Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Type of study
Publication year range
1.
Bone Res ; 12(1): 42, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39103328

ABSTRACT

Ageing as a natural irreversible process inherently results in the functional deterioration of numerous organ systems and tissues, including the skeletal and immune systems. Recent studies have elucidated the intricate bidirectional interactions between these two systems. In this review, we provide a comprehensive synthesis of molecular mechanisms of cell ageing. We further discuss how age-related skeletal changes influence the immune system and the consequent impact of immune system alterations on the skeletal system. Finally, we highlight the clinical implications of these findings and propose potential strategies to promote healthy ageing and reduce pathologic deterioration of both the skeletal and immune systems.


Subject(s)
Aging , Bone and Bones , Immune System , Humans , Aging/immunology , Aging/physiology , Immune System/immunology , Immune System/physiology , Bone and Bones/immunology , Animals
4.
J Pharm Biomed Anal ; 245: 116194, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38704878

ABSTRACT

A miniature mass spectrometer (mMS) based point-of-care testing (POCT) method was evaluated for on-site detecting the hypertension drugs, amlodipine and benazepril. The instrument parameters, including voltage, ISO1, ISO2, and CID, were optimized, under which the target compounds could be well detected in MS2. When these two drugs were injected simultaneously, the mutual ionization inhibition and mutual reduction between amlodipine and benazepril were evaluated. This phenomenon was severe on the precursor ions but had a small impact on the product ions, thus making this POCT method suitable for analysis using product ions. Finally, the method was validated and applied. The blood samples from patients were tested one hour after oral administration of the drugs (20 mg), and the benazepril was quantitatively analyzed using a standard curve, with detected concentrations ranging from 190.6 to 210 µg L-1 and a relative standard deviation (RSD) of 8.6 %. In summary, amlodipine has low sensitivity and can only be detected at higher concentrations, while benazepril has high sensitivity, good linearity, and even meets semi-quantitative requirements. The research results of this study are of great clinical significance for monitoring blood drug concentrations during hypertension medication, predicting drug efficacy, and customizing individualized medication plans.


Subject(s)
Amlodipine , Antihypertensive Agents , Benzazepines , Amlodipine/blood , Humans , Benzazepines/blood , Antihypertensive Agents/blood , Antihypertensive Agents/administration & dosage , Mass Spectrometry/methods , Point-of-Care Testing , Reproducibility of Results , Limit of Detection , Point-of-Care Systems
5.
Rapid Commun Mass Spectrom ; 38(13): e9752, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38700125

ABSTRACT

RATIONALE: Gas chromatography-mass spectrometry (GC-MS) combines chromatography and MS, providing full play to the advantages of high separation efficiency of GC, strong qualitative ability of MS, and high sensitivity of detector. In GC-MS data processing, determining the experimental compounds is one of the most important analytical steps, which is usually realized by one-to-one similarity calculations between the experimental mass spectrum and the standard mass spectrum library. Although the accuracy of the algorithm has been improved in recent years, it is still difficult to distinguish structurally similar mass spectra, especially isomers. At the same time, the library capacity is very large and increasing every year, and the algorithm needs to perform large numbers of calculations with irrelevant compounds in the library to recognize unknown compounds, which leads to a significant reduction in efficiency. METHODS: This work proposed to exclude a large number of irrelevant mass spectra by presearching, perform preliminary similarity calculations using similarity algorithms, and finally improve the accuracy of similarity calculations using deep classification models. The replica library of NIST17 is used as the query data, and the master library is used as the reference database. RESULTS: Compared with the traditional recognition algorithm, the preprocessing algorithm has reduced the time by 4.2 h, and by adding the deep learning models 1 and 2 as the final determination, the recognition accuracy has been improved by 1.9% and 6.5%, respectively, based on the original algorithm. CONCLUSIONS: This method improves the recognition efficiency compared to conventional algorithms and at the same time has better recognition accuracy for structurally similar mass spectra and isomers.

6.
Front Plant Sci ; 15: 1260591, 2024.
Article in English | MEDLINE | ID: mdl-38567126

ABSTRACT

Introduction: Low-temperature stress negatively impacts rice yield, posing a significant risk to food security. While previous studies have explored the physiological and linear gene expression alterations in rice under low-temperature conditions, the changes in competing endogenous RNA (ceRNA) networks remain largely unexamined. Methods: We conducted RNA sequencing on two japonica rice varieties with differing cold-tolerance capabilities to establish ceRNA networks. This enabled us to investigate the transcriptional regulatory network and molecular mechanisms that rice employs in response to low-temperature stress. Results: We identified 364 differentially expressed circular RNAs (circRNAs), 224 differentially expressed microRNAs (miRNAs), and 12,183 differentially expressed messenger RNAs (mRNAs). WRKY family was the most prominent transcription factor family involved in cold tolerance. Based on the expression patterns and targeted relationships of these differentially expressed RNAs, we discerned five potential ceRNA networks related to low-temperature stress in rice: osa-miR166j-5p from the miR166 family was associated with cold tolerance; osa-miR528-3p and osa-miR156j-3p were linked to stress response; and osa-miR156j-3p was involved in the antioxidant system. In addition, Os03g0152000 in the antioxidant system, as well as Os12g0491800 and Os05g0381400, correlated with the corresponding stress response and circRNAs in the network. A gene sequence difference analysis and phenotypic validation of Os11g0685700 (OsWRKY61) within the WRKY family suggested its potential role in regulating cold tolerance in rice. Discussion and conclusion: We identified Os11g0685700 (OsWRKY61) as a promising candidate gene for enhancing cold tolerance in japonica rice. The candidate miRNAs, mRNAs, and circRNAs uncovered in this study are valuable targets for researchers and breeders. Our findings will facilitate the development of cold-tolerant rice varieties from multiple angles and provide critical directions for future research into the functions of cold-tolerance-related miRNAs, mRNAs, and circRNAs in rice.

7.
Article in English | MEDLINE | ID: mdl-38581929

ABSTRACT

Nandrolone (NT) is a type of androgen anabolic steroid that is often illegally used in cattle farming, leading to unpredictable harm to human health via the food chain. In this study, a rapid detection method for NT in the samples of cattle farming was established using a portable mass spectrometer. The instrument parameters were optimized, including a thermal desorption temperature of 220 °C, a pump speed of 30 %, an APCI ionization voltage of 3900 v, and an injection volume of 6 µL. The samples of bovine urine, feed, sewage, and tissue were selected, and extracted using a solution of methanol:acetonitrile (1:1, v/v), followed by spiking a NT standard solution (1000 ng·mL-1) and ionization through the APCI ion source for detection. The results showed that NT could not be detected in beef and feed due to the complexity of the matrix, while clear signals of NT ions were observed in bovine urine and sewage samples, with LODs of 1000 and 100 ng·mL-1, respectively. Furthermore, quantitative analysis was attempted, and a good linear relationship (R2 = 0.9952) was observed for NT in sewage within the range of 100 to 1000 ng·mL-1. At spiked levels of 100, 500, 1000 and 2000 ng mL-1, the recovery rates ranged from 74.3 % to 92.8 %, with a relative standard deviation (n = 6) of less than 15 %. In conclusion, this detection method offers the advantages of simplicity, rapidity, strong timeliness, and specificity, making it suitable for on-site detection. It can be used for qualitative screening of nandrolone in bovine urine and quantitative analysis of nandrolone in sewage.


Subject(s)
Limit of Detection , Nandrolone , Cattle , Animals , Nandrolone/analysis , Nandrolone/urine , Linear Models , Reproducibility of Results , Mass Spectrometry/methods , Sewage/chemistry , Sewage/analysis , Animal Feed/analysis , Anabolic Agents/urine , Anabolic Agents/analysis
8.
Phys Rev E ; 109(2-2): 025205, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38491683

ABSTRACT

In this study, the spatiotemporal evolution of full cycle of high-intensity dc argon arc discharge at atmospheric pressure is investigated by using a transferred arc device, which is easy to be directly observed in the experiment. Combining the voltage and current waveforms with high-speed images, the full cycle evolution process of high-intensity atmospheric dc arc can be divided into five different stages: breakdown pulse stage, cathode heating stage, current climbing stage, stable arc discharge stage, and finally arc extinguishing stage. The characteristics of each different stage are analyzed in detail through the electrical properties, high-speed pictures, and spectroscopic measurements. The results show that the strong luminescence region develops from the vicinity of cathode and anode to the middle in the breakdown pulse stage, which is explained from the spatiotemporal evolution of distributions of excited argon atom and ions. The development velocity of emission intensity of argon ions is mainly determined by the dominant stepwise ionization process. Then the cathode heating stage appears with many bright and nonuniformly distributed light spots on the cathode surface, and the electron emission mechanism of cathode gradually changes to the thermionic emission as the surface temperature rises. With the increase of arc current, the discharge channel significantly expands, then becomes stable due to the increment of the Lorentz force. The characteristics of arc extinguishing stage are clarified in terms of the decay of charged particles density.

9.
Int J Mol Sci ; 25(4)2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38396991

ABSTRACT

Low-temperature chilling is a major abiotic stress leading to reduced rice yield and is a significant environmental threat to food security. Low-temperature chilling studies have focused on physiological changes or coding genes. However, the competitive endogenous RNA mechanism in rice at low temperatures has not been reported. Therefore, in this study, antioxidant physiological indices were combined with whole-transcriptome data through weighted correlation network analysis, which found that the gene modules had the highest correlation with the key antioxidant enzymes superoxide dismutase and peroxidase. The hub genes of the superoxide dismutase-related module included the UDP-glucosyltransferase family protein, sesquiterpene synthase and indole-3-glycerophosphatase gene. The hub genes of the peroxidase-related module included the WRKY transcription factor, abscisic acid signal transduction pathway-related gene plasma membrane hydrogen-ATPase and receptor-like kinase. Therefore, we selected the modular hub genes and significantly enriched the metabolic pathway genes to construct the key competitive endogenous RNA networks, resulting in three competitive endogenous RNA networks of seven long non-coding RNAs regulating three co-expressed messenger RNAs via four microRNAs. Finally, the negative regulatory function of the WRKY transcription factor OsWRKY61 was determined via subcellular localization and validation of the physiological indices in the mutant.


Subject(s)
MicroRNAs , Oryza , RNA, Long Noncoding , Oryza/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Antioxidants , Gene Expression Profiling , MicroRNAs/genetics , MicroRNAs/metabolism , Gene Regulatory Networks , Transcription Factors/genetics , Transcription Factors/metabolism , Peroxidases/genetics , Superoxide Dismutase/genetics
10.
Heliyon ; 10(3): e24807, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38314299

ABSTRACT

Colorectal Carcinoma (CRC) is one of the most common malignant tumors of the digestive tract, with a high mortality rate. DPY30 is one of the core subunits of the histone methyltransferase complex, which was involved in many cancer processes. However, the role of DPY30 in the occurrence and progression of CRC remains unclear. In this study, we sought to evaluate the role and mechanism of DPY30 in CRC cells apoptosis. Here, we identified that knockdown of DPY30 significantly inhibited the HT29 and HCT116 cells proliferation in vitro. Moreover, the knockdown of DPY30 significantly increased the apoptosis rate and promoted the expression of apoptosis-related proteins in CRC cells. Meanwhile, DPY30 knockdown promoted CRC cells apoptosis through endogenous programmed death and in a caspase activation-dependent manner. Furthermore, RNA-seq analysis revealed that the action of DPY30 is closely related to the apoptosis biological processes, and screened its potential effectors Raf1. Mechanistically, DPY30 downregulation promotes MST2-induced apoptosis by inhibiting Raf1 transcriptional activity through histone H3 lysine 4 trimethylation (H3K4me3). In vivo experiments showed that DPY30 was correlated with Raf1 in nude mouse subcutaneous xenografts tissues significantly. Clinical colorectal specimens further confirmed that overexpression of DPY30 in malignant tissues was significantly correlated with Raf1 level. The vital role of the DPY30/Raf1/MST2 signaling axis in the cell death and survival rate of CRC cells was disclosed, which provides potential new targets for early diagnosis and clinical treatment of CRC.

11.
J Adv Res ; 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38237770

ABSTRACT

INTRODUCTION: Acute respiratory distress syndrome (ARDS) is a pulmonary inflammatory process primarily caused by sepsis. The resolution of inflammation is an active process involving the endogenous biosynthesis of specialized pro-resolving mediators, including resolvin D1 (RvD1). Resident alveolar macrophages (RAMs) maintain pulmonary homeostasis and play a key role in the resolution phase. However, the role of RAMs in promoting the resolution of inflammation by RvD1 is unclear. OBJECTIVES: Here, we investigated the mechanisms of RvD1 on regulating RAMs to promote the resolution of ARDS. METHODS: Mice were administered lipopolysaccharide and/or Escherichia coli via aerosol inhalation to establish a self-limited ARDS model. Then, RvD1 was administered at the peak inflammatory response. RAMs self-renewal was measured by flow cytometry, RAM phagocytosis was measured by two-photon fluorescence imaging. In addition, plasma was collected from intensive care unit patients on days 0-2, 3-5, and 6-9 to measure RvD1 and S100A8/A9 levels using triple quadrupole/linear ion trap mass spectrometry. RESULTS: RAMs were found to play a pivotal role in resolving inflammation during ARDS, and RvD1 enhanced RAM proliferation and phagocytosis, which was abrogated by a lipoxin A4 receptor (ALX, RvD1 receptor) inhibitor. Both primary RAMs transfected with rS100A8/A9 and/or S100A8/A9 siRNA and S100A9-/- mice (also deficient in S100A8 function) showed higher turnover and phagocytic function, indicating that RvD1 exerted its effects on RAMs by inhibiting S100A8/A9 production in the resolution phase. RvD1 reduced S100A8/A9 and its upstream MAPK14 levels in vivo and in vitro. Finally, in the patients, RvD1 levels were lower, but S100A8/A9 levels were higher. CONCLUSIONS: We propose that RvD1 improved RAM self-renewal and phagocytosis via the ALX/MAPK14/S100A8/A9 signaling pathway. Plasma RvD1 and S100A8/A9 levels were negatively correlated, and associated with the outcome of sepsis-induced ARDS.

12.
Vaccines (Basel) ; 12(1)2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38250826

ABSTRACT

Cancer patients are at an increased risk of morbidity and mortality from SARS-CoV-2 infection and have a decreased immune response to vaccination. We conducted a study measuring both the neutralizing and total antibodies in cancer patients following a third dose of the mRNA-1273 COVID-19 vaccine. Immune responses were measured with an enzyme-linked immunosorbent assay (ELISA) and neutralization assays. Kruskal-Wallis tests were used to evaluate the association between patient characteristics and neutralization geometric mean titers (GMTs), and paired t-tests were used to compare the GMTs between different timepoints. Spearman correlation coefficients were calculated to determine the correlation between total antibody and neutralization GMTs. Among 238 adults diagnosed with cancer, a third dose of mRNA-1273 resulted in a 37-fold increase in neutralization GMT 28 days post-vaccination and maintained a 14.6-fold increase at 6 months. Patients with solid tumors or lymphoid cancer had the highest and lowest neutralization GMTs, respectively, at both 28 days and 6 months post-dose 3. While total antibody GMTs in lymphoid patients continued to increase, other cancer types showed decreases in titers between 28 days and 6 months post-dose 3. A strong correlation (p < 0.001) was found between total antibody and neutralization GMTs. The third dose of mRNA-1273 was able to elicit a robust neutralizing antibody response in cancer patients, which remained for 6 months after administration. Lymphoid cancer patients can benefit most from this third dose, as it was shown to continue to increase total antibody GMTs 6 months after vaccination.

SELECTION OF CITATIONS
SEARCH DETAIL