Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
PLoS One ; 19(5): e0291886, 2024.
Article in English | MEDLINE | ID: mdl-38768157

ABSTRACT

Duoculture has been reported to increase growth rates of some fishes when reared in combination, due to "shading" effects between the species. Two experiments, one involving outdoor cage-rearing in a reservoir, and the other, indoor tank-rearing, were conducted within each of three temperatures ranges (means of ~18.0°C, ~22.0°C and ~26.5°C), to determine whether duoculture of bluegill (BG) Lepomis macrochirus and yellow perch (YP) Perca flavescens would lead to improved growth relative to when the two species were reared separately. Juvenile bluegill and yellow perch were reared in triplicated groups each involving monoculture sets of 100% BG and 100% YP, and a duoculture set of 50% BG + 50% YP. Experiments in cages (Exp. 1) ran for 150 days while those in tanks ran for 126 days (Exp. 2). In Experiment 1, bluegill exhibited significantly greater (P<0.05) mean weight (P<0.05) in duoculture than in monoculture, under the high summer-like range of temperature (~26.5°C) over most of the experiment, whereas yellow perch showed no significant difference in mean weight in duoculture versus monoculture. By the end of a 150-d experiment, bluegill in duoculture outweighed those in monoculture by 62.5%. In Experiment 2, yellow perch in duoculture grew significantly larger than in monoculture (P<0.05) under the warm thermal regime (mean of ~22°C), while no significant differences were detected in mean weight of bluegill in monoculture versus duoculture. Yellow perch in duoculture outweighed those in monoculture by 33.1% at the end of the experiment. Yellow perch performed better in duoculture than in monoculture under the low thermal regime (mean of ~18°C) in both experiments. A significantly greater reduction of CVwt was observed for both bluegill and yellow perch in duoculture than in monoculture in Experiment 1, while no differences in CVwt reduction were detected for bluegill in Experiment 2. Feed conversion ratios (FCR) of bluegill and yellow perch reared in duoculture were significantly lower than for both fishes reared in monoculture in Experiment 1, while there were no significant differences in FCR among the three groups throughout most of Experiment 2. Findings indicate that duoculture of yellow perch and bluegill holds good potential to improve growth and FCR, and to reduce size variation by diminishing social interaction costs.


Subject(s)
Perches , Temperature , Animals , Perches/growth & development , Perches/physiology , Fishes/growth & development , Fishes/physiology , Perciformes/growth & development , Perciformes/physiology , Social Behavior
2.
Front Nutr ; 10: 1143213, 2023.
Article in English | MEDLINE | ID: mdl-37139454

ABSTRACT

Background: Sarcopenia, frailty, and malnutrition are associated with undesirable clinical outcomes in cancer patients. Sarcopenia-related measurements may be promising fast biomarkers for frailty. Our objectives were to assess the prevalence of nutritional risk, malnutrition, frailty, and sarcopenia in lung cancer inpatients, and describe the relationship of them. Methods: Stage III and IV lung cancer inpatients were recruited before chemotherapy. The skeletal muscle index (SMI) was assessed by multi-frequency bioelectric impedance analysis (m-BIA). Sarcopenia, frailty, nutritional risk, and malnutrition were diagnosed according to the Asian Working Group for Sarcopenia 2019 (AWGS 2019), Fried Frailty Phenotype (FFP), nutritional risk screening-2002 (NRS-2002), and Global Leadership Initiative on Malnutrition criteria (GLIM), and correlation analysis was performed between them with Pearson's r correlation coefficients. A univariate and multivariate logistic regression analysis was conducted for all patients, gender and age-stratified subgroups to obtain odds ratios (ORs) and 95% confidence intervals (95%CIs). Results: The cohort included 97 men (77%) and 29 women (23%), with mean age of 64.8 ± 8.7 years. Among the 126 patients, 32 (25.4%) and 41 (32.5%) had sarcopenia and frailty, and the prevalence of nutritional risk and malnutrition was 31.0% (n = 39) and 25.4% (n = 32). Adjusted for age and gender, SMI was correlated with FFP (r = -0.204, p = 0.027), and did not remain significantly when stratified by gender. Stratification according to age revealed in ≥65-years-old population, SMI and FFP were significantly correlated (r = -0.297, p = 0.016), which is not seen in <65-years-old group (r = 0.048, p = 0.748). The multivariate regression analysis showed FFP, BMI, and ECOG were the independent variables associated with sarcopenia (OR 1.536, 95%CI 1.062-2.452, p = 0.042; OR 0.625, 95%CI 0.479-0.815, p = 0.001; OR 7.286, 95%CI 1.779-29.838, p = 0.004). Conclusion: Comprehensively assessed sarcopenia is independently associated with frailty based on FFP questionnaire, BMI, and ECOG. Therefore, sarcopenia assessment including m-BIA based SMI, and muscle strength and function could be used to indicate frailty to help select the targeting patients for care. Moreover, in addition to muscle mass, muscle quality should not be ignored in clinical practice.

3.
PLoS One ; 17(5): e0267904, 2022.
Article in English | MEDLINE | ID: mdl-35507560

ABSTRACT

A 180-day experiment was conducted to evaluate the effects of density on sex differentiation, sexual dimorphism, cortisol level, and stress related gene expression. Yellow perch, Perca flavescens, with initial mean body weight of 0.03 ± 0.001 g were reared in three different stocking densities: 1, 2, and 4 fish/L, termed as low (LD), moderate (MD), and high (HD) density, respectively, in a flow-through tank system. Results showed no significant differences in sex ratio in all density groups compared to normal population 1:1, and sexual size dimorphism (SSD) appeared when male and female were as small as the mean size reaching 11.5 cm and 12.3 cm in total length (TL) or 13.2g and 16.9g in body weight (BW), respectively. This female-biased sexual growth dimorphism was more pronounced in LD, although it was observed across all density groups. A significantly higher condition factor (K) of females than males in the LD group, and significantly higher R values of LD and MD than HD with the length/weight (L/W) linear relationships in females, were observed. Parallelly, fish reared in LD showed significantly higher mean body weight than those in the MD and HD groups, but there were no significant differences between the MD and HD. Similar results were also observed in all the other parameters of weight gain, specific growth rate (SGR), condition factor (K), and survival. These findings suggested that high density not only affected growth itself, but also affected SSD, growth trajectory or body shape, and general wellbeing in fish, especially in females. There were no significant differences in gonadosomatic index (GSI) and viscerosomatic index (VSI) among all the density groups; however, the hepatosomatic index (HSI) of LD was significantly higher than MD and HD, suggesting high density affected liver reserves or functions. Physiologically, plasma cortisol level was significantly highest in the LD among all groups, followed by MD, and lowest in HD. At the molecular level, the expression of the 70-kDa heat shock protein (Hsp70), glutathione peroxidase (GPx), and superoxide dismutase (SOD) genes involved in cellular stress were significantly upregulated in the HD group. The most significantly downregulated expression of these genes was consistently observed in the MD when compared to the LD and HD groups. In conclusion, increasing density induced chronic stress in yellow perch without affecting sex differentiation, but negatively affected expression of stress-related genes and mobilization of liver reserve, resulting in poorer wellbeing and reduced SSD, growth, and survival.


Subject(s)
Perches , Animals , Body Weight , Female , Gene Expression , Hydrocortisone , Male , Perches/physiology , Sex Characteristics , Sex Differentiation/genetics
4.
Fish Physiol Biochem ; 48(1): 161-171, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35039993

ABSTRACT

A study was conducted to evaluate the gonad differentiation of juvenile yellow perch (YP, Perca flavencens) and determine the latest labile period related to hormone treatment. Juvenile fish were subjected to two dietary concentrations of methyltestosterone (MT; 20 and 50 mg/kg feed) for 60 days in three (3) age groups of 38-, 46-, and 67-days post-hatching (dph), where control group were fed with standard commercial feed. Following a 10-month on-growing period, sex phenotypes were determined by gross and histological gonad morphology. Results showed the juvenile YP responded to the exogenous hormone when it was applied at 38 dph for both 20 and 50 mg/kg feed resulting in 100% males. At 46 dph, only 50 mg/kg feed resulted in 100% males. Both MT-treated at 38 and 46 dph significantly differed (P < 0.01) from the expected normal population of male:female (1:1). MT-treated at 67 dph resulted in 37% and 25% intersex fish for both 20 and 50 mg/kg feed dosage groups, respectively. MT-treated at 38 and 46 dph promoted growth and showed significantly heavier mean body weight (P < 0.05) compared to control. The gonadosomatic index (GSI) of MT-treated at 38 and 46 dph was significantly lower than that in control. This study provides the first evidence that juvenile YP can be successfully masculinized when the treatment is initiated at the age of up to 46 dph. The result is important for sex control in aquaculture.


Subject(s)
Methyltestosterone , Perches , Sex Differentiation , Animals , Female , Gonads , Male , Methyltestosterone/pharmacology , Perches/growth & development
5.
Thorac Cancer ; 12(9): 1469-1488, 2021 05.
Article in English | MEDLINE | ID: mdl-33787090

ABSTRACT

Perioperative adjuvant treatment has become an increasingly important aspect of the management of patients with non-small cell lung cancer (NSCLC). In particular, the success of immune checkpoint inhibitors, such as antibodies against PD-1 and PD-L1, in patients with lung cancer has increased our expectations for the success of these therapeutics as neoadjuvant immunotherapy. Neoadjuvant therapy is widely used in patients with resectable stage IIIA NSCLC and can reduce primary tumor and lymph node stage, improve the complete resection rate, and eliminate microsatellite foci; however, complete pathological response is rare. Moreover, because the clinical benefit of neoadjuvant therapy is not obvious and may complicate surgery, it has not yet entered the mainstream of clinical treatment. Small-scale clinical studies performed in recent years have shown improvements in the major pathological remission rate after neoadjuvant therapy, suggesting that it will soon become an important part of NSCLC treatment. Nevertheless, neoadjuvant immunotherapy may be accompanied by serious adverse reactions that lead to delay or cancellation of surgery, additional illness, and even death, and have therefore attracted much attention. In this article, we draw on several sources of information, including (i) guidelines on adverse reactions related to immune checkpoint inhibitors, (ii) published data from large-scale clinical studies in thoracic surgery, and (iii) practical experience and published cases, to provide clinical recommendations on adverse events in NSCLC patients induced by perioperative immunotherapy.


Subject(s)
Carcinoma, Non-Small-Cell Lung/complications , Immunotherapy/adverse effects , Lung Neoplasms/complications , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Female , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Male , Perioperative Period
6.
Fish Physiol Biochem ; 46(6): 2143-2155, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32829476

ABSTRACT

The current study evaluated the effects of nano delivery of Spirulina platensis on growth performance, digestive enzymes, and biochemical, immunological, and antioxidative status, as well as resistance to Aeromonas veronii and some physical stressor challenges in Nile tilapia, Oreochromis niloticus. Three experimental fish groups (n = 270) with mean weights of 26 ± 0.30 g and mean lengths of 10 ± 0.5 cm were used; the first additive-free basal diet served as the control group, whereas the following two groups were supplemented with spirulina nanoparticles (SPNP) at 0 (control), 0.25, and 0.5%/kg diet for 4 weeks. Following the feeding trial, fish were challenged with hypoxia, cold stresses, and pathogenic bacteria (A. veronii) infection (9 × 108 CFU/ml). SPNP supplementation, especially 0.5%, (p < 0.05) significantly increased growth performance (specific growth rate % day-1, feed conversion ratio, and length gain rate %), immunological (plasma lysozyme and liver nitrous oxide) antioxidants (superoxide dismutase, catalase, and glutathione peroxidase in liver), biochemical (aspartate aminotransferase, alanine transaminase, glucose, and cortisol concentrations in plasma) assays, and digestive enzymes (lipase and amylase in plasma). The expression of liver's heat shock protein 70 (HSP70) and interleukin 1, beta (IL-1ß) genes showed a significant upregulation outline of 0.5% SPNP > 0.25% SPNP > 0% SPNP compared with the control. Protection in the incorporated fish groups exposed to A. veronii was 100% compared with the control group, which showed 50% cumulative mortalities. In conclusion, dietary SPNP supplementation improved growth performance, antioxidant activity, immune response, digestive enzymes, related gene expression, and resistance of Nile Tilapia to hypoxia, cold, and A. veronii infection. Thus, SPNP could be used as a natural therapy for controlling those stressors.


Subject(s)
Cichlids , Dietary Supplements , Nanoparticles/administration & dosage , Spirulina , Aeromonas veronii , Amylases/blood , Anaerobiosis , Animals , Catalase/metabolism , Cichlids/genetics , Cichlids/growth & development , Cichlids/immunology , Cichlids/metabolism , Cold-Shock Response , Digestion , Disease Resistance , Fish Diseases/mortality , Fish Diseases/prevention & control , Fish Proteins/genetics , Fish Proteins/metabolism , Glutathione Peroxidase/metabolism , Gram-Negative Bacterial Infections/mortality , Gram-Negative Bacterial Infections/prevention & control , Gram-Negative Bacterial Infections/veterinary , HSP70 Heat-Shock Proteins/genetics , Interleukin-1beta/genetics , Lipase/blood , Liver/metabolism , Superoxide Dismutase/metabolism
7.
Fish Shellfish Immunol ; 97: 248-256, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31862400

ABSTRACT

The effects of dietary administration of Astragalus membranaceus nanoparticles (ANP) on immune and anti-oxidative responses, growth performance and disease resistance of Oreochromis niloticus were evaluated in the present study. Fish were divided into three groups and received the ANP at rates of 0 (control), 1, and 2%/kg diet for four weeks. After the four-week feeding trial, three fish from each replicate were sampled for immune and anti-oxidative responses evaluation, ten fish from each group were challenged with A. veronii, and nine fish from each group were subjected to cold and hypoxia challenges. It was obvious from the results that ANP significantly enhanced lysozyme activity and nitrous oxide (NO) activities, as well as improved superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities. Also, aspartate aminotransferase, alanine transaminase, glucose, and cortisol measurements showed significantly lower levels in incorporated groups compared to the control. Growth performance; and amylase and lipase digestive enzymes activities also showed markedly improved results. Expression of heat shock protein 70 (HSP70) and interleukin 1, beta (IL-1ß) genes were significantly upregulated throughout the entire experimental period. When challenged with A. veronii, the mortality of treated groups was significantly (P < 0.05) lower than the control. Current results proofs that dietary ANP had a synergistic effect on immune and anti-oxidative responses, growth performance and disease resistance of Oreochromis niloticus.


Subject(s)
Antioxidants/metabolism , Astragalus propinquus/chemistry , Cichlids/immunology , Fish Diseases/immunology , Immunity, Innate/drug effects , Nanoparticles , Aeromonas veronii/physiology , Animal Feed/analysis , Animals , Diet/veterinary , Dietary Supplements/analysis , Gram-Negative Bacterial Infections/immunology , Gram-Negative Bacterial Infections/veterinary , Nanoparticles/administration & dosage
8.
Sci Rep ; 9(1): 16697, 2019 11 13.
Article in English | MEDLINE | ID: mdl-31723171

ABSTRACT

Although largemouth bass Micropterus salmoides has shown its extremely economic, ecological, and aquacultural significances throughout the North American and Asian continents, systematic evaluation of genetic variation and structure of wild and cultured populations of the species is yet to be documented. In this study, we investigated the genetic structure of M. salmoides from 20 wild populations and five cultured stocks across the United States and China using eight microsatellite loci, which are standard genetic markers for population genetic analysis. Our major findings are as follows: (1) the result of Fst showed largemouth bass had high genetic differentiation, and the gene flow indicated the genetic exchange among wild populations is difficult; (2) AMOVA showed that 14.05% of the variation was among populations, and 85.95% of the variation was within populations; (3) The majority of largemouth bass populations had a significant heterozygosity excess, which is likely to indicate a previous population bottleneck; (4) Allelic richness was lower among cultured populations than among wild populations; (5) Effective population size in hatcheries could promote high levels of genetic variation among individuals and minimize loss of genetic diversity; China's largemouth bass originated from northern largemouth bass of USA. The information provides valuable basis for development of appropriate conservation policies for fisheries and aquaculture genetic breeding programs in largemouth bass.


Subject(s)
Bass/genetics , Fish Proteins/genetics , Gene Flow , Genetic Variation , Genetics, Population , Microsatellite Repeats , Animals , Asia , Bass/classification , Phylogeny , United States
10.
Front Physiol ; 10: 1056, 2019.
Article in English | MEDLINE | ID: mdl-31496952

ABSTRACT

The current study assessed the effect of dietary canthaxanthin and lycopene supplementation at different concentrations on growth performance and antioxidant status in yellow perch (Perca flavescens). In this regard, fish with initial weight (32 ± 1.0 g) were divided into five groups in triplicate, and fed on carotenoid-free diet (control), canthaxanthin (CTX) (50 and 100 mg/kg diet), and lycopene (200 and 400 mg/kg diet) for 60 days. Growth parameters and antioxidant enzymes were evaluated after 30 and 60 days post feeding. Tissue liver and intestine from six fish per treatment was collected for antioxidant and digestive enzymes analysis. The results revealed a significant increase (P < 0.05) of lipid content in the group fed lycopene at a dietary level 400 mg/kg for 60 days, compared to the control. Moreover, dietary carotenoids exhibited no significant effect on growth performance; this was evidenced by no significant up-regulation of growth hormone (gh) and insulin-like growth factor 1b (igf-1b) genes after 30 and 60 days post feeding. Intestinal lipase and trypsin activities were significantly improved with dietary lycopene especially at a dose of (400 mg/kg diet) for 60 days. Malondialdehyde (MDA) level in liver was also significantly decreased with dietary lycopene (400 mg/kg diet) for 60 days. Hepatic superoxide dismutase (SOD), catalase (CAT), and Glutathione peroxidase (GSH-Px) activities were significantly decreased with dietary CTX, especially at dose (100 mg/kg diet) and lycopene at a concentration of 200 and 400 mg/kg diet after 60 days feeding. Additionally, the immune-related gene interleukin-1 beta (il-1b) mRNA expression level revealed up-regulation in groups fed on CTX at different concentrations for 30 days, and fish fed lycopene at a concentration level 400 mg/kg diet for 60 days. The obtained results concluded that dietary supplementation of canthaxanthin and lycopene could enhance immune response and maintain antioxidants defense of fish. Therefore, it considered as a functional aquafeed ingredient for yellow perch.

11.
PLoS One ; 14(5): e0215933, 2019.
Article in English | MEDLINE | ID: mdl-31063465

ABSTRACT

Considering the divergent temperature habitats and morphological traits of four Percidae species: yellow perch (Perca flavescens), Eurasian perch (Perca fluviatilis), pike perch (Sander lucioperca), and ruffe (Gymnocephalus cernua), we stepped into the transcriptome level to discover genes and mechanisms that drive adaptation to different temperature environments and evolution in body shape. Based on 93,566 to 181,246 annotated unigenes of the four species, we identified 1,117 one-to-one orthologous genes and subsequently constructed the phylogenetic trees that are consistent with previous studies. Together with the tree, the ratios of nonsynonymous to synonymous substitutions presented decreased evolutionary rates from the D. rerio branch to the sub-branch clustered by P. flavescens and P. fluviatilis. The specific 93 fast-evolving genes and 57 positively selected genes in P. flavescens, compared with 22 shared fast-evolving genes among P. fluviatilis, G. cernua, and S. lucioperca, showed an intrinsic foundation that ensure its adaptation to the warmer Great Lakes and farther south, especially in functional terms like "Cul4-RING E3 ubiquitin ligase complex." Meanwhile, the specific 78 fast-evolving genes and 41 positively selected genes in S. lucioperca drew a clear picture of how it evolved to a large and elongated body with camera-type eyes and muscle strength so that it could occupy the highest position in the food web. Overall, our results uncover genetic basis that support evolutionary adaptation of temperature and body shape in four Percid species, and could furthermore assist studies on environmental adaptation in fishes.


Subject(s)
Adaptation, Physiological/genetics , Evolution, Molecular , Gene Expression Profiling , Perches/genetics , Perches/physiology , Temperature , Animals , Molecular Sequence Annotation , Perches/anatomy & histology
12.
Front Physiol ; 9: 1208, 2018.
Article in English | MEDLINE | ID: mdl-30356866

ABSTRACT

Exposure to stress induces a series of responses and influences a wide range of biological processes including sex differentiation in fish. The present work investigated the molecular and physiological response to thermal stress throughout the early development stage covering the whole period of sex differentiation of bluegill, Lepomis macrochirus. Larvae were treated using three temperatures, 17, 24, and 32°C from 6 to 90 days posthatching (dph) in 30-L round tanks. There is no significant difference of the sex ratio and survival among the three temperature groups in the geographic population used in this study. Two ovarian differentiation-related genes foxl2 and cyp19a1a were detected at 7 dph suggesting that these genes have already played a role prior to sex differentiation. The expression of foxl2 reached the peak and was thermosensitive just prior to the onset of ovarian differentiation at 27 dph. Histological examination displayed that the proliferation of germ cells and ovarian differentiation were delayed at the low-temperature treatment (17°C) at 97 dph compared with higher temperatures. In conclusion, the water temperature regulates the sex differentiation of bluegill through modulation of the expression of foxl2 and cyp19a1a. A comparative study of the expression profile of sex differentiation-related genes in species will shed light on the evolution of sex-determination mechanisms and the impact of stress on sex differentiation.

13.
Sci Rep ; 8(1): 6891, 2018 05 02.
Article in English | MEDLINE | ID: mdl-29720669

ABSTRACT

Stress enhances the disease susceptibility in fish by altering the innate immune responses, which are essential defense mechanisms. The use of probiotics is increasingly popular in the aquaculture industry. Yellow perch is a promising candidate for aquaculture. We investigated the efficiency of a mixed Bacillus species in minimizing the potential problems resulting from husbandry practices such as hypoxia and exposure to air in yellow perch. We showed that hypoxia and air exposure conditions induced a significant reduction in the early innate immune response (lysozyme activity, interferon-induced-GTP-binding protein-Mx1 [mx], interleukin-1ß [il1ß], serum amyloid-A [saa]), and a substantial increase in cortisol, heat shock protein (Hsp70), glutathione peroxidase (Gpx), superoxide dismutase (Sod1) that associated with a decline in insulin-like growth factor-1 (Igf1). Mixed Bacillus species administration improved the early innate responses, reduced cortisol, Hsp70, Gpx and Sod1, and elevated Igf1 levels. Bacillus species treated group showed faster recovery to reach the baseline levels during 24 h compared to untreated group. Therefore, mixed Bacillus species may enhance yellow perch welfare by improving the stress tolerance and early innate immune response to counterbalance the various husbandry stressors. Further studies are warranted to investigate the correlations between the aquaculture practices and disease resistance in yellow perch.


Subject(s)
Bacillus/immunology , Hypoxia/immunology , Immunity, Innate , Oxidative Stress , Perches/immunology , Animals , Bacillus/pathogenicity , Fish Proteins/genetics , Fish Proteins/metabolism , Glutathione Peroxidase/genetics , Glutathione Peroxidase/metabolism , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , Hydrocortisone/metabolism , Hypoxia/microbiology , Insulin-Like Growth Factor I/genetics , Insulin-Like Growth Factor I/metabolism , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Perches/microbiology , Perches/physiology , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism
14.
Front Physiol ; 8: 683, 2017.
Article in English | MEDLINE | ID: mdl-28955246

ABSTRACT

Stress is a major factor that causes diseases and mortality in the aquaculture industry. The goal was to analyze the expression of stress-related biomarkers in response to different stressors in yellow perch, which is an important aquaculture candidate in North America and highly sensitive to handling in captivity. Three fish groups were established, each having four replicates, and subjected to water temperatures of 14, 20, and 26°C and acute handling stress was performed followed by a salt treatment for 144h at a salinity of 5 ppt. Serum and hepatic mRNA levels of heat shock protein (hsp70), insulin-like growth factor 1 (Igf1), glutathione peroxidase (Gpx), superoxide dismutase 1 (Sod1), and glutathione reductase (Gsr) were quantified at seven times interval over 144 h using ELISA and RT-qPCR. Handling stress caused a significant down-regulation in Hsp70, Gpx, Sod1, and Gsr at a water temperature of 20°C compared to 14 and 26°C. Igf1 was significantly upregulated at 20°C and down-regulated at 14 and 26°C. Salt treatment had a transient reverse effect on the targeted biomarkers in all groups at 72 h, then caused an upregulation after 144 h, compared to the control groups. The data showed a negative strong regulatory linear relationship between igf1 with hsp70 and anti-oxidative gene expressions. These findings could provide valuable new insights into the stress responses that affect fish health and could be used to monitor the stress.

15.
Sci Rep ; 7(1): 4196, 2017 06 23.
Article in English | MEDLINE | ID: mdl-28646175

ABSTRACT

Terminologies of ovary development, by somewhat subjective describing and naming main changes of oocytes, have been criticized for confusing and inconsistency of terms and classifications, and the incurred consequences impede communication among researchers. In the present work, we developed regression between ovary development and three ribosome RNA (rRNA) indexes, namely 5S rRNA percent, 18S rRNA percent, and 5S-18S rRNA ratio, using close relationship between volume percent of primary growth stage oocytes or gonadosomatic index and rRNA content, demonstrating species-specific quantification of ovary development can be established in species with either synchronous and asynchronous oogenesis. This approach may be extended to any species with primary growth oocytes, e.g. anurans and reptiles, to predict maturity stages in females. We further confirmed that 5S rRNA percent and 5S/18S rRNA ratio can serve as markers to distinguish sexes unambiguously. A micro-invasive sampling method may be invented for non-lethal prediction of ovary development and sex because only a small amount of ovary sample (<50 mg) is needed for the approach established in the current work. Researchers who work with ovary RNA-seq in these taxa should realize that insufficient depletion of rRNA will probably lead to incorrect quantification of gene expression and inaccurate conclusions.


Subject(s)
Fishes/genetics , Ovary/embryology , Ovary/metabolism , RNA, Ribosomal, 18S/genetics , RNA, Ribosomal, 5S/genetics , Sex Determination Processes/genetics , Animals , Brain/metabolism , Female , Gene Expression Profiling , Liver/metabolism , Male , RNA, Ribosomal, 18S/metabolism , RNA, Ribosomal, 5S/metabolism
16.
PLoS One ; 12(2): e0171187, 2017.
Article in English | MEDLINE | ID: mdl-28158238

ABSTRACT

Transcriptome sequencing could facilitate discovery of sex-biased genes, biological pathways and molecular markers, which could help clarify the molecular mechanism of sex determination and sexual dimorphism, and assist with selective breeding in aquaculture. Yellow perch has unique gonad system and sexual dimorphism and is an alternative model to study mechanism of sex determination, sexual dimorphism and sexual selection. In this study, we performed the de novo assembly of yellow perch gonads and muscle transcriptomes by high throughput Illumina sequencing. A total of 212,180 contigs were obtained, ranging from 127 to 64,876 bp, and N50 of 1,066 bp. The assembly RNA-Seq contigs (≥200bp) were then used for subsequent analyses, including annotation, pathway analysis, and microsatellites discovery. No female- and pseudo-male-biased genes were involved in any pathways while male-biased genes were involved in 29 pathways, and neuroactive ligand receptor interaction and enzyme of trypsin (enzyme code, EC: 3.4.21.4) was highly involved. Pyruvate kinase (enzyme code, EC: 2.7.1.40), which plays important roles in cell proliferation, was highly expressed in muscles. In addition, a total of 183,939 SNPs, 11,286 InDels and 41,479 microsatellites were identified. This study is the first report on transcriptome information in Percids, and provides rich resources for conducting further studies on understanding the molecular basis of sex determinations, sexual dimorphism, and sexual selection in fish, and for population studies and marker-assisted selection in Percids.


Subject(s)
Perches/genetics , Animals , Cell Proliferation/genetics , Cell Proliferation/physiology , Female , Gene Ontology , High-Throughput Nucleotide Sequencing , Male , Microsatellite Repeats/genetics , Molecular Sequence Annotation , Perches/physiology , Polymorphism, Single Nucleotide/genetics , Sequence Analysis, DNA , Sex Characteristics , Sex Determination Processes/genetics
17.
Biol Bull ; 230(3): 197-208, 2016 06.
Article in English | MEDLINE | ID: mdl-27365415

ABSTRACT

There is increasing evidence that temperature effects on sex ratio in fish species are ubiquitous. Temperature effects on sex ratio could be influenced by parent, strain, and population, whether in fish species with temperature-dependent sex determination or genetic sex determination plus temperature effects. In the present study, effects of genotype-temperature interactions on sex determination in bluegill sunfish were further investigated, based on our previous results, using four geographic strains: Hebron, Jones, Hocking, and Missouri. In the Hebron strain, the two higher-temperature treatment groups (24 °C and 32 °C) produced more males than the low-temperature treatment group (17 °C) from 6 days post-hatching (dph) to 90 dph. In contrast, the low-temperature treatment produced more males than the other two higher-temperature treatments in the Jones strain. No significant effects of temperature on sex ratio were detected in the other two strains. Our results from sex ratio variance in different treatment times suggest that the thermosensitive period of sex differentiation occurs prior to 40 dph. Our results further confirmed that genotype-temperature interactions influence sex determination in bluegill. Therefore, to significantly increase the proportion of males, which grow faster and larger than females, a consumer- and environment-friendly approach may be achieved through selection of temperature sensitivity in bluegill.


Subject(s)
Fishes/physiology , Perciformes/physiology , Sex Ratio , Temperature , Animals , Female , Genotype , Male , Sex Determination Processes/physiology , Species Specificity
18.
Fish Shellfish Immunol ; 54: 374-84, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27129627

ABSTRACT

The current work assessed the potential immunomodulatory and growth-promoting effects of Astragalus membranaceus (AM) and Glycyrrhiza glabra (liquorice) in Yellow perch (Perca flavescens). In this regard, fish with an average weight of 31 ± 1.0 g were divided into five groups, and fed daily with an additive-free basal diet (control); 1, 2, and 3% (w/w) Glycyrrhiza glabra, and the fifth diet was incorporated with a combination of 1% G. glabra-AM for a four-week period. Immunological, biochemical and growth parameters were measured; and sub-groups of fish were exposed to 1-week starvation. The results showed that incorporating AM and liquorice in the diet significantly improved Immunological [superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT), Lipid peroxidase (LPx) and lysozyme activities], biochemical [Aspartate Aminotransferase (AST) and Alanine Transaminase (ALT) activities; and glucose and cortisol concentrations] and growth performance parameters [body mass gain (BMG), specific growth rate (SGR), length, condition factor (K) and feed conversion ratio (FCR)]. In addition, markedly up-regulated the expression of related genes [Insulin-Like Growth Factor-1 (IGF-1), Serum amyloid A (SAA), Complement Component C3 (CCC3), Alpha 2 Macroglobulin (A2M), SOD and GPx] in treated fish groups compared to the control. Conclusively, feeding AM and liquorice diets significantly increased (P < 0.05) growth performance, antioxidant and immune response profiles throughout the entire experiment, suggesting their beneficial rule as natural anti-stress agents.


Subject(s)
Astragalus propinquus/chemistry , Diet/veterinary , Glycyrrhiza/chemistry , Perches/physiology , Animal Feed/analysis , Animals , Blood Chemical Analysis/veterinary , Dietary Supplements , Perches/growth & development , Perches/immunology , Stress, Physiological/immunology
19.
Oncol Lett ; 11(4): 2573-2579, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27073519

ABSTRACT

The current study aimed to develop a method to rapidly, sensitively and practically screen for the epidermal growth factor receptor (EGFR) T790M mutation. This method combines an allele-specific competitive blocker (ACB) with a TaqMan quantitative polymerase chain reaction (PCR) amplification refractory mutation system (ARMS) in a one-step reaction. Using a mimic of a human genomic DNA panel containing serially diluted mutant alleles, the performance efficacy of this method was assessed. Using this method, the EGFR T790M mutation was detected in tyrosine kinase inhibitor (TKI)-naïve samples obtained from 27 non-small cell lung cancer (NSCLC) patients with EGFR-activating mutations. The association between de novo T790M mutations and the clinical benefit of EGFR-TKI treatment was also analysed. The sensitivity of this method was as low as 0.01%. In the samples from the 27 NSCLC patients, this method identified 6 mutant patients (22.2%), which was higher than the detection rate with scorpion ARMS (0.0%). No clinical variables were associated with the occurrence of a de novo T790M mutation. The median progression-free survival time in the TKI-naïve patients with a T790M mutation was shorter that that of patients without the mutation, but the difference was not significant (3.2 vs. 19.5 months, respectively; P=0.256). The median overall survival time in the groups with or without T790M mutation also did not significantly differ (10 vs. 20 months, respectively; P=0.689). Overall, the ACB-ARMS PCR method could be useful for detecting the EGFR T790M mutation in clinical samples that contain only a small number of mutant alleles. The clinical significance of a de novo T790M mutation should be further investigated.

20.
Fish Physiol Biochem ; 42(3): 955-66, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26729192

ABSTRACT

This study was designed to assess the potential effects of Astragalus membranaceus (AM) on the growth performance and antioxidative stress response in bluegill sunfish (Lepomis macrochirus) exposed to challenging cold water temperature conditions. In this regard, fish with an average weight of 43 ± 1 g were divided into four groups and fed daily with an AM-free diet (control), and 1.5, 3, and 4.5 % (w/w) AM-incorporated diets for an 8-week period. Oxidative stress response, biochemical, and growth parameters were measured, and subgroups of fish were exposed to the outside challenging cold pond water temperature (1.6-9.9 °C) with an average of 7.0 ± 0.1 °C beyond the optimal temperature. The results showed that incorporating AM in the diet significantly improved growth performance parameters (body mass gain, specific growth rate, length, condition factor, and feed conversion ratio) and biochemicals (aspartate aminotransferase and alanine transaminase activities, and glucose and cortisol concentrations). In addition, markedly up-regulated superoxide dismutase, glutathione peroxidase, and catalase activities were observed in AM-treated fish groups over the control. Conclusively, feeding AM diets significantly increased (P < 0.05) growth performance and antioxidative stress profiles throughout the entire experiment, and this increase was much more pronounced at 8 weeks after the water temperature began to rise, which can be related to the nature of Bluegill fish as it is known to be a warm water fish. These findings are considered to be of great importance for sustainable aquaculture.


Subject(s)
Astragalus propinquus , Perciformes/growth & development , Perciformes/metabolism , Alanine Transaminase/blood , Alanine Transaminase/metabolism , Animals , Aquaculture/methods , Aspartate Aminotransferases/blood , Blood Glucose/analysis , Catalase/metabolism , Cold Temperature , Diet , Fish Proteins/metabolism , Glutathione Peroxidase/metabolism , Hydrocortisone/blood , Liver/metabolism , Perciformes/blood , Stress, Physiological , Superoxide Dismutase/blood , Superoxide Dismutase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...