Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 218
Filter
1.
Front Microbiol ; 15: 1434252, 2024.
Article in English | MEDLINE | ID: mdl-39360315

ABSTRACT

We evaluated the effects of cottonseed meal protein hydrolysate (CPH) on the intestinal microbiota of yellow-feather broilers. We randomly divided 240 chicks into four groups with six replicates: basal diet with 0% (CON), 1% (LCPH), 3% (MCPH), or 5% (HCPH) CPH. The test lasted 63 days and included days 1-21, 22-42, and 43-63 phases. The ACE, Chao1, and Shannon indices in the MCPH and HCPH groups of 42-day-old broilers were higher than those in the CON group (p < 0.05), indicating that the cecum microbial diversity and richness were higher in these groups. Firmicutes and Bacteroidetes were the dominant phyla; however, the main genera varied during the different periods. The abundance of Lactobacillus in CPH treatment groups of 21-day-old broilers was high (p < 0.05); in the 42-day-old broilers, the abundances of Barnesiella, Clostridia_vadinBB60_group, and Parasutterella in the LCPH group, Desulfovibrio, Lactobacillus, Clostridia_vadinBB60_group, and Butyricicoccus in the MCPH group, and Megamonas and Streptococcus in the HCPH group increased; in the 63-day-old broilers, the abundance of Clostridia_UCG-014 and Synergistes in the LCPH and HCPH group, respectively, increased (p < 0.05), and that of Alistipes in the LCPH and MCPH groups decreased (p < 0.05). And changes in the abundance of probiotics were beneficial to improve the intestinal morphology and growth performance. In addition, the LCPH treatment increased the complexity of the microbial network, while the MCPH treatment had the same effect in 42-day-old broilers. Thus, CPH increased the relative abundance of beneficial intestinal microbiota and enhanced the richness and diversity of the bacterial microbiota in broilers aged <42 days; this effect was weakened after 42 days.

2.
J Am Chem Soc ; 146(36): 25151-25157, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39222363

ABSTRACT

The electrocatalytic reduction process is a promising technology for decomposing chlorinated organic pollutants in water but is limited by the lack of low-cost catalysts that can achieve high activity and selectivity. In studying electrochemical dechlorination of 2-chlorophenol (2-CP) in aqueous media, we find that cobalt phthalocyanine molecules supported on carbon nanotubes (CoPc/CNT), which is a highly effective electrocatalyst for breaking the aliphatic C-Cl bonds in 1,2-dichloroethane (DCA) and trichloroethylene (TCE), are completely inactive for reducing the aromatic C-Cl bond in 2-CP. Detailed mechanistic investigation, including volcano plot correlation between dechlorination rate and atomic hydrogen adsorption energy on various transition metal surfaces, kinetic measurements, in situ Raman spectroscopy, and density functional theory calculations, reveals that the reduction of the aromatic C-Cl bond in 2-CP goes through a hydrodechlorination mechanism featuring a bimolecular reaction between adsorbed atomic hydrogen and 2-CP on the catalyst surface, which requires neighboring catalytic sites, whereas the aliphatic C-Cl bonds in DCA and TCE are cleaved by direct electron transfer from the catalyst, which can occur on isolated single sites. This investigation leads to the discovery of metallic Co as a highly selective and active electrocatalyst for 2-CP dechlorination. This work provides new insights into the fundamental chemistry and catalyst design of electrochemical dechlorination reactions for wastewater treatment.

3.
Natl Sci Rev ; 11(10): nwae235, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39301068

ABSTRACT

This work explores the pivotal breakthroughs and historical developments in fibers over the past century, while also identifying future research directions and emerging trends that promise to shape the future of this field.

4.
Endocr Connect ; 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39348234

ABSTRACT

PURPOSE: This study aimed to investigate the relation of magnetic resonance image (MRI) features and immunohistochemistrical subtypes of pituitary microadenomas (PMAs) characterized by location and growth pattern. MATERIALS AND METHODS: A double-center, retrospective review of MRI characteristics was conducted in 57 PMA cases recorded from February 2014 to September 2023 and identified on the basis of 2017 WHO classification of pituitary gland tumors. The geometric center of the tumor was defined, and the possibility of PMA vertical or lateral growth pattern was evaluated according to ratio of maximum diameter between the X and Y axes. RESULTS: Among the PMAs, somatotroph adenomas (STAs) significantly frequented the lateral-anteroinferior portion of pituitary gland (P=0.036). Lactotroph adenomas (LTAs) showed significant locational preference for the lateral-posteroinferior portion (P=0.037), and gonadotroph adenomas (GTAs) were predominately located in the central-anteroinferior portion (P=0.022). Furthermore, the PMAs in the suprasellar portion exhibited vertical extension with statistical significance (P=0.0). CONCLUSION: In our cohort, the micro-STAs were predominately located in the lateral-anteroinferior portion of pituitary gland, the micro-LTAs in the lateral-posteroinferior portion, and the micro-GTAs in the central-anteroinferior portion. The growth pattern of the PMAs was highly correlated with their vertical position instead of their immunohistochemistrical subtypes. Therefore, MRI shows potential in differentiating partial PMA subgroups, especially the cases in silent groups.

5.
Article in English | MEDLINE | ID: mdl-39172618

ABSTRACT

Accurate identification of community-dwelling older adults at high fall risk can facilitate timely intervention and significantly reduce fall incidents. Analyzing gait and balance capabilities via feature extraction and modeling through sensor-based motion data has emerged as a viable approach for fall risk assessment. However, the existing approaches for extracting key features related to fall risk lack inclusiveness, with limited consideration of the non-linear characteristics of sensor signals, such as signal complexity, self-similarity, and local stability. In this study, we developed a multifaceted feature extraction scheme employing diverse feature types, including demographic, descriptive statistical, non-linear, spatiotemporal and spectral features, derived from three-axis accelerometers and gyroscope data. This study is the first attempt to investigate non-linear features related to fall risk in multi-task scenarios from a dynamic system perspective. Based on the extracted multifaceted features, we propose an ensemble elastic net (E-E-N) approach for handling imbalanced data and offering high model interpretability. The E-E-N utilizes bootstrap sampling to construct base classifiers and employs a weighting mechanism to aggregate the base classifiers. We conducted a set of validation experiments using real-world data for comprehensive comparative analysis. The results demonstrate that the E-E-N approach exhibits superior predictive performance on fall risk classification. Our proposed approach offers a cost-effective tool for accurately assessing fall risk and alleviating the burden of continuous health monitoring in the long term.

6.
ACS Nano ; 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39073870

ABSTRACT

The Boltzmann Tyranny, set by thermionic statistics, dictates the lower limit of switching slope (SS) of a MOSFET to be 60 mV/dec, the fundamental barrier for low-dissipative electronics. The large SS leads to nonscalable voltage, significant leakage, and power consumption, particularly at short channels, making transistor scaling an intimidating challenge. In recent decades, an array of steep-slope transistors has been proposed; none is close to an ideal switch with ultimately abrupt switching (SS ∼ 0 mV/dec) between the binary logic states. We demonstrated an all-2D-materials van-der-Waals-heterostructure (vdW)-based FET that exhibits ultrasteep switching (0.33 mV/dec), a large on/off current ratio (∼107), and an ultralow off current (∼0.1 pA). The "Subthreshold-Free" operation achieved by the collective behavior of functional materials enables FET switching directly from the OFF-state to the ON-state with entirely eliminated subthreshold region, behaving as the ideal logic switch. Two-inch wafer-scale device fabrication is demonstrated. Boosted by device innovation and emerging materials, the research presents an advancement in achieving the "beyond-Boltzmann" transistors, overcoming one of the CMOS electronics' most infamous technology barriers that have plagued the research community for decades.

7.
J Am Chem Soc ; 146(29): 20230-20240, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-38984971

ABSTRACT

Immobilized cobalt phthalocyanine (CoPc) is a highly promising architecture for the six-proton, six-electron reduction of CO2 to methanol. This electroreduction process relies on proton-coupled electron transfer (PCET) reactions that can occur by sequential or concerted mechanisms. Immobilization on a conductive support such as carbon nanotubes or graphitic flakes can fundamentally alter the PCET mechanisms. We use density functional theory (DFT) calculations of CoPc adsorbed on an explicit graphitic surface model to investigate intermediates in the electroreduction of CO2 to methanol. Our calculations show that the alignment of the CoPc and graphitic electronic states influences the reductive chemistry. These calculations also distinguish between charging the graphitic surface and reducing the CoPc and adsorbed intermediates as electrons are added to the system. This analysis allows us to identify the chemical transformations that are likely to be concerted PCET, defined for these systems as the mechanism in which protonation of a CO2 reduction intermediate is accompanied by electron abstraction from the graphitic surface to the adsorbate without thermodynamically stable intermediates. This work establishes a mechanistic pathway for methanol production that is consistent with experimental observations and provides fundamental insight into how immobilization of the CoPc impacts its CO2 reduction chemistry.

8.
ACS Appl Mater Interfaces ; 16(29): 37885-37895, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-38996184

ABSTRACT

Carbon electrodes are ideal for electrochemistry with molecular catalysts, exhibiting facile charge transfer and good stability. Yet for solar-driven catalysis with semiconductor light absorbers, stable semiconductor/carbon interfaces can be difficult to achieve, and carbon's high optical extinction means it can only be used in ultrathin layers. Here, we demonstrate a plasma-enhanced chemical vapor deposition process that achieves well-controlled deposition of out-of-plane "fuzzy" graphene (FG) on thermally oxidized Si substrates. The resulting Si|FG interfaces possess a silicon oxycarbide (SiOC) interfacial layer, implying covalent bonding between Si and the FG film that is consistent with the mechanical robustness observed from the films. The FG layer is uniform and tunable in thickness and optical transparency by deposition time. Using p-type Si|FG substrates, noncovalent immobilization of cobalt phthalocyanine (CoPc) molecular catalysts was employed for the photoelectrochemical reduction of CO2 in aqueous solution. The Si|FG|CoPc photocathodes exhibited good catalytic activity, yielding a current density of ∼1 mA/cm2, Faradaic efficiency for CO of ∼70% (balance H2), and stable photocurrent for at least 30 h at -1.5 V vs Ag/AgCl under 1-sun illumination. The results suggest that plasma-deposited FG is a robust carbon electrode for molecular catalysts and suitable for further development of aqueous-stable Si photocathodes for CO2 reduction.

9.
J Phys Chem Lett ; 15(30): 7788-7792, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39048317

ABSTRACT

Synthesis-induced defects in single-walled carbon nanotubes (SWCNTs) enable diverse catalytic reactions, but the nature of catalytic intermediates and how active species regeneration occurs are unclear. Using a quantum mechanics/molecular mechanics (QM/MM) hybrid methodology based on density functional theory (DFT) and a classical force-field, we explore the reactivity and electrochemical regeneration of a vacancy defect in a zigzag SWCNT. Our findings indicate that hydrolysis of the defect forms a ketone group on one carbon atom and C-H bonds on two adjacent carbons. Applying an electrochemical potential of ESHE = -0.740 V triggers a proton-coupled electron transfer (PCET), converting the ketone to a hydroxyl group. Further reduction at ESHE = -1.08 V induces another PCET, expelling the hydroxyl as water and forming an active carbon with carbene character that can react with hydrogen peroxide and perchlorate. The hydrogen atoms on neighboring carbons prevent further water dissociation, maintaining the catalytic vacancy.

10.
J Am Chem Soc ; 146(31): 21721-21728, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39051979

ABSTRACT

A battery is composed of two electrodes that depend on and interact with each other. However, galvanostatic charging-discharging measurement, the most widely used method for battery evaluation, cannot simultaneously reflect performance metrics [capacity, Coulombic efficiency (CE), and cycling stability] of both electrodes because the result is generally governed by the lower-capacity electrode of the cell, namely the limiting reagent of the battery reaction. In studying stoichiometric Li-S cells operating under application-relevant high-mass-loading and lean-electrolyte conditions, we take advantage of the two-stage discharging behavior of sulfur to construct a simple framework that allows us to analyze both electrodes simultaneously. The cell capacity and its decay are anode performance descriptors, whereas the first plateau capacity and cell CE are cathode performance descriptors. Our analysis within this frame identifies Li stripping/plating and polysulfide shuttling to be the limiting factors for the cycling performance of the stoichiometric Li-S cell. Using our newly developed framework, we examine various previously reported strategies to mitigate these bottleneck problems and find modifying the separator with a reduced graphene oxide layer to be an effective means, which improves the capacity retention rate of the cell to 99.7% per cycle.

11.
Gerontology ; 70(9): 991-1012, 2024.
Article in English | MEDLINE | ID: mdl-38857587

ABSTRACT

INTRODUCTION: Anxiety and depression are prevalent among older adults, and digital interactive interventions have shown promise in promoting their mental well-being. However, limited research has explored the effects of different types of digital interactive interventions across various devices on anxiety and depression in older adults with different health conditions. METHODS: A systematic literature review and meta-analysis were conducted using seven selected databases to identify relevant studies up to July 19, 2023. Two reviewers independently conducted study selection, data extraction, and quality appraisals. The risk of bias in the included studies was assessed using the Cochrane risk-of-bias tool. For the meta-analysis, the effect size was calculated as the standardized mean difference (SMD) using a random-effects model. RESULTS: A total of 20 randomized control trails involving 1,309 older adults fulfilled inclusion criteria. The meta-analysis results demonstrates that the digital interactive intervention technologies had a significance on depression (SMD = -0.656 s, 95% confidence interval [CI] = -0.992 to -0.380, p < 0.001) and anxiety (SMD = -0.381 s, 95% CI = -0.517 to -0.245, p < 0.001). Physical interactive interventions demonstrated a significant effect on depression and anxiety (SMD = -0.711 s, 95% CI = -1.102 to -0.319, p < 0.001) and (SMD = -0.573 s, 95% CI = -0.910 to -0.236, p = 0.001). Similarly, immersive interactive interventions also showed a significant effect on depression and anxiety (SMD = -0.699 s, 95% CI = -1.026 to -0.373, p < 0.001) and (SMD = -0.343 s, 95% CI = -0.493 to -0.194, p < 0.001). Additionally, in the internal medicine group, significant intervention effects were observed for depression (SMD = -0.388, 95% CI = -0.630 to -0.145, p = 0.002) and anxiety (SMD = -0.325, 95% CI = -0.481 to -0.169, p < 0.001). Similarly, in the neurocognitive disorders group, significant intervention effects were found for depression (SMD = -0.702, 95% CI = -0.991 to -0.413, p < 0.001) and anxiety (SMD = -0.790, 95% CI = -1.237 to -0.342, p = 0.001). CONCLUSION: The results indicated that various digital interactive devices, including physical and immersive interactive devices, have a positive impact on depression and anxiety among older adults. However, mobile games were not effective in addressing depression. Digital interactive technologies did not significantly influence anxiety intervention, except for elderly individuals undergoing surgical procedures. Nevertheless, these interventions effectively addressed depression and anxiety in older individuals with neurocognitive disorders, internal medical issues, and those without health issues.


Subject(s)
Anxiety , Depression , Digital Health , Aged , Humans , Anxiety/therapy , Anxiety/psychology , Anxiety/prevention & control , Depression/prevention & control , Depression/psychology , Depression/therapy , Randomized Controlled Trials as Topic
12.
Gerontology ; 70(9): 978-990, 2024.
Article in English | MEDLINE | ID: mdl-38843781

ABSTRACT

INTRODUCTION: Smart healthcare technologies (SHCTs) exhibit the great potential to support older Hong Kong adults with their health problems. Although there are various SHCTs in the Hong Kong market, and some adoption predictors have been proposed and investigated, little is known about older users' views on and real-life experiences with these technologies. This exploratory study examined the experiences, functional needs, and barriers of three kinds of SHCT (i.e., smart wearable devices, smart health monitors, and healthcare applications) with older adults in real life. METHODS: A convenience sampling method was applied to recruit twenty-two older adults from the Hong Kong community. The interview was designed in semi-structured and conducted in a face-to-face setting. The content analysis was used to summarize the older adults' functional needs and barriers in real life. RESULTS: We found older adults mainly applied SHCTs to address physical health, but there are few technological solutions for mental health in practice. There are four types of barriers in using SHCT. However, social support in Hong Kong community greatly helps reduce the barriers in technology use. Based on the findings, we discussed the possible solutions based on the social and technology perspective. CONCLUSION: Current technologies still could not fully address older adults' needs for healthy aging, and various barriers still hinder the actual adoption. By deeply understanding and considering the social context, technology innovation can facilitate the adoption of SHCT and promote a healthy aging society.


Subject(s)
Biomedical Technology , Humans , Aged , Male , Female , Hong Kong , Aged, 80 and over , Wearable Electronic Devices , Interviews as Topic , Social Support , Middle Aged
13.
J Med Internet Res ; 26: e54375, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38787601

ABSTRACT

BACKGROUND: With the development of emerging technologies, digital behavior change interventions (DBCIs) help to maintain regular physical activity in daily life. OBJECTIVE: To comprehensively understand the design implementations of habit formation techniques in current DBCIs, a systematic review was conducted to investigate the implementations of behavior change techniques, types of habit formation techniques, and design strategies in current DBCIs. METHODS: The process of this review followed the PRISMA (Preferred Reporting Item for Systematic Reviews and Meta-Analyses) guidelines. A total of 4 databases were systematically searched from 2012 to 2022, which included Web of Science, Scopus, ACM Digital Library, and PubMed. The inclusion criteria encompassed studies that used digital tools for physical activity, examined behavior change intervention techniques, and were written in English. RESULTS: A total of 41 identified research articles were included in this review. The results show that the most applied behavior change techniques were the self-monitoring of behavior, goal setting, and prompts and cues. Moreover, habit formation techniques were identified and developed based on intentions, cues, and positive reinforcement. Commonly used methods included automatic monitoring, descriptive feedback, general guidelines, self-set goals, time-based cues, and virtual rewards. CONCLUSIONS: A total of 32 commonly design strategies of habit formation techniques were summarized and mapped to the proposed conceptual framework, which was categorized into target-mediated (generalization and personalization) and technology-mediated interactions (explicitness and implicitness). Most of the existing studies use the explicit interaction, aligning with the personalized habit formation techniques in the design strategies of DBCIs. However, implicit interaction design strategies are lacking in the reviewed studies. The proposed conceptual framework and potential solutions can serve as guidelines for designing strategies aimed at habit formation within DBCIs.


Subject(s)
Habits , Humans , Behavior Therapy/methods , Exercise , Health Behavior
14.
Heliyon ; 10(9): e30744, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38765116

ABSTRACT

Water-based adsorption chillers (ADC) driven by low-grade thermal energy are environment-friendly alternatives to the traditional compression ones to realize the net zero carbon target. Aluminophosphates molecular sieve (AlPOs) is an excellent material for water-based adsorption applications. However, AlPOs suffers from relatively high cost attributed to the extensive use of expensive structure direct agents (SDAs). This study employed a dual-template method, using cheap organic amine as a dual-template, to synthesize low-cost and excellent adsorbent AlPOs with SFO topology (AlPO-SFO). AlPO-SFO synthesized with dual templates shows high crystallinity, large micropore volume, excellent water uptake, and low regeneration temperature. AlPO-SFO guided by 4-dimethylaminopyridine (4-DMAPy) and diethanolamine (DEOA) molar composition of 0.4 and 0.1 exhibits large microporous volume (0.30 ml g-1), high water uptake (0.26 g g-1 at P/P0 = 0.25) and low regeneration temperature (65 °C). Importantly, this AlPO-SFO exhibits a high coefficient of performance (COP) of 0.89 for cooling at a low driven temperature of 64 °C. The additive amine providing alkaline medium ensures the practical synthesis of AlPO-SFO when expensive 4-DMAPy decreases, endowing the 42 % reduction of the raw material cost. The results provide a cheaper synthesis route of AlPO-SFO, which is conducive to its large-scale production as a distinguished adsorbent for adsorption chillers.

15.
J Am Chem Soc ; 146(23): 16348-16354, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38806413

ABSTRACT

Molecular catalysts such as cobalt phthalocyanine (CoPc) exhibit remarkable electrochemical activity in methanol production from CO2 or CO, but fast conversion with a high current density is still yet to be realized. While adopting flow cells with gas diffusion electrodes is a common approach to enhanced reaction rates, the current scientific and engineering knowledge primarily centers on metal particle-based catalysts like Cu. This focus overlooks the emerging heterogenized molecular catalysts with distinct physical and chemical properties. In this work, we observe that the partial current density of CO reduction to methanol catalyzed by tetraamine-substituted CoPc (CoPc-NH2) supported on carbon nanotubes (CNTs) remains below 30 mA cm-2, even with systematic optimization of structural and operational parameters of the flow cell. A comparative analysis with a Cu metal catalyst reveals that the porous and electrolyte-philic nature of CoPc-NH2/CNT leaves a large fraction of active sites deprived of CO under reaction conditions. To address this microenvironmental challenge, we directly use CO2 as the reactant, leveraging its faster diffusion rate in water compared to CO. Effective CO2 reduction generates CO in situ to feed the catalytic sites, achieving an unprecedently high partial current density for methanol of 129 mA cm-2. This research underscores the necessity for new insights and approaches in the development of molecular catalyst-based electrodes.

16.
J Neuroeng Rehabil ; 21(1): 85, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38807117

ABSTRACT

BACKGROUND: Sensor-based interventions (SI) have been suggested as an alternative rehabilitation treatment to improve older adults' functional performance. However, the effectiveness of different sensor technologies in improving gait and balance remains unclear and requires further investigation. METHODS: Ten databases (Academic Search Premier; Cumulative Index to Nursing and Allied Health Literature, Complete; Cochrane Central Register of Controlled Trials; MEDLINE; PubMed; Web of Science; OpenDissertations; Open grey; ProQuest; and Grey literature report) were searched for relevant articles published up to December 20, 2022. Conventional functional assessments, including the Timed Up and Go (TUG) test, normal gait speed, Berg Balance Scale (BBS), 6-Minute Walk Test (6MWT), and Falling Efficacy Scale-International (FES-I), were used as the evaluation outcomes reflecting gait and balance performance. We first meta-analyzed the effectiveness of SI, which included optical sensors (OPTS), perception sensors (PCPS), and wearable sensors (WS), compared with control groups, which included non-treatment intervention (NTI) and traditional physical exercise intervention (TPEI). We further conducted sub-group analysis to compare the effectiveness of SI (OPTS, PCPS, and WS) with TPEI groups and compared each SI subtype with control (NTI and TPEI) and TPEI groups. RESULTS: We scanned 6255 articles and performed meta-analyses of 58 selected trials (sample size = 2713). The results showed that SI groups were significantly more effective than control or TPEI groups (p < 0.000) in improving gait and balance performance. The subgroup meta-analyses between OPTS groups and TPEI groups revealed clear statistically significant differences in effectiveness for TUG test (mean difference (MD) = - 0.681 s; p < 0.000), normal gait speed (MD = 4.244 cm/s; p < 0.000), BBS (MD = 2.325; p = 0.001), 6MWT (MD = 25.166 m; p < 0.000), and FES-I scores (MD = - 2.036; p = 0.036). PCPS groups also presented statistically significant differences with TPEI groups in gait and balance assessments for normal gait speed (MD = 4.382 cm/s; p = 0.034), BBS (MD = 1.874; p < 0.000), 6MWT (MD = 21.904 m; p < 0.000), and FES-I scores (MD = - 1.161; p < 0.000), except for the TUG test (MD = - 0.226 s; p = 0.106). There were no statistically significant differences in TUG test (MD = - 1.255 s; p = 0.101) or normal gait speed (MD = 6.682 cm/s; p = 0.109) between WS groups and control groups. CONCLUSIONS: SI with biofeedback has a positive effect on gait and balance improvement among a mixed population of older adults. Specifically, OPTS and PCPS groups were statistically better than TPEI groups at improving gait and balance performance, whereas only the group comparison in BBS and 6MWT can reach the minimal clinically important difference. Moreover, WS groups showed no statistically or clinically significant positive effect on gait and balance improvement compared with control groups. More studies are recommended to verify the effectiveness of specific SI. Research registration PROSPERO platform: CRD42022362817. Registered on 7/10/2022.


Subject(s)
Gait , Postural Balance , Randomized Controlled Trials as Topic , Humans , Postural Balance/physiology , Aged , Gait/physiology , Wearable Electronic Devices
17.
Mol Neurobiol ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38809369

ABSTRACT

This study aims to elucidate the key regulatory molecules, specifically messenger RNAs (mRNAs), long noncoding RNAs (lncRNAs), and microRNAs (miRNAs) and their roles in the development and progression of spinal cord injury (SCI). Expression profiles (GSE45006, GSE19890, and GSE125630) for SCI were sourced from the Gene Expression Omnibus (GEO) database. By comparing rats with SCI at various time points against those without SCI, we identified differentially expressed mRNAs (DEmRNAs), lncRNAs (DElncRNAs), and miRNAs (DEmiRNAs). The GSE45006 dataset facilitated the production of DEmRNAs, which were then clustered using Mfuzz. Subsequently, we constructed a protein-protein interaction (PPI) network and anticipated interaction pairs between miRNA-mRNA and lncRNA-mRNA. These pairs were instrumental in forming a regulatory network involving lncRNA-miRNA-mRNA interactions. Additionally, we conducted functional enrichment studies on the DEmRNAs within these gene networks. A total of 2313 DEmRNAs were identified using the GSE45006 dataset, alongside 111 DEmiRNAs from GSE19890. From GSE125630, we extracted 154 DElncRNAs and 2322 DEmRNAs. Our analysis revealed 294 up-regulated DEmRNAs, grouped into the up-cluster, and 407 down-regulated DEmRNAs, forming the down-cluster. Key hub genes in the PPI network, such as Rhof, Vav1, Lyz2, Rab3a, Lyn, Cyfip1, Gns, and Nckap1l, were identified. Additionally, the study successfully constructed a competing endogenous RNA (ceRNA) network, revealing 55 unique lncRNA-miRNA-mRNA link pairs. Our research established a ceRNA network associated with SCI, identifying several critical lncRNA-miRNA-mRNA connection pairs integral to the disease's onset and progression. Notably, significant associations, including the AABR07041411.1-miR-125a-5p-Slc4a7 and the Smg1-rno-miR-331-3p-Tlr4 pairs, were observed to exert a significant influence within this biological context.

18.
Virology ; 595: 110087, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38636362

ABSTRACT

Vibrio parahaemolyticus is a globally important bacterium related to climate warming and health threat to human and marine animals. Yet, there is limited knowledge about its polylysogeny harboring multiple prophages and the genetic information. In this study, two prophages (VPS05ph1 and VPS05ph2) were identified in a V. parahaemolyticus isolate through genomic and transcriptional analyses. Both prophages were determined as HP1-like phages, located in a novel phylogenetic lineage of Peduoviridae. They shared a moderate genome-wide sequence similarity with each other and high synteny with the closest relatives, but showed low identities to the repressor counterparts of the representative phages within the family. In addition, no bacterial virulence genes, antibiotic resistance genes and known phage-encoded lytic proteins were identified on both prophage genomes. Moreover, the V. parahaemolyticus isolate was induced with mitomycin, which caused aberrant cellular morphology and nonviability of bacterial cells and excision of prophage VPS05ph1, accompanied by the respective inhibition and promotion of transcriptions of the cI-like and cox-like regulator genes for phage decision making. Results in this study provide the genetic context of polylysogeny in the V. parahaemolyticus isolate, support the diversity and prevalence of HP1-like phages in vibrios, and promote to explore interactions between the HP1-like prophage and its vibrio host.


Subject(s)
Genome, Viral , Phylogeny , Prophages , Vibrio parahaemolyticus , Vibrio parahaemolyticus/virology , Vibrio parahaemolyticus/genetics , Prophages/genetics , Prophages/isolation & purification , Prophages/physiology , Lysogeny
19.
Dalton Trans ; 53(15): 6779-6790, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38535981

ABSTRACT

Inherently disordered structures of carbon nitrides have hindered an atomic level tunability and understanding of their catalytic reactivity. Starting from a crystalline carbon nitride, poly(triazine imide) or PTI/LiCl, the coordination of copper cations to its intralayer N-triazine groups was investigated using molten salt reactions. The reaction of PTI/LiCl within CuCl or eutectic KCl/CuCl2 molten salt mixtures at 280 to 450 °C could be used to yield three partially disordered and ordered structures, wherein the Cu cations are found to coordinate within the intralayer cavities. Local structural differences and the copper content, i.e., whether full or partial occupancy of the intralayer cavity occurs, were found to be dependent on the reaction temperature and Cu-containing salt. Crystallites of Cu-coordinated PTI were also found to electrophoretically deposit from aqueous particle suspensions onto either graphite or FTO electrodes. As a result, electrocatalytic current densities for the reduction of CO2 and H2O reached as high as ∼10 to 50 mA cm-2, and remained stable for >2 days. Selectivity for the reduction of CO2 to CO vs. H2 increases for thinner crystals as well as for when two Cu cations coordinate within the intralayer cavities of PTI. Mechanistic calculations have also revealed the electrocatalytic activity for CO2 reduction requires a smaller thermodynamic driving force with two neighboring Cu atoms per cavity as compared to a single Cu atom. These results thus establish a useful synthetic pathway to metal-coordination in a crystalline carbon nitride and show great potential for mediating stable CO2 reduction at sizable current densities.

20.
Microorganisms ; 12(3)2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38543537

ABSTRACT

Calf intestines are colonized by rich and complex microbial communities, playing a crucial role in animal physiology, metabolism, nutrition, and immune function. In this study, we provide insight into the composition of fecal microbial bacteria and fungi, respectively, as well as the cross-kingdom interactions. We investigated the intestinal microbiota of different breeds of calves by characterizing the bacterial and fungal communities in the rectal feces of Holstein calves and German Simmental × Holstein cross F1 generation (GXH) using 16S rRNA and ITS amplicon sequencing techniques. PICRUSt2 (version 2.2.0) were used to determine microbial diversity and function and explore the reasons why Holstein calves are more susceptible to diarrhea. The results revealed no significant difference in the diversity of fecal microbiota among the groups (p > 0.05). We identified Firmicutes, Bacteroidetes, and Proteobacteria as the dominant bacterial phyla in the fecal bacterial communities of the two breeds of calves. Ascomycota and Basidiomycota play important roles in the fungal community but differ in relative abundance. Bacteroides was the dominant genus at the group level for calf fecal microbiota in both breeds. The relative abundance of Prevotella, Escherichia-Shigella, Peptostreptococcus, and Butyricicoccus was higher in Holstein calves, and the relative abundance of Faecalibacterium, Megamonas, Butyricicoccus, and Alloprevotella was lower than GXH group. Aspergillus and Cladosporium were the dominating genera of fecal fungi in both groups of calves. LEfSe analysis revealed 33 different bacteria and 23 different fungi between the two groups, with more differential strains found in GXH. In addition, the feces fungi-bacteria interkingdom interactions varied among breeds. Thus, the composition and structure of bacterial and fungal communities in calf feces varied by breed, indicating a potential association between breed and microbial communities. We also found differences in the network between bacterial-fungal kingdoms. We explain the reasons for Holstein calves being more prone to diarrhea. This indicated that breed makes differences in calf diarrhea rates by influencing gut microbial composition and interactions.

SELECTION OF CITATIONS
SEARCH DETAIL