of the genus Ergasilus von Nordmann, 1832 are globally distributed parasites of fish, their phylogenetic relationships with other Copepoda are not clear, and the characteristics of their mitochondrial genomes (mitogenomes) are not thoroughly understood. The objective of this study was to address these knowledge gaps by sequencing the complete mitogenome of Ergasilus tumidus Markevich, 1940. The complete mitogenome (GenBank Acc. No. OQ596537) was 14,431 bp long and it comprised 13 protein-coding genes (PCGs), 22 tRNAs, two tRNAs, and two control regions (CRs). Phylogenetic analyses, conducted using concatenated nucleotide and amino acid sequences of 13 protein-coding genes, produced two partially incongruent topologies. While the order Calanoida was consistently resolved as the sister lineage to the other three orders, topological instability was observed in the relationships of the orders Cyclopoida, Siphonostomatoida and Harpacticoida. Siphonostomatoida clustered with Cyclopoida in the nucleotide-based phylogeny, but with Harpacticoida in the amino acid-based phylogeny. The latter topology conforms to the widely accepted relationships, but we speculate that the former topology is more likely to be the correct one. Our study provides a complete mitogenome sequence of E. tumidus, which helps us better understand the molecular evolution of the genus Ergasilus. Additionally, we suggest a different perspective on the controversial phylogenetic relationships among Siphonostomatoida, Cyclopoida and Harpacticoida, diverging from previously accepted views.


Subject(s)
Copepoda , Genome, Mitochondrial , Animals , Copepoda/genetics , Phylogeny , Amino Acid Sequence , Nucleotides
4.
Sci Data ; 11(1): 323, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38548755

ABSTRACT

Balantidium ctenopharyngodoni is identified as the sole ciliate species that exclusively resides within the hindgut of grass carp with high prevalence and intensity. In this study, the successful cultivation of B. ctenopharyngodoni enabled us to collect enough cells for genome sequencing. Consequently, we acquired a high-quality genome assembly spanning 68.66 Mb, encompassing a total of 22,334 nanochromosomes. Furthermore, we predicted 29,348 protein-coding genes, and 95.5% of them was supported by the RNA-seq data. The trend of GC content in the subtelomeric regions of single-gene chromosomes was similar to other ciliates containing nanochromosomes. A large number of genes encoding carbohydrate-binding modules with affinities for starch and peptidoglycans was identified. The identification of mitochondrion-related organelles (MROs) within genome indicates its well-suited adaptation to the anaerobic conditions in the hindgut environment. In summary, our results will offer resources for understanding the genetic basis and molecular adaptations of balantidia to hindgut of herbivorous fish.


Subject(s)
Balantidium , Genome, Protozoan , Animals , Balantidium/genetics , Base Sequence , Chromosomes , Phylogeny , Carps
6.
Fish Shellfish Immunol ; 147: 109429, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38342413

ABSTRACT

Gibel carp (Carassius auratus gibelio) is an important economically farmed fish in China. Chilodonella hexasticha parasitizes on the gills and fins of host fish, causing disruption to their normal respiration and movement, ultimately resulting in death of the fish. In this study, a combination of histopathological, immunohistochemical, transferase dUTP nick end labeling (TUNEL), multi-omics, and molecular approaches were employed to identify the immune reaction and cell apoptosis in gill tissue in response to C. hexasticha infection. Significant lamellae fusion, hyperplasia, hyperemia, necrosis, and desquamation of infected gibel carp gills were observed. In total, the expression of 3619 genes was higher, and 3143 lower, for gills in the infected group compared to the control group. Furthermore, 76 metabolites were significantly increased and 105 were significantly decreased in the infected group compared with the control group. From the qRT-PCR analysis results, immune system-related genes encoding IL-8, CXCL8a, and CXC11 were significantly up-regulated in infected gibel carp, while ZAP70 was significantly down-regulated. Immunohistochemical results also showed the down-regulated ZAP70 in the infected group. Apoptosis-related genes encoding CASP3 and Mcl-1b were up-regulated in response to C. hexasticha infection. These genes indicate the activation of CASP family-related apoptosis and Bim-mediated mitochondrial apoptotic pathways. TUNEL assays also revealed severe apoptosis in the infected group. Based on this study's results, it can be concluded that C. hexasticha infection leads to histopathological changes in the gills of infected fish, and induces both a significant immune response and apoptosis.


Subject(s)
Fish Diseases , Goldfish , Animals , Gills/metabolism , Multiomics , Immunity , Apoptosis
7.
Parasit Vectors ; 17(1): 42, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38291495

ABSTRACT

BACKGROUND: Gyrodactylus is a lineage of monogenean flatworm ectoparasites exhibiting many features that make them a suitable model to study the host-parasite coevolutionary dynamics. Previous coevolutionary studies of this lineage mainly relied on low-power datasets (a small number of samples and a single molecular marker) and (now) outdated algorithms. METHODS: To investigate the coevolutionary relationship of gyrodactylids and their fish hosts in high resolution, we used complete mitogenomes (including two newly sequenced Gyrodactylus species), a large number of species in the single-gene dataset, and four different coevolutionary algorithms. RESULTS: The overall coevolutionary fit between the parasites and hosts was consistently significant. Multiple indicators confirmed that gyrodactylids are generally highly host-specific parasites, but several species could parasitize either multiple (more than 5) or phylogenetically distant fish hosts. The molecular dating results indicated that gyrodactylids tend to evolve towards high host specificity. Speciation by host switch was identified as a more important speciation mode than co-speciation. Assuming that the ancestral host belonged to Cypriniformes, we inferred four major host switch events to non-Cypriniformes hosts (mostly Salmoniformes), all of which occurred deep in the evolutionary history. Despite their relative rarity, these events had strong macroevolutionary consequences for gyrodactylid diversity. For example, in our dataset, 57.28% of all studied gyrodactylids parasitized only non-Cypriniformes hosts, which implies that the evolutionary history of more than half of all included lineages could be traced back to these major host switch events. The geographical co-occurrence of fishes and gyrodactylids determined the host use by these gyrodactylids, and geography accounted for most of the phylogenetic signal in host use. CONCLUSIONS: Our findings suggest that the coevolution of Gyrodactylus flatworms and their hosts is largely driven by geography, phylogeny, and host switches.


Subject(s)
Platyhelminths , Trematoda , Animals , Phylogeny , Trematoda/genetics , Platyhelminths/genetics , Biological Evolution , Fishes/parasitology , Geography , Host-Parasite Interactions
8.
Int J Parasitol ; 54(5): 213-223, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38185351

ABSTRACT

The genomic evolution of Polyopisthocotylea remains poorly understood in comparison to the remaining three classes of Neodermata: Monopisthocotylea, Cestoda, and Trematoda. Moreover, the evolutionary sequence of major events in the phylogeny of Neodermata remains unresolved. Herein we sequenced the mitogenome and transcriptome of the polyopisthocotylean Diplorchis sp., and conducted comparative evolutionary analyses using nuclear (nDNA) and mitochondrial (mtDNA) genomic datasets of Neodermata. We found strong mitonuclear discordance in the phylogeny of Neodermata. Polyopisthocotylea exhibited striking mitonuclear discordance in relative evolutionary rates: the fastest-evolving mtDNA in Neodermata and a comparatively slowly-evolving nDNA genome. This was largely attributable to its very long stem branch in mtDNA topologies, not exhibited by the nDNA data. We found indications that the fast evolution of mitochondrial genomes of Polyopisthocotylea may be driven both by relaxed purifying selection pressures and elevated levels of directional selection. We identified mitochondria-associated genes encoded in the nuclear genome: they exhibited unique evolutionary rates, but not correlated with the evolutionary rate of mtDNA, and there is no evidence for compensatory evolution (they evolved slower than the rest of the genome). Finally, there appears to exist an exceptionally large (≈6.3 kb) nuclear mitochondrial DNA segment (numt) in the nuclear genome of newly sequenced Diplorchis sp. A 3'-end segment of the 16S rRNA gene encoded by the numt was expressed, suggesting that this gene acquired novel, regulatory functions after the transposition to the nuclear genome. In conclusion, Polyopisthocotylea appears to be the lineage with the fastest-evolving mtDNA sequences among all of Bilateria, but most of the substitutions were accumulated deep in the evolutionary history of this lineage. As the nuclear genome does not exhibit a similar pattern, the circumstances underpinning this evolutionary phenomenon remain a mystery.


Subject(s)
Genome, Mitochondrial , Trematoda , Animals , Phylogeny , RNA, Ribosomal, 16S , Trematoda/genetics , DNA, Mitochondrial/genetics , Mitochondria/genetics
9.
Int J Parasitol Parasites Wildl ; 23: 100894, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38187442

ABSTRACT

This study aimed to examine the prevalence of Ichthyophthirius multifiliis in fish inhabiting natural water bodies in the Lhasa and Nagqu regions of Tibet in September 2020 and August 2021. The results showed that Schizopygopsis selincuoensis had the highest prevalence of I. multifiliis at 33.73% (56/166), followed by Triplophysa tibetana at 30.00% (6/20), Triplophysa brevicauda at 27.91% (12/43) and Schizopygopsis thermalis at 23.66% (31/131). No infection with I. multifiliis was observed in exotic fish species. In addition, the prevalence of I. multifiliis in Boqu Zangbo (river), Selincuo Lake and Cuona Lake in the Nagqu region was found to be significantly higher than that in Lalu Wetland and Chabalang Wetland in the Lhasa region (P < 0.05). The study revealed a significantly lower prevalence in Lhasa River than in Cuona Lake (P < 0.05). Notably, our findings revealed instances of I. multifiliis infections even in saline water bodies, thereby emphasizing the potential threat that this parasite poses to the preservation of indigenous fish resources in Tibet. Consequently, immediate and effective countermeasures are imperative. This study represents the first systematic investigation of I. multifiliis infection in natural water bodies in Tibet.

10.
BMC Microbiol ; 24(1): 7, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38172646

ABSTRACT

BACKGROUND: Hosts, parasites, and microbiota interact with each other, forming a complex ecosystem. Alterations to the microbial structure have been observed in various enteric parasitic infections (e.g. parasitic protists and helminths). Interestingly, some parasites are associated with healthy gut microbiota linked to the intestinal eubiosis state. So the changes in bacteria and metabolites induced by parasite infection may offer benefits to the host, including protection from other parasitesand promotion of intestinal health. The only ciliate known to inhabit the hindgut of grass carp, Balantidium ctenopharyngodoni, does not cause obvious damage to the intestinal mucosa. To date, its impact on intestinal microbiota composition remains unknown. In this study, we investigated the microbial composition in the hindgut of grass carp infected with B. ctenopharyngodoni, as well as the changes of metabolites in intestinal contents resulting from infection. RESULTS: Colonization by B. ctenopharyngodoni was associated with an increase in bacterial diversity, a higher relative abundance of Clostridium, and a lower abundance of Enterobacteriaceae. The family Aeromonadaceae and the genus Citrobacter had significantly lower relative abundance in infected fish. Additionally, grass carp infected with B. ctenopharyngodoni exhibited a significant increase in creatine content in the hindgut. This suggested that the presence of B. ctenopharyngodoni may improve intestinal health through changes in microbiota and metabolites. CONCLUSIONS: We found that grass carp infected with B. ctenopharyngodoni exhibit a healthy microbiota with an increased bacterial diversity. The results suggested that B. ctenopharyngodoni reshaped the composition of hindgut microbiota similarly to other protists with low pathogenicity. The shifts in the microbiota and metabolites during the colonization and proliferation of B. ctenopharyngodoni indicated that it may provide positive effects in the hindgut of grass carp.


Subject(s)
Balantidium , Carps , Gastrointestinal Microbiome , Animals , Bacteria/genetics , Virulence
11.
Front Microbiol ; 14: 1295456, 2023.
Article in English | MEDLINE | ID: mdl-38075928

ABSTRACT

Introduction: Parasitic ciliates are protozoans with a global distribution. Along with the gut microbiota, they have formed a micro-ecosystem that affects the host's nutrition, metabolism, and immunity. The interactions and relationships among the three components of this microecosystem (protozoa, gut microbiota, and host) remain only partially understood. Xenocypris fish and the unique ciliate Balantidium polyvacuolum in its hindgut are good materials to study the interplay. Methods: In this study, 16S rRNA gene amplicon sequencing and short-chain fatty acids (SCFAs) identification were used. Network was also constructed to understand their relationships. Results: We found that the gut microbiota of B. polyvacuolum-infected X. davidi and X. argentea had higher diversity, richness, and evenness than uninfected ones. B. polyvacuolum could lead to an increase of Fusobacterium and Chloroflexi in both X. davidi and X. argentea, while significantly increase the abundance of genera Romboutsia and Clostridium in X. argentea. Besides, B. polyvacuolum could significantly increase the content of total SCFAs and acetic acid in X. davidi and increase the concentrations of propionic, isobutyric and butanoic acids in X. argentea. Furthermore, correlation analyses showed that B. polyvacuolum may alter SCFAs by affecting key SCFAs-producing bacteria such as Clostridium and Cetobacterium. Discussion: This study greatly expands our understanding of relationships among B. polyvacuolum, gut microbiota and host Xenocypris fish, which sheds new insights into the mechanism of interaction among protozoa, gut microbiota and host.

12.
BMC Genomics ; 24(1): 624, 2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37858069

ABSTRACT

Anaerobic parasitic ciliates are a specialized group of ciliates that are adapted to anoxic and oxygen-depleted habitats. Among them, Balantidium polyvacuolum, which inhabits the hindgut of Xenocyprinae fishes, has received very limited scientific attention, so the molecular mechanism of its adaptation to the digestive tract microenvironment is still unclear. In this study, transmission electron microscopy (TEM) and single-cell transcriptome analysis were used to uncover the metabolism of B. polyvacuolum. Starch granules, endosymbiotic bacteria, and multiple specialized mitochondrion-related organelles (MROs) of various shapes were observed. The MROs may have completely lost the electron transport chain (ETC) complexes I, III, IV, and V and only retained succinate dehydrogenase subunit A (SDHA) of complex II. The tricarboxylic acid (TCA) cycle was also incomplete. It can be inferred that the hypoxic intestinal environment has led to the specialization of the mitochondria in B. polyvacuolum. Moreover, carbohydrate-active enzymes (CAZymes), including carbohydrate esterases, enzymes with a carbohydrate-binding module, glycoside hydrolases, and glycosyltransferases, were identified, which may constitute evidence that B. polyvacuolum is able to digest carbohydrates and starch. These findings can improve our knowledge of the energy metabolism and adaptive mechanisms of B. polyvacuolum.


Subject(s)
Balantidium , Cypriniformes , Animals , Carbohydrates , Energy Metabolism , Starch
13.
Nat Commun ; 14(1): 6307, 2023 10 09.
Article in English | MEDLINE | ID: mdl-37813879

ABSTRACT

The evidence that parasitic animals exhibit elevated mitogenomic evolutionary rates is inconsistent and limited to Arthropoda. Similarly, the evidence that mitogenomic evolution is faster in species with low locomotory capacity is limited to a handful of animal lineages. We hypothesised that these two variables are associated and that locomotory capacity is a major underlying factor driving the elevated rates in parasites. Here, we study the evolutionary rates of mitogenomes of 10,906 bilaterian species classified according to their locomotory capacity and parasitic/free-living life history. In Bilateria, evolutionary rates were by far the highest in endoparasites, much lower in ectoparasites with reduced locomotory capacity and free-living lineages with low locomotory capacity, followed by parasitoids, ectoparasites with high locomotory capacity, and finally micropredatory and free-living lineages. The life history categorisation (parasitism) explained ≈45%, locomotory capacity categorisation explained ≈39%, and together they explained ≈56% of the total variability in evolutionary rates of mitochondrial protein-coding genes in Bilateria. Our findings suggest that these two variables play major roles in calibrating the mitogenomic molecular clock in bilaterian animals.


Subject(s)
Genome, Mitochondrial , Parasites , Animals , Parasites/genetics , Phylogeny , Genome, Mitochondrial/genetics
14.
Sci Total Environ ; 905: 167068, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-37714353

ABSTRACT

Antibiotic resistance genes (ARGs), emerging environmental contaminants, have become challenges of public health security. However, the distribution and drivers of ARGs, especially high-risk ARGs, in large-scale aquaculture sediments remain unknown. Here, we collected sediment samples from 40 crayfish ponds in seven main crayfish culture provinces in China and then investigated the distribution and risk of ARGs based on high-throughput sequencing and quantitative PCR techniques. Our results suggested that aquaculture sediment was potential reservoir of ARGs and the abundance of aadA-02 was the highest. High-risk ARG (floR) was also prevalent in the sediment and was the most abundant in Jiangsu Province, where opportunistic pathogens were also enriched. The abundance of floR was positively correlated with different environmental factors, such as total phosphorus in water and total carbon in sediment. In addition, Mycobacterium sp., opportunistic pathogenic bacteria, might be potential host for floR. Furthermore, the potential propagation pathway of ARGs was from sediment to crayfish gut, and Bacteroidetes and Proteobacteria might be the main bacterial groups responsible for the proliferation of ARGs. Generally, our results illustrate that pond sediment may be an ARG reservoir of aquatic animals. Meanwhile, our study helps develop valuable strategies for accessing risks and managing ARGs.


Subject(s)
Anti-Bacterial Agents , Genes, Bacterial , Animals , Anti-Bacterial Agents/pharmacology , Drug Resistance, Microbial/genetics , Bacteria/genetics , Aquaculture , Astacoidea , China
15.
Int J Mol Sci ; 24(17)2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37685862

ABSTRACT

Chilodonella hexasticha is a harmful parasitic ciliate that can cause severe damage to fish and high mortalities worldwide. Its congeneric species, C. uncinata, is a facultative parasite that not only can be free-living but also can parasitize on fish gills and fins. In this study, single-cell transcriptomes of these two species were assembled and characterized. Numerous enzymes related to energy metabolism and parasitic adaption were identified through annotation in the Non-Redundant (NR), Clusters of Orthologous Genes (COG), Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. The expression of isocitrate dehydrogenase (IDH), cytochrome c oxidase subunit 1 (Cox1) and ATP synthase F1, delta subunit (ATP5D) was up-regulated in C. hexasticha compared with C. uncinata. The oxidative phosphorylation process was also enriched in C. hexasticha. The main mitochondrial metabolic pathways in C. hexasticha were depicted and enzymes related to energy metabolism pathways were compared between these two species. More importantly, mitochondrial division inhibitor 1 (mdivi-1) proved to be very effective in killing both C. hexasticha and C. uncinata, which could be a novel drug for Chilodonellosis control. This study can help us better understand the energy metabolisms of C. hexasticha and C. uncinata and provide new insight into novel targets for chilodonellosis control. Meanwhile, the transcriptome data can also facilitate genomic studies of these two species in the future.


Subject(s)
Ciliophora , Parasites , Animals , Transcriptome , Acclimatization , Gene Expression Profiling
16.
Genes (Basel) ; 14(7)2023 07 22.
Article in English | MEDLINE | ID: mdl-37510402

ABSTRACT

Copepoda is a large and diverse group of crustaceans, which is widely distributed worldwide. It encompasses roughly 9 orders, whose phylogeny remains unresolved. We sequenced the complete mitochondrial genome (mitogenome) of Sinergasilus major (Markevich, 1940) and used it to explore the phylogeny and mitogenomic evolution of Copepoda. The mitogenome of S. major (14,588 bp) encodes the standard 37 genes as well as a putative control region, and molecular features are highly conserved compared to other Copepoda mitogenomes. Comparative analyses indicated that the nad2 gene has relatively high nucleotide diversity and evolutionary rate, as well as the largest amount of phylogenetic information. These results indicate that nad2 may be a better marker to investigate phylogenetic relationships among closely related species in Copepoda than the commonly used cox1 gene. The sister-group relationship of Siphonostomatoida and Cyclopoida was recovered with strong support in our study. The only topological ambiguity was found within Cyclopoida, which might be caused by the rapid evolution and sparse taxon sampling of this lineage. More taxa and genes should be used to reconstruct the Copepoda phylogeny in the future.


Subject(s)
Copepoda , Animals , Phylogeny , Copepoda/genetics , Genes, Mitochondrial , Base Sequence , Nucleotides/genetics
17.
Pathogens ; 12(4)2023 Apr 06.
Article in English | MEDLINE | ID: mdl-37111447

ABSTRACT

We describe the characterization of a novel fish leech species found on the gills of bighead carp (Hypophthalmichthys nobilis) from lakes and reservoirs in China. This leech is morphologically similar to Limnotrachelobdella sinensis recorded on goldfish and common carp. However, there are 0-2 pairs of symmetrical or asymmetrical eyes and 10 pairs of pulsatile vesicles in the newly discovered leech, in remarkable contrast to L. sinensis. Except for bighead carp, where it demonstrated a higher than 90% prevalence, and silver carp (H. molitrix), where there was low infection, this leech was not detected on any other fish from the Qiandao reservoir in China that were examined during this investigation. Molecular analyses indicated 87.8% ITS sequence identity with L. sinensis and 85.0 and 86.1% COX1 sequence identity with L. sinensis and L. okae, respectively. The uncorrected p-distance based on the COX1 sequence was found to be 15.1 and 14.0% for L. sinensis and L. okae, respectively, suggesting interspecific variation. Phylogenetic analyses based on the combination of 18S and COX1 sequences showed that the newly discovered leech groups with Limnotrachelobdella species. Histopathological observation indicated that attachment of the leech on the gill rakers and gill arches causes a loss of connective tissue, hemorrhage, and ulceration. Based on the morphology, molecular analyses, and host specificity, we conclude that this leech is a new species of Limnotrachelobdella and named it Limnotrachelobdella hypophthalmichthysa n. sp.

18.
Parasit Vectors ; 16(1): 92, 2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36882771

ABSTRACT

BACKGROUND: Chilodonella uncinata is an aerobic ciliate capable of switching between being free-living and parasitic on fish fins and gills, causing tissue damage and host mortality. It is widely used as a model organism for genetic studies, but its mitochondrial metabolism has never been studied. Therefore, we aimed to describe the morphological features and metabolic characteristics of its mitochondria. METHODS: Fluorescence staining and transmission electron microscopy (TEM) were used to observe the morphology of mitochondria. Single-cell transcriptome data of C. uncinata were annotated by the Clusters of Orthologous Genes (COG) database. Meanwhile, the metabolic pathways were constructed based on the transcriptomes. The phylogenetic analysis was also made based on the sequenced cytochrome c oxidase subunit 1 (COX1) gene. RESULTS: Mitochondria were stained red using Mito-tracker Red staining and were stained slightly blue by DAPI dye. The cristae and double membrane structures of the mitochondria were observed by TEM. Besides, many lipid droplets were evenly distributed around the macronucleus. A total of 2594 unigenes were assigned to 23 functional classifications of COG. Mitochondrial metabolic pathways were depicted. The mitochondria contained enzymes for the complete tricarboxylic acid (TCA) cycle, fatty acid metabolism, amino acid metabolism, and cytochrome-based electron transport chain (ETC), but only partial enzymes involved in the iron-sulfur clusters (ISCs). CONCLUSIONS: Our results showed that C. uncinata possess typical mitochondria. Stored lipid droplets inside mitochondria may be the energy storage of C. uncinata that helps its transmission from a free-living to a parasitic lifestyle. These findings also have improved our knowledge of the mitochondrial metabolism of C. uncinata and increased the volume of molecular data for future studies of this facultative parasite.


Subject(s)
Alveolata , Ciliophora , Parasites , Animals , Phylogeny , Ciliophora/genetics , Mitochondria
19.
Pathogens ; 12(2)2023 Jan 28.
Article in English | MEDLINE | ID: mdl-36839478

ABSTRACT

The rare minnow Gobiocypris rarus is an ideal model organism for toxicological research. Dactylogyrus species are usually found on the gills of this rare minnow in laboratory farming systems. Dactylogyrid infection may change the sensibility of fish to toxicants and affect toxicological evaluations. In the present study, dactylogyrid infection was investigated, and species of Dactylogyrus collected from rare minnows were determined. Based on the observed 'D. wunderi' type anchors, with a shorter outer root and elongated inner root, and accessory piece consisting of two parts, the dactylogyrids were identified as D. gobiocypris. A partial 18S-ITS1 rDNA sequence was firstly sequenced, and the highest sequence identity (86.7%) was to D. cryptomeres. Phylogenetic analysis revealed that D. gobiocypris formed a clade with D. squameus, D. finitimus, and D. cryptomeres, all of which have been recorded in the family Gobionidae. Histopathology analysis indicated that a heavy burden of D. gobiocypris caused necrosis of gill filaments. Inflammatory responses, such as tumefaction and hyperaemia, were also observed on gills with severe dactylogyrid infection. Supplementary morphological characteristics and 18S-ITS1 rDNA sequence provided basic data for identification of this parasite species.

20.
Environ Sci Pollut Res Int ; 30(17): 50732-50742, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36808535

ABSTRACT

Antibiotics are largely applied in aquaculture to increase production and control diseases, while how the antibiotics used in pond farming influence the distribution of antibiotics in receiving water seasonally is still not well understood. In this study, the variations of 15 frequently used antibiotics in Honghu Lake and surrounding ponds were investigated seasonally to figure out the impact of pond farming on antibiotics distributions in Honghu Lake. Results showed that the antibiotic concentrations in fish ponds ranged from 11.76 to 389.8 ng/L, while in crab and crayfish ponds were lower than 30.49 ng/L. The predominant antibiotic in fish ponds was florfenicol, followed by sulfonamides and quinolones, with generally low concentrations. Sulfonamides and florfenicol were the main antibiotics in Honghu Lake, affected by the surrounding aquaculture water partially. The antibiotics residue in aquaculture ponds showed obvious seasonal characteristics, with the lowest in spring. From summer, the concentrations of antibiotics in aquaculture ponds gradually increased and reached a peak in autumn, and the seasonal variation of antibiotics in the receiving lake was also related to the antibiotics in the aquaculture ponds. Risk assessment analysis showed that antibiotics such as enrofloxacin and florfenicol in fish ponds posed a medium and low risk to algae, and Honghu Lake acted as a natural reservoir of antibiotics and poses increased risks to algae. In general, our study demonstrated that aquaculture represented by pond farming brought significant risks of antibiotic pollution to natural water bodies. Therefore, reasonable control of the fish antibiotics usage in autumn and winter, as well as the rational use of antibiotics in aquaculture and the use of antibiotics before pond cleaning, is required to reduce the migration of antibiotics from aquaculture surface water to the receiving lake.


Subject(s)
Anti-Bacterial Agents , Water Pollutants, Chemical , Animals , Anti-Bacterial Agents/analysis , Ponds/analysis , Lakes/chemistry , Water Pollutants, Chemical/analysis , Aquaculture , Risk Assessment , Sulfanilamide , China , Water/analysis , Environmental Monitoring
SELECTION OF CITATIONS
SEARCH DETAIL
...