Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
J Colloid Interface Sci ; 672: 497-511, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38852352

ABSTRACT

The design and construction of high strength hydrogels is a widely discussed topic in hydrogel research. In this study, we combined three toughening strategies, including dual network, oriented structure construction and nanophase doping, to develop an alginate/polyacrylamide (PAM)/modified titanium dioxide fiber (TiO2 NF@PAM) dual network composite hydrogel prepared via syringe. The effects of different preparation methods, AM/Alginate ratios, inorganic doping phases and TiO2 NF@PAM/AM ratios on the mechanical properties of composite hydrogels were investigated. The study found that the alginate hydrogel prepared by syringe exhibited superior axial orientation and achieved a tensile strength of (1091 ± 46) kPa. And the composite hydrogel doped with 0.2 wt% TiO2 NF@PAM had a tensile strength of (1006 ± 64) kPa, which was higher than that of the composite hydrogel doped with 0.2 wt% TiO2 nanoparticles (976 ± 66) kPa. The highest tensile strength (1120 ± 67) kPa and elongation at break (182 ± 8) % were achieved when the ratio of TiO2 NF@PAM/AM was 0.6 wt%. The force applied to the gel solution in the syringe affects the orientation of the polymer chains and TiO2 NF@PAM within the gel, which subsequently impacts the mechanical properties of the hydrogel. Therefore, we further investigated the mechanical properties of composite hydrogels under varying propulsion speeds, syringe diameters, and syringe lengths. It was observed that the gel solution's shear strength increased as the syringe diameter decreased. The resulting composite hydrogels were better oriented and had improved mechanical properties. The composite hydrogels' tensile strength peaked at (1117 ± 47) kPa when the syringe advance rate was between 1-7 mL/min. The mechanical properties of the hydrogels were optimal when the syringe length was 30 mm, with a maximum tensile strength of (1131 ± 67) kPa and a tensile ratio of (166 ± 5) %. This study demonstrates the viability of integrating three distinct strengthening methodologies to generate hydrogels of considerable strength. Furthermore, the Alginate/PAM/TiO2 NF@PAM composite hydrogels possess remarkable potential as adaptable, wearable sensors due to their exemplary mechanical properties, knittability, and conductivity.

2.
Small ; : e2311449, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38738782

ABSTRACT

Metal-Organic Frameworks (MOFs) are a very promising material in the fields of energy and catalysis due to their rich active sites, tunable pore size, structural adaptability, and high specific surface area. The concepts of "carbon peak" and "carbon neutrality" have opened up huge development opportunities in the fields of energy storage, energy conversion, and catalysis, and have made significant progress and breakthroughs. In recent years, people have shown great interest in the development of MOFs materials and their applications in the above research fields. This review introduces the design strategies and latest progress of MOFs are included based on their structures such as core-shell, yolk-shell, multi-shelled, sandwich structures, unique crystal surface exposures, and MOF-derived nanomaterials in detail. This work comprehensively and systematically reviews the applications of MOF-based materials in energy and catalysis and reviews the research progress of MOF materials for atmospheric water harvesting, seawater uranium extraction, and triboelectric nanogenerators. Finally, this review looks forward to the challenges and opportunities of controlling the synthesis of MOFs through low-cost, improved conductivity, high-temperature heat resistance, and integration with machine learning. This review provides useful references for promoting the application of MOFs-based materials in the aforementioned fields.

3.
Front Cardiovasc Med ; 10: 1159894, 2023.
Article in English | MEDLINE | ID: mdl-37485275

ABSTRACT

Extracorporeal membrane oxygenation (ECMO) is an increasingly acceptable life-saving mechanical assistance system that provides cardiac and/or respiratory support for several reversible or treatable diseases. Despite important advances in technology and clinical management, bleeding remains a significant and common complication associated with increased morbidity and mortality. Some studies suggest that acquired von Willebrand syndrome (AVWS) is one of the etiologies of bleeding. It is caused by shear-induced deficiency of von Willebrand factor (VWF). VWF is an important glycoprotein for hemostasis that acts as a linker at sites of vascular injury for platelet adhesion and aggregation under high shear stress. AVWS can usually be diagnosed within 24 h after initiation of ECMO and is always reversible after explantation. Nonetheless, the main mechanism for the defect in the VWF multimers under ECMO support and the association between AVWS and bleeding complications remains unknown. In this review, we specifically discuss the loss of VWF caused by shear induction in the context of ECMO support as well as the current diagnostic and management strategies for AVWS.

4.
Front Med (Lausanne) ; 10: 1117214, 2023.
Article in English | MEDLINE | ID: mdl-37064022

ABSTRACT

Extracorporeal membrane oxygenation (ECMO) played an important role in the treatment of patients with critical care such as cardiac arrest (CA) and acute respiratory distress syndrome. ECMO is gradually showing its advantages in terms of speed and effectiveness of circulatory support, as it provides adequate cerebral blood flow (CBF) to the patient and ensures the perfusion of organs. ECMO enhances patient survival and improves their neurological prognosis. However, ECMO-related brain complications are also important because of the high risk of death and the associated poor outcomes. We summarized the reported complications related to ECMO for patients with CA, such as north-south syndrome, hypoxic-ischemic brain injury, cerebral ischemia-reperfusion injury, impaired intracranial vascular autoregulation, embolic stroke, intracranial hemorrhage, and brain death. The exact mechanism of ECMO on the role of brain function is unclear. Here we review the pathophysiological mechanisms associated with ECMO in the protection of neurologic function in recent years, as well as the ECMO-related complications in brain and the means to improve it, to provide ideas for the treatment of brain function protection in CA patients.

5.
Nanomaterials (Basel) ; 12(22)2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36432350

ABSTRACT

Among many electrode materials, cobalt-based nanomaterials are widely used in supercapacitors because of their high natural abundance, good electrical conductivity, and high specific capacitance. However, there are still some difficulties to overcome, including poor structural stability and low power density. This paper summarizes the research progress of cobalt-based nanomaterials (cobalt oxide, cobalt hydroxide, cobalt-containing ternary metal oxides, etc.) as electrode materials for supercapacitors in recent years and discusses the preparation methods and properties of the materials. Notably, the focus of this paper is on the strategies to improve the electrochemical properties of these materials. We show that the performance of cobalt-based nanomaterials can be improved by designing their morphologies and, among the many morphologies, the mesoporous structure plays a major role. This is because mesoporous structures can mitigate volume changes and improve the performance of pseudo capacitance. This review is dedicated to the study of several cobalt-based nanomaterials in supercapacitors, and we hope that future scholars will make new breakthroughs in morphology design.

6.
Sensors (Basel) ; 22(16)2022 Aug 22.
Article in English | MEDLINE | ID: mdl-36016063

ABSTRACT

Large-scale broadband low earth orbit (LEO) satellite systems have become a possibility due to decreased launch costs and rapidly evolving technology. Preventing huge LEO satellite constellations from interfering with the geostationary earth orbit (GSO) satellite system, progressive pitch is a technique to avoid interference with the GSO satellite system that allows the LEO satellite system to maintain a certain angle of separation from the GSO satellite system. Aside from interference avoidance, there is also a need to ensure seamless coverage of the LEO constellation and to optimize the overall transmission capacity of the LEO satellite as much as possible, making it extremely complex to design an effective progressive pitch plan. This paper models an inline interference event and seamless coverage and builds an optimization problem by maximizing transmission capacity. This paper reformulates the problem and designs a genetic algorithm to solve it. From the simulation results, the strategy can avoid harmful interference to the GSO satellite system and ensure the seamless coverage of the LEO constellation, and the satellite transmission capacity is also maximized.


Subject(s)
Earth, Planet , Computer Simulation
7.
Nanomaterials (Basel) ; 12(12)2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35745382

ABSTRACT

With the increasing demand for sustainable and green energy, electric energy storage technologies have received enough attention and extensive research. Among them, Li-ion batteries (LIBs) are widely used because of their excellent performance, but in practical applications, the electrochemical performance of electrode materials is not satisfactory. Carbon-based materials with high chemical stability, strong conductivity, high specific surface area, and good capacity retention are traditional anode materials in electrochemical energy storage devices, while cobalt-based nano-materials have been widely used in LIBs anodes because of their high theoretical specific capacity. This paper gives a systematic summary of the state of research of cobalt-containing nanomaterials, carbon nanomaterials, and their composites in LIBs anodes. Moreover, the preparation methods of electrode materials and measures to improve electrochemical performance are also summarized. The electrochemical performance of anode materials can be significantly improved by compounding carbon nanomaterials with cobalt nanomaterials. Composite materials have better electrical conductivity, as well as higher cycle ability and reversibility than single materials, and the synergistic effect between them can explain this phenomenon. In addition, the electrochemical performance of materials can be significantly improved by adjusting the microstructure of materials (especially preparing them into porous structures). Among the different microscopic morphologies of materials, porous structure can provide more positions for chimerism of lithium ions, shorten the diffusion distance between electrons and ions, and thus promote the transfer of lithium ions and the diffusion of electrolytes.

8.
Dis Markers ; 2022: 6362344, 2022.
Article in English | MEDLINE | ID: mdl-35726235

ABSTRACT

Sepsis is a common critical clinical disease with high mortality that can cause approximately 10 million deaths worldwide each year. Acute lung injury (ALI) or acute respiratory distress syndrome (ARDS) is a common clinical complication of sepsis, which occurs primarily as diffuse alveolar injury, hypoxemia, and respiratory distress. The mortality rate of ALI/ARDS is as high as 30%-40%, which greatly endangers human health. Due to the unclear pathogenesis of ALI/ARDS, its treatment is still a worldwide problem. At present, clinical treatment mainly relies on lung-protective ventilation, prone position ventilation, and fluid management. However, there is a lack of effective and specific treatment measures. In recent years, domestic and foreign scholars have committed to basic research on ALI/ARDS, trying to further clarify its pathogenesis and find new targets and methods for the treatment of ALI/ARDS. In this review, we summarize the signaling pathways related to alveolar injury and repair in sepsis-induced ALI/ARDS and their latest research progress. They include the NF-κB, JAK2/STAT3, mitogen-activated protein kinase (MAPK), mTOR, and Notch signaling pathways. Understanding the molecular mechanisms of these signaling pathways in sepsis-induced ALI/ARDS may provide new targets and ideas for the clinical treatment of this disease.


Subject(s)
Acute Lung Injury , Respiratory Distress Syndrome , Sepsis , Acute Lung Injury/etiology , Acute Lung Injury/pathology , Humans , Respiration, Artificial , Respiratory Distress Syndrome/etiology , Sepsis/complications , Signal Transduction
9.
Sensors (Basel) ; 22(9)2022 Apr 22.
Article in English | MEDLINE | ID: mdl-35590903

ABSTRACT

Deep learning (DL)-based modulation recognition methods of underwater acoustic communication signals are mostly applied to a single hydrophone reception scenario. In this paper, we propose a novel end-to-end multihydrophone fusion network (MHFNet) for multisensory reception scenarios. MHFNet consists of a feature extraction module and a fusion module. The feature extraction module extracts the features of the signals received by the multiple hydrophones. Then, through the neural network, the fusion module fuses and classifies the features of the multiple signals. MHFNet takes full advantage of neural networks and multihydrophone reception to effectively fuse signal features for realizing improved modulation recognition performance. Experimental results on simulation and practical data show that MHFNet is superior to other fusion methods. The classification accuracy is improved by about 16%.


Subject(s)
Acoustics , Neural Networks, Computer , Communication , Computer Simulation , Recognition, Psychology
10.
Viruses ; 14(3)2022 02 22.
Article in English | MEDLINE | ID: mdl-35336854

ABSTRACT

A live attenuated duck Tembusu virus (TMUV) vaccine FX2010-180P (180P) was successfully utilized to prevent TMUV infections in ducks in China. Compared with wild-type TMUV, 180P was highly attenuated and lost transmissibility in ducks. However, the mechanism of the attenuation of 180P remains poorly understood. To explore the key molecular basis of attenuation, chimeric and site mutant viruses in the background of the wild-type TMUV-FX2010 (FX) strain were rescued, and the replication, tissue tropism, and transmissibility were characterized in ducks. The results show that the envelope (E) protein was responsible for attenuation and loss of transmission in ducks. Further studies showed that a D120N amino acid mutation located in domain II of the E protein was responsible for the attenuation and transmissibility loss of 180P in ducks. The D120N substitution resulted in an extra high-mannose type N-linked glycosylation (NLG) in the E protein of 180P compared with the wild-type TMUV, which might restrict the tissue tropism and transmissibility of TMUV in ducks. Our findings elucidate that N120 in the E protein is a key molecular basis of TMUV attenuation in ducks and provide new insight into the role of NLG in TMUV tissue tropism and transmissibility.


Subject(s)
Flavivirus Infections , Flavivirus , Poultry Diseases , Animals , Cell Line , Ducks , Flavivirus/genetics , Flavivirus Infections/prevention & control , Flavivirus Infections/veterinary , Mutation , Vaccines, Attenuated
11.
Int J Pept Res Ther ; 27(2): 1027-1042, 2021.
Article in English | MEDLINE | ID: mdl-33424523

ABSTRACT

Helicobacter pylori (H. pylori) is a gram-negative spiral bacterium that caused infections in half of the world's population and had been identified as type I carcinogen by the World Health Organization. Compared with antibiotic treatment which could result in drug resistance, the vaccine therapy is becoming a promising immunotherapy option against H. pylori. Further, the multi-epitope vaccine could provoke a wider immune protection to control H. pylori infection. In this study, the in-silico immunogenicity calculations on 381 protein sequences of H. pylori were performed, and the immunogenicity of selected proteins with top-ranked score were tested. The B cell epitopes and T cell epitopes from three well performed proteins UreB, PLA1, and Omp6 were assembled into six constructs of multi-epitope vaccines with random orders. In order to select the optimal constructs, the stability of the vaccine structure and the exposure of B cell epitopes on the vaccine surface were evaluated based on structure prediction and solvent accessible surface area analysis. Finally Construct S1 was selected and molecular docking showed that it had the potential of binding TLR2, TLR4, and TLR9 to stimulate strong immune response. In particular, this study provides good suggestions for epitope assembly in the construction of multi-epitope vaccines and it may be helpful to control H. pylori infection in the future. SUPPLEMENTARY INFORMATION: The online version of this article (10.1007/s10989-020-10148-x) contains supplementary material, which is available to authorized users.

12.
Analyst ; 145(2): 445-452, 2020 Jan 21.
Article in English | MEDLINE | ID: mdl-31819931

ABSTRACT

The self-assembly of plasmonic nanoparticles provides a powerful approach to generate surface-enhanced Raman scattering (SERS), which promotes the actual applications in chemical and biomolecular analyses. Herein, we developed a facile SERS sensing strategy for an ATP assay with a 3-D DNA nanomachine that walks by the Exo III cleavage, leading to the formation of AuNP aggregates, which resulted in the enhancement of the electromagnetic field. Depending on the target-activated Exo III cleavage, the 3-D nanomachine can walk along the 3-D track on the surface of AuNPs and generate self-assembled hot-spots to enhance the SERS signal of a Raman dye, allowing a homogenous assay of the ATP concentration with high sensitivity and reproducibility. Under optimized experimental conditions, the biosensor detected ATP with a widened dynamic range from 1 pM to 1 × 105 pM with a limit of detection of up to 0.29 pM. Hence, the novel strategy provides a useful and practical platform for the SERS assay of ATP with high sensitivity and repeatability. Besides, this platform shows great potential for applications in high-throughput assays for drug screening and clinical diagnostics.


Subject(s)
Adenosine Triphosphate/blood , Biosensing Techniques/methods , DNA/chemistry , Metal Nanoparticles/chemistry , Exodeoxyribonucleases/chemistry , Gold/chemistry , Humans , Limit of Detection , Reproducibility of Results , Spectrum Analysis, Raman/methods
13.
Sci Rep ; 9(1): 16314, 2019 Nov 08.
Article in English | MEDLINE | ID: mdl-31704991

ABSTRACT

To increase the utilization ratio and catalytic efficiency of the nano TiO2, The RGO/TiO2/(Ag) powders and RGO/TiO2/Ag aerogel photocatalyst were designed and prepared. The composition and microstructure of RGO/TiO2/(Ag) powders and RGO/TiO2/Ag aerogel were studied, in addition, the photocatalytic activity of RGO/TiO2/(Ag) powders and RGO/TiO2/Ag aerogel was researched by the photocatalytic degradation behavior of formaldehyde solution and formaldehyde gas respectively. The result indicate that TiO2 is uniformly loaded on the surface of RGO with a particle size of 10 nm to 20 nm. When the amount of graphene oxide added is 1 wt%, RGO/TiO2 powder has the highest degradation effect on formaldehyde solution, in addition, the introduction of Ag can greatly improve the photocatalytic effect of the sample. The results also show that the pore size of RGO/TiO2/Ag aerogel is between 7.6 nm and 12.1 nm, and the degradation rate of formaldehyde gas is 77.08% within 2 hours.

14.
Mikrochim Acta ; 186(8): 559, 2019 07 23.
Article in English | MEDLINE | ID: mdl-31338594

ABSTRACT

An amplified electrochemical biosensing scheme is described for lead(II) ions. It is making use of DNAzyme-assisted target recycling and catalytic hairpin assembly (CHA). The hairpin strand (substrate probe for the Pb2+-based DNAzyme; referred to as SP) is composed of trigger probe (TP) and a capture probe 1 attached to gold nanoparticles (AuNP). In the presence of the enzyme probe that partially hybridizes with SP, the introduction of Pb2+ triggers target recycling and drives the highly amplified translation of target Pb(II) to TP. The CHA reaction is further initiated by TP. The modified AuNP act as the connecting unit, and this leads to the formation of a 3D DNA-AuNP network on the electrode (which is the third amplification step). It can bind the positively charged redox mediator RuHex via electrostatic interaction for electrochemical detection. This biosensor has a low detection limit (95 pM) and any analytical range that covers the 100 pM to 5 µM Pb(II) concentration range. It is selective over other divalent metal ions. It was applied to the determination of Pb2+ in spiked real-world samples. Graphical abstract Schematic presentation of the electrochemical biosensor. The triply amplified electrochemical assay is based on the use of DNAzyme-assisted target recycling with catalytic hairpin assembly (CHA) reaction for sensitive and selective determination of lead ion (Pb2+). AuNP: gold nanoparticles; SP: substrate probe; EP: enzyme probe.


Subject(s)
Biosensing Techniques , DNA, Catalytic/chemistry , Gold/chemistry , Lead/analysis , Metal Nanoparticles/chemistry , Water Pollutants, Chemical/analysis , Catalysis , Drinking Water/analysis , Electrochemical Techniques , Lead/chemistry , Water Pollutants, Chemical/chemistry
15.
ACS Sens ; 4(8): 2140-2149, 2019 08 23.
Article in English | MEDLINE | ID: mdl-31353891

ABSTRACT

Multiplexed detection of Alzheimer's disease (AD) core biomarkers is of great significance to early diagnosis and personalized treatment of AD patients. Herein, we construct a robust and convenient surface-enhanced Raman scattering (SERS) biosensing platform for simultaneous detection of Aß(1-42) oligomers and Tau protein using different Raman dye-coded polyA aptamer-AuNPs (PAapt-AuNPs) conjugates. This strategy relies on the specific protein-aptamer binding-mediated aggregation of AuNPs and the concomitant plasmonic coupling effect that allow us to "turn on" SERS detection of protein biomarkers. To the best of our knowledge, this is the first work in which PAapt-AuNPs conjugates are used for probing protein biomarkers, which may be enlightening for the exploitation of more extensive biological applications of aptamer-AuNPs conjugates. The results reveal that the present strategy displays excellent analytical performance. Moreover, the applicability of this strategy is demonstrated in the artificial cerebrospinal fluid (CSF) samples with satisfactory results. Except for the prominent sensitivity and practicality, our strategy offers additional advantages. The preparation of nanoconjugates is handy and easily repeated, and the synthesis cost is greatly reduced because it dispenses with the complicated labeling process. Moreover, the assay can be accomplished in 15 min, allowing rapid detection of protein biomarkers. Furthermore, simultaneous detection of Tau protein and Aß(1-42) oligomers is realized by employing different Raman dye-coded nanoconjugates, which is valuable for accurately predicting and diagnosing AD disease. Thus, our PAapt-AuNPs conjugate-based multiplexed SERS strategy indeed creates a useful and universal platform for detecting multiple protein biomarkers and related clinical diagnosis.


Subject(s)
Alzheimer Disease/diagnosis , Amyloid beta-Peptides/analysis , Aptamers, Nucleotide/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Peptide Fragments/analysis , Poly A/chemistry , Biomarkers/analysis , Biosensing Techniques , Electrochemical Techniques , Humans , Spectrum Analysis, Raman
16.
Analyst ; 144(12): 3836-3842, 2019 Jun 21.
Article in English | MEDLINE | ID: mdl-31095133

ABSTRACT

A rapid and label-free fluorescence biosensing strategy for highly sensitive detection of microRNA-122 (miR-122) has been developed by the combination of DNA three-way junction (TWJ)-actuated strand displacement and a fluorescence light-up Ag nanocluster (AgNC) probe. In the presence of target miR-122, the attachment of miR-122 to its complementary DNA results in the unblocking of the toehold and branch migration domains in the TWJ, activating the strand displacement reaction (SDR) accompanied by the proximity between the G-rich DNA probe and DNA-AgNC probe; thus a remarkably enhanced fluorescence signal of AgNCs can be obtained owing to the G-rich fluorescence enhancement mechanism. The results reveal that this biosensor exhibits superb specificity and high sensitivity toward miR-122 with a detection limit of 0.030 nM. In addition, the practicality of the biosensor is demonstrated by analyzing miR-122 in three cell lines with satisfactory results. Furthermore, by the utilization of the toehold-mediated SDR and DNA-AgNC conjugates, this proposed strategy offers the advantages of rapidness, convenience, low cost, and simplified operation without the need for biological labeling and the addition of enzymes. Thus, the constructed biosensor might provide a valuable and practical tool for detecting miRNA and the related clinical diagnosis and fundamental biomedicine research.


Subject(s)
Biosensing Techniques/methods , DNA/chemistry , Metal Nanoparticles/chemistry , MicroRNAs/analysis , Silver/chemistry , Base Sequence , Cell Line, Tumor , DNA/genetics , DNA Probes/chemistry , DNA Probes/genetics , Fluorescence , Humans , Limit of Detection , MicroRNAs/genetics , Nucleic Acid Hybridization , Spectrometry, Fluorescence/methods
17.
Analyst ; 144(10): 3389-3397, 2019 May 21.
Article in English | MEDLINE | ID: mdl-30990481

ABSTRACT

DNA can be configured into unique high-order structures due to its significantly high programmability, such as a three-way junction-based structure (denoted Y-shaped DNA), for further applications. Herein, we report a label-free fluorescent signal-on biosensor based on the target-driven primer remodeling rolling circle amplification (RCA)-activated multisite-catalytic hairpin assembly (CHA) enabling the concurrent formation of Y-shaped DNA nanotorches (Y-DNTs) for ultrasensitive detection of ochratoxin A (OTA). Two kinds of masterfully-designed probes, termed Complex I and II, were pre-prepared by the combination of a circular template (CT) with an OTA aptamer (S1), a substrate probe (S2) and hairpin probe 1 (HP1), respectively. Target OTA specifically binds to Complex I, resulting in the release of the remnant element in S2 and successive remodeling into a mature primer for RCA by phi29 DNA polymerase, thus a usable primer-CT complex is produced, which actuates primary RCA. Then, numerous Complex II probes can anneal with the first-generation RCA product (RP) with multiple sites to activate the CHA process. With the participation of endonuclease IV (Endo IV) and phi29, HP1 as a pre-primer containing a tetrahydrofuran abasic site mimic (AP site) in Complex II is converted into a mature primer to initiate additional rounds of RCA. So, countless Y-DNTs are formed concurrently containing a G-quadruplex structure that enables the N-methylmesoporphyrin IX (NMM) to be embedded, generating remarkably strong fluorescence signals. The biosensor was demonstrated to enable rapid and accurate highly efficient and selective detection of OTA with an improved detection limit of as low as 0.0002 ng mL-1 and a widened dynamic range of over 4 orders of magnitude. Meanwhile, this method was proven to be capable of being used to analyze actual samples. Therefore, this proposed strategy may be established as a useful and practical platform for the ultrasensitive detection of mycotoxins in food safety testing.


Subject(s)
Aptamers, Nucleotide/chemistry , Biosensing Techniques/methods , DNA/chemistry , Nanostructures/chemistry , Ochratoxins/analysis , Aptamers, Nucleotide/genetics , Bacillus Phages/enzymology , Bacteriophage T4/enzymology , Base Sequence , DNA/genetics , DNA Ligases/chemistry , DNA-Directed DNA Polymerase/chemistry , Deoxyribonuclease IV (Phage T4-Induced)/chemistry , Fluorescence , Fluorescent Dyes/chemistry , Food Contamination/analysis , G-Quadruplexes , Inverted Repeat Sequences , Limit of Detection , Mesoporphyrins/chemistry , Nucleic Acid Amplification Techniques , Nucleic Acid Conformation , Nucleic Acid Hybridization , Ochratoxins/chemistry , Spectrometry, Fluorescence/methods , Viral Proteins/chemistry , Wine/analysis
18.
Anal Chim Acta ; 1060: 79-87, 2019 Jul 04.
Article in English | MEDLINE | ID: mdl-30902334

ABSTRACT

We have developed a novel amplification strategy termed Endo IV-assisted feedback amplification (EFA) taking advantages of rolling circular amplification (RCA) and Endo IV-assisted signal amplification (ESA) biosensing platform for detecting of adenosine triphosphate (ATP). Two kinds of specially programmed DNA complexes were employed into EFA system, one composed of a split aptamer fragment and a circular template, and the other composed of AP probe and the same circular template. Hence, ATP as a target induced the self-assembly of spilt aptamer fragments and initiated RCA reaction generating a linear DNA, which consists of hybridization elements with Complex II and formation elements of G-quadruplex. More importantly, the addition of endonuclease IV can cut the Complex II into two parts, and one of which can be trimming by phi29 DNA polymerase initiating the new round of RCA reaction producing more RCA products. Thus significantly enhanced fluorescent signal can be measured for ATP as expected, and our proposed strategy exhibits improved performances toward ATP ultrasensitive detection with a limit of detection (LOD) as low as 0.09 nM. Additionally, our developed biosensor demonstrates high selectivity and the superiority of simplicity towards ATP. Above these significant aspects, our proximity binding-induced RCA reaction-based fluorescent assay and Endo IV-fueled feedback signal amplification strategy presents an optimal detection performance towards ATP for potential application in related research and clinical diagnosis.


Subject(s)
Adenosine Triphosphate/analysis , Endonucleases/chemistry , Nucleic Acid Amplification Techniques , Aptamers, Nucleotide/chemistry , Endonucleases/metabolism , Humans
19.
Mikrochim Acta ; 186(2): 105, 2019 01 12.
Article in English | MEDLINE | ID: mdl-30637516

ABSTRACT

A colorimetric biosensor and visual test is described for the determination of mercury(II). It relies on the specific thymine-Hg(II)-thymine (T-Hg2+-T) interaction which induces a cyclic amplification process (caused by the enzyme exonuclease III) and the aggregation of gold nanoparticles. These results in a color change from red to violet. Under optimized conditions, this colorimetric assay (best performed at 524 nm) has a detection limit as low as 0.9 nM with a detection range over 4 orders of magnitude (from 1 nM to 10 µM). Graphical abstract Schematic of a colorimetric method for determination of mercury ions (Hg2+) based on the thymine-Hg2+-thymine interaction-triggered cyclic enzymatic amplification and aggregation of gold nanoparticles with the aid of exonuclease III (Exo III).


Subject(s)
Colorimetry/methods , DNA Probes/genetics , Exodeoxyribonucleases/metabolism , Gold/chemistry , Mercury/chemistry , Nucleic Acid Amplification Techniques , Thymine/chemistry , Biosensing Techniques , Color , DNA Probes/chemistry , DNA, Single-Stranded/chemistry , DNA, Single-Stranded/genetics , Limit of Detection , Metal Nanoparticles/chemistry , Models, Molecular , Nucleic Acid Conformation , Water/chemistry
20.
Analyst ; 143(23): 5771-5778, 2018 Nov 19.
Article in English | MEDLINE | ID: mdl-30338323

ABSTRACT

In the present work, a simple, rapid, isothermal, and ultrasensitive homogeneous electrochemical biosensing platform for target Hg2+ detection was developed on the basis of an exonuclease III (Exo III)-aided target recycling amplification strategy. In the assay, a label-free hairpin probe (HP1) was ingeniously designed, containing a protruding DNA fragment at the 3'-termini as the recognition unit for target Hg2+. Also, the DNA fragment in the loop region and 5'-termini (Helper) could be used when a secondary target analog is introduced, but it is caged in the stem region of HP1 when without such a target. The produced secondary target Helper opened the methylene blue (MB)-labeled hairpin probe (HP2) and triggered the Exo III cleavage process, accompanied with the secondary target recycling. This accordingly resulted in the autonomous reduction of the electroactive material MB on the electrode, inducing a distinct decrease in the electrochemical signal. The current developed homogeneous strategy provides a means for the ultrasensitive electrochemical detection of Hg2+ down to the 227 pM level, with high selectivity. It could be further used as a general autocatalytic and homogeneous strategy toward the detection of a wide spectrum of analytes and may be associated with more analytical techniques.

SELECTION OF CITATIONS
SEARCH DETAIL
...