Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Fish Shellfish Immunol ; 152: 109775, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39019126

ABSTRACT

Bacterial intestinal inflammation frequently occurs in cultured fish. Nevertheless, research on intestinal barrier dysfunction in the process of intestinal inflammation is deficient. In this study, we explored the changes of intestinal inflammation induced by Aeromonas hydrophila (A. hydrophila) in snakehead and the relationship between intestinal barrier and inflammation. Snakehead [(13.05 ± 2.39) g] were infected via anus with A. hydrophila. Specimens were collected for analysis at 0, 1, 3, 7 and 21 d post-injection. The results showed that with the increase of exposure time, the hindgut underwent stages of normal function, damage, damage deterioration, repair and recovery. Relative to 0 d, the levels of IL-1ß and TNF-α in serum, and the expression of nod1, tlr1, tlr5, nf-κb, tnf-α and il-1ß in intestine were significantly increased, and showed an upward then downward pattern over time. However, the expression of tlr2 and il-10 were markedly decreased, and showed the opposite trend. In addition, with the development of intestinal inflammation, the diversity and richness of species, and the levels of phylum and genus in intestine were obviously altered. The levels of trypsin, LPS, AMS, T-SOD, CAT, GPx, AKP, LZM and C3 in intestine were markedly reduced, and displayed a trend of first decreasing and then rebounding. The ultrastructure observation showed that the microvilli and tight junction structure of intestinal epithelial cells experienced normal function initially, then damage, and finally recovery over time. The expression of claudin-3 and zo-1 in intestine were significantly decreased, and showed a trend of first decreasing and then rebounding. Conversely, the expression of mhc-i, igm, igt and pigr in intestine were markedly increased, and displayed a trend of increasing first and then decreasing. The above results revealed the changes in intestinal barrier during the occurrence and development of intestinal inflammation, which provided a theoretical basis for explaining the relationship between the two.


Subject(s)
Aeromonas hydrophila , Fish Diseases , Gram-Negative Bacterial Infections , Intestines , Animals , Aeromonas hydrophila/physiology , Fish Diseases/immunology , Fish Diseases/microbiology , Fishes/immunology , Fishes/microbiology , Gastrointestinal Microbiome , Gram-Negative Bacterial Infections/immunology , Gram-Negative Bacterial Infections/veterinary , Inflammation/immunology , Inflammation/veterinary , Intestinal Mucosa/immunology , Intestines/immunology , Intestines/pathology
2.
Sci Rep ; 14(1): 14721, 2024 06 26.
Article in English | MEDLINE | ID: mdl-38926428

ABSTRACT

The incidence and clinical distribution of intracranial haemorrhage (ICH) in neonates at risk of cerebral hypoxia-ischaemia have not been reported in specific studies. Based on conventional magnetic resonance imaging (MRI) versus susceptibility weighted imaging (SWI), this study aimed to analyse the occurrence of asymptomatic ICH in newborns with or without risk of cerebral hypoxia-ischaemia and to accumulate objective data for clinical evaluations of high-risk neonates and corresponding response strategies. 317 newborns were included. MRI revealed that the overall incidence of ICH was 59.31%. The most common subtype was intracranial extracerebral haemorrhage (ICECH) which included subarachnoid haemorrhage (SAH) and subdural haemorrhage (SDH). ICECH accounted for 92.02% of ICH. The positive detection rate of ICECH by SWI was significantly higher than that by T1WI. The incidence of total ICH, ICECH and SAH was greater among children who were delivered vaginally than among those who underwent caesarean delivery. Asymptomatic neonatal ICH may be a common complication of the neonatal birth process, and SWI may improve the detection rate. Transvaginal delivery and a weight greater than 2500 g were associated with a high incidence of ICECH in neonates. The impact of neonatal cerebral hypoxia-ischaemia risk factors on the occurrence of asymptomatic ICH may be negligible.


Subject(s)
Hypoxia-Ischemia, Brain , Intracranial Hemorrhages , Magnetic Resonance Imaging , Humans , Infant, Newborn , Female , Magnetic Resonance Imaging/methods , Incidence , Male , Intracranial Hemorrhages/diagnostic imaging , Intracranial Hemorrhages/epidemiology , Intracranial Hemorrhages/etiology , Hypoxia-Ischemia, Brain/diagnostic imaging , Hypoxia-Ischemia, Brain/epidemiology , Hypoxia-Ischemia, Brain/complications , Risk Factors
3.
Biomolecules ; 14(6)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38927097

ABSTRACT

MicroRNAs (miRNAs) are highly conserved endogenous single-stranded non-coding RNA molecules that play a crucial role in regulating gene expression to maintain normal physiological functions in fish. Nevertheless, the specific physiological role of miRNAs in lower vertebrates, particularly in comparison to mammals, remains elusive. Additionally, the mechanisms underlying the control of antiviral responses triggered by viral stimulation in fish are still not fully understood. In this study, we investigated the regulatory impact of miR-1388 on the signaling pathway mediated by IFN regulatory factor 3 (IRF3). Our findings revealed that following stimulation with the viral analog poly(I:C), the expression of miR-1388 was significantly upregulated in primary immune tissues and macrophages. Through a dual luciferase reporter assay, we corroborated a direct targeting relationship between miR-1388 and tumor necrosis factor receptor (TNFR)-associated factor 3 (TRAF3). Furthermore, our study demonstrated a distinct negative post-transcriptional correlation between miR-1388 and TRAF3. We observed a significant negative post-transcriptional regulatory association between miR-1388 and the levels of antiviral genes following poly(I:C) stimulation. Utilizing reporter plasmids, we elucidated the role of miR-1388 in the antiviral signaling pathway activated by TRAF3. By intervening with siRNA-TRAF3, we validated that miR-1388 regulates the expression of antiviral genes and the production of type I interferons (IFN-Is) through its interaction with TRAF3. Collectively, our experiments highlight the regulatory influence of miR-1388 on the IRF3-mediated signaling pathway by targeting TRAF3 post poly(I:C) stimulation. These findings provide compelling evidence for enhancing our understanding of the mechanisms through which fish miRNAs participate in immune responses.


Subject(s)
Carps , MicroRNAs , Poly I-C , TNF Receptor-Associated Factor 3 , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Poly I-C/pharmacology , Carps/genetics , Carps/metabolism , Carps/virology , TNF Receptor-Associated Factor 3/genetics , TNF Receptor-Associated Factor 3/metabolism , Down-Regulation/drug effects , Down-Regulation/genetics , Interferon Regulatory Factor-3/metabolism , Interferon Regulatory Factor-3/genetics , Gene Expression Regulation/drug effects , Fish Proteins/genetics , Fish Proteins/metabolism , Signal Transduction
4.
Int J Mol Sci ; 25(11)2024 May 24.
Article in English | MEDLINE | ID: mdl-38891899

ABSTRACT

In aquaculture, viral diseases pose a significant threat and can lead to substantial economic losses. The primary defense against viral invasion is the innate immune system, with interferons (IFNs) playing a crucial role in mediating the immune response. With advancements in molecular biology, the role of non-coding RNA (ncRNA), particularly microRNAs (miRNAs), in gene expression has gained increasing attention. While the function of miRNAs in regulating the host immune response has been extensively studied, research on their immunomodulatory effects in teleost fish, including silver carp (Hyphthalmichthys molitrix), is limited. Therefore, this research aimed to investigate the immunomodulatory role of microRNA-30b-5p (miR-30b-5p) in the antiviral immune response of silver carp (Hypophthalmichthys molitrix) by targeting cytokine receptor family B5 (CRFB5) via the JAK/STAT signaling pathway. In this study, silver carp were stimulated with polyinosinic-polycytidylic acid (poly (I:C)), resulting in the identification of an up-regulated miRNA (miR-30b-5p). Through a dual luciferase assay, it was demonstrated that CRFB5, a receptor shared by fish type I interferon, is a novel target of miR-30b-5p. Furthermore, it was found that miR-30b-5p can suppress post-transcriptional CRFB5 expression. Importantly, this study revealed for the first time that miR-30b-5p negatively regulates the JAK/STAT signaling pathway, thereby mediating the antiviral immune response in silver carp by targeting CRFB5 and maintaining immune system stability. These findings not only contribute to the understanding of how miRNAs act as negative feedback regulators in teleost fish antiviral immunity but also suggest their potential therapeutic measures to prevent an excessive immune response.


Subject(s)
Carps , Fish Proteins , MicroRNAs , Poly I-C , Signal Transduction , Animals , Carps/genetics , Carps/immunology , Carps/virology , Carps/metabolism , Fish Diseases/immunology , Fish Diseases/virology , Fish Diseases/genetics , Fish Proteins/genetics , Fish Proteins/metabolism , Gene Expression Regulation/drug effects , Immunity, Innate/genetics , Janus Kinases/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Poly I-C/pharmacology , STAT Transcription Factors/metabolism , STAT Transcription Factors/genetics
5.
Front Microbiol ; 15: 1364373, 2024.
Article in English | MEDLINE | ID: mdl-38694808

ABSTRACT

Escherichia coli (E. coli) is closely associated with the occurrence of puerperal metritis in dairy cows. E. coli carries some the virulence and multi-drug resistant genes, which pose a serious threat to the health of postpartum cows. In this study, E. coli was isolated and identified from the uterine contents of postpartum cows with puerperal metritis in the Ningxia region of China, and its phylogenetic subgroups were determined. Meanwhile, virulence and drug resistance genes carried by E. coli and drug sensitivity were detected, and the characteristics of virulence and drug resistance genes distribution in E. coli phylogroups were further analyzed. The results showed that the isolation rate of E. coli in puerperal metritis samples was 95.2%. E. coli was mainly divided into phylogroups B2 and D, followed by groups A and B1, and was more connected to O157:H7, O169:H4, and ECC-1470 type strains. The virulence genes were mainly dominated by ompF (100%), traT (100%), fimH (97%), papC (96%), csgA (95%), Ang43 (93.9%), and ompC (93%), and the resistance genes were dominated by TEM (99%), tetA (71.7%), aac(3)II (66.7%), and cmlA (53.5%). Additionally, it was observed that the virulence and resistance gene phenotypes could be divided into two subgroups, with subgroup B2 and D having the highest distributions. Drug sensitivity tests also revealed that the E. coli was most sensitive to the fluoroquinolones enrofloxacin, followed by macrolides, aminoglycosides, tetracyclines, ß-lactams, peptides and sulfonamides, and least sensitive to lincosamides. These results imply that pathogenic E. coli, which induces puerperal metritis of dairy cows in the Ningxia region of China, primarily belongs to the group B2 and D, contains multiple virulence and drug resistance genes, Moreover, E. coli has evolved resistance to several drugs including penicillin, lincomycin, cotrimoxazole, and streptomycin. It will offer specific guidelines reference for the prevention and treatment of puerperal metritis in dairy cows with E. coli infections in the Ningxia region of China.

SELECTION OF CITATIONS
SEARCH DETAIL