Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Mol Sci ; 24(24)2023 Dec 17.
Article in English | MEDLINE | ID: mdl-38139409

ABSTRACT

It is well-established that beige/brown adipose tissue can dissipate stored energy through thermogenesis; hence, the browning of white adipocytes (WAT) has garnered significant interest in contemporary research. Our preceding investigations have identified a marked downregulation of miR-889-3p concurrent with the natural maturation of brown adipose tissue. However, the specific role and underlying molecular mechanisms of miR-889-3p in the browning process of white adipose tissue warrant further elucidation. In this research, we initially delved into the potential role of miR-889-3p in preadipocyte growth via flow cytometry and CCK-8 assay, revealing that miR-889-3p can stimulate preadipocyte growth. To validate the potential contribution of miR-889-3p in the browning process of white adipose tissue, we established an in vitro rabbit white adipocyte browning induction, which exhibited a significant upregulation of miR-889-3p during the browning process. RT-qPCR and Western blot analysis indicated that miR-889-3p overexpression significantly amplified the mRNA levels of UCP1, PRDM16, and CIDEA, as well as UCP1 protein levels. Furthermore, miR-889-3p overexpression fostered intracellular triglyceride accumulation. Conversely, the downregulation of miR-889-3p hindered the browning of rabbit preadipocytes. Subsequently, based on target gene prediction and luciferase reporter gene determination, we demonstrated that miR-889-3p directly targets the 3'-UTR region of SON. Lastly, we observed that inhibiting SON could facilitate the browning of rabbit preadipocytes. In conclusion, our findings suggest that miR-889-3p facilitates the browning process of white adipocyte precursors by specifically targeting the SON gene.


Subject(s)
Adipocytes, White , MicroRNAs , Animals , Rabbits , Adipocytes, White/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Transcription Factors/metabolism , Adipose Tissue, White/metabolism , Adipose Tissue, Brown/metabolism
2.
BMC Genomics ; 23(1): 779, 2022 Nov 28.
Article in English | MEDLINE | ID: mdl-36443655

ABSTRACT

BACKGROUND: The brown adipose tissue (BAT) is a target for treating obesity. BAT losses thermogenic capacity and gains a "white adipose tissue-like" phenotype ("BAT whitening") under thermoneutral environments, which is a potential factor causing a low curative effect in BAT-related obesity treatments. Circular RNAs (circRNAs) and long non-coding RNAs (lncRNAs) can act as competing endogenous RNAs (ceRNA) to mRNAs and function in various processes by sponging shared microRNAs (miRNAs). However, the roles of circRNA- and lncRNA-related ceRNA networks in regulating BAT whitening remain litter known. RESULTS: In this study, BATs were collected from rabbits at day0 (D0), D15, D85, and 2 years (Y2). MiRNA-seq was performed to investigate miRNA changes during BAT whitening. Then, a combined analysis of circRNA-seq and whole-transcriptome sequencing was used for circRNA assembly and quantification during BAT whitening. Our data showed that 1187 miRNAs and 6204 circRNAs were expressed in the samples, and many of which were identified as significantly changed during BAT whitening. Target prediction showed that D0-selective miRNAs were significantly enriched in the Ras, MAPK, and PI3K-Akt signaling pathways, and Y2-selective miRNAs were predicted to be involved in cell proliferation. The cyclization of several circRNAs could form novel response elements of key thermogenesis miRNAs at the back-splicing junction (BSJ) sites, and in combination with a dual-luciferase reporter assay confirmed the binding between the BSJ site of novel_circ_0013792 and ocu-miR-378-5p. CircRNAs and lncRNAs have high cooperativity in sponging miRNAs during BAT whitening. Both circRNA-miRNA-mRNA and lncRNA-miRNA-mRNA triple networks were significantly involved in immune response-associated biological processes. The D15-selective circRNA might promote BAT whitening by increasing the expression of IDH2. The Y2-selective circRNA-related ceRNA network and lncRNA-related ceRNA network might regulate the formation of the WAT-like phenotype of BAT via MAPK and Ras signaling pathways, respectively. CONCLUSIONS: Our work systematically revealed ceRNA networks during BAT whitening in rabbits and might provide new insight into BAT-based obesity treatments.


Subject(s)
MicroRNAs , RNA, Long Noncoding , Animals , Rabbits , RNA, Long Noncoding/genetics , RNA, Circular/genetics , RNA, Messenger/genetics , MicroRNAs/genetics , Adipose Tissue, Brown , Phosphatidylinositol 3-Kinases , Obesity
3.
Front Psychol ; 13: 942472, 2022.
Article in English | MEDLINE | ID: mdl-36017434

ABSTRACT

Past research illustrated that leaders could restrict followers' deviance by reinforcing social norms of appropriate behaviors. Nevertheless, we submit that this understanding is incomplete without considering the effects of leaders on followers' self-sanctions given that most undesirable behaviors are controlled internally. This research argues that interactional justice is an effective strategy for leaders to enhance followers' self-sanctions. Leaders' interactional justice provides personalized information and dyadic treatment that indirectly reduce employees' deviance by restraining followers' moral disengagement. Besides, this study examines the social sanction role of ethical leadership. Ethical leaders highlight the importance of adherence to collective norms, which influence the relationship between followers' moral disengagement and deviance. By identifying the different pathways via which they influence followers' moral disengagement, we integrate interactional justice and ethical leadership into one theoretical framework. Our predictions are supported by data analyses of 220 samples from a multi-wave and -source field study. This integrative framework contributes to a comprehensive understanding of how leaders restrict employees' deviance.

4.
Front Microbiol ; 13: 813622, 2022.
Article in English | MEDLINE | ID: mdl-35495670

ABSTRACT

Heat stress can have an impact on parental gamete maturation and reproduction functions. According to current research, the microbial composition of the vaginal cavity is species specific. Pregnancy, menstruation, and genital diseases have been linked to the dynamics of vaginal ecology. In this study, we characterized the vaginal microbiota and metabolites after heat stress. At the phylum level, the rabbit's vaginal microbial composition of rabbit showed high similarity with that of humans. In the Heat group, the relative abundance of the dominant microbiota Actinobacteria, Bacteroidetes, and Proteobacteria increased, while the relative abundance of Firmicutes decreased. Furthermore, heat stress significantly increased the relative abundance of W5053, Helcococcus, Thiopseudomonas, ldiomaarina, atopostipes, and facklamia, whereas the relative abundance of 12 genera significantly decreased, including Streptococcus, UCG-005, Alistipes, [Eubacterium]_xylanophilum_group, Comamonas, RB41, Fastidiosipila, Intestinimonas, Arthrobacter, Lactobacillus, Leucobacter, and Family_xlll_AD3011_group. Besides, the relative concentrations of 158 metabolites differed significantly between the Heat and Control groups. Among them, the endocrine hormone estradiol (E2) increased in the Heat group and was positively associated with a number of metabolites such as linolelaidic acid (C18:2N6T), N-acetylsphingosine, N-oleoyl glycine, trans-petroselinic acid, syringic acid, 2-(1-adamantyl)-1-morpholinoethan-1-one, 5-OxoETE, and 16-heptadecyne-1,2,4-triol. Further, the majority of the differential metabolites were enriched in steroid biosynthesis and endocrine and other factor-regulated calcium reabsorption pathways, reflecting that heat stress may affect calcium metabolism, hormone-induced signaling, and endocrine balance of vaginal ecology. These findings provide a comprehensive depiction of rabbit vaginal ecology and reveal the effects of heat stress on the vagina via the analysis of vaginal microbiome and metabolome, which may provide a new thought for low female fertility under heat stress.

5.
Biology (Basel) ; 10(11)2021 Nov 13.
Article in English | MEDLINE | ID: mdl-34827171

ABSTRACT

Brown adipose tissues (BATs) convert to a "white-like" phenotype with age, which is also known as "aging-related BAT whitening (ARBW)". Emerging evidence suggested that long non-coding RNAs (lncRNAs) were widely involved in adipose biology. Rabbit is an ideal model for studying the dynamics of ARBW. In this study, we performed histological analysis and strand-specific RNA-sequencing (ssRNA-seq) of rabbit interscapular adipose tissues (iATs). Our data indicated that the rabbit iATs underwent the ARBW from 0 days to 2 years and a total of 2281 novel lncRNAs were identified in the iATs. The classical rabbit BATs showed low lncRNA transcriptional complexity compared to white adipose tissues (WATs). A total of 631 differentially expressed lncRNAs (DELs) were identified in four stages. The signal pathways of purine metabolism, Wnt signaling pathway, peroxisome proliferator-activated receptor (PPAR) signaling pathway, cyclic guanosine monophosphate (cGMP)/cGMP-dependent protein kinase (cGMP-PKG) signaling pathway and lipid and atherosclerosis were significantly enriched by the DELs with unique expression patterns. A novel lncRNA that was highly expressed in the iATs of aged rabbits was validated to impair brown adipocyte differentiation in vitro. Our study provided a comprehensive catalog of lncRNAs involved in ARBW in rabbits, which facilitates a better understanding of adipose biology.

6.
Front Microbiol ; 12: 817615, 2021.
Article in English | MEDLINE | ID: mdl-35295680

ABSTRACT

Heat stress can impair the rabbit immune system, induce oxidative stress, and cause many complications. These diseases are characterized by metabolic disorders, but the underlying mechanism is unknown. As a result, the current research determines the effects of HS on intestinal microorganisms in rabbits and the metabolic pathway disorders caused by HS. Twelve rabbits were randomly assigned to one of two groups: CON (22-24°C) and HS (30°C-32°C). Both the groups were treated for 15 days. Blood and fecal samples were collected on day 15. Serum immune oxidation indices were determined using a commercial ELISA kit, and the microbiome of rabbit feces was studied using 16S rRNA gene sequencing. Non-targeted metabolomics was analyzed using ultra-high-performance liquid chromatography-mass spectrometry (UHPC MS/MS). The findings revealed that HS significantly increased IgG and T-AOC levels in serum, whereas it decreased TNF-α and IL-10. NMDS analysis revealed a substantial difference in bacterial community composition between HS and CON groups. At the phylum level, the abundance of Firmicutes, Protobacteria, and Verrucomicrobiota was significantly higher in the HS group, whereas the abundance of Bacteriodota was reduced in the CON group. V9D2013 group, Haloplasma, Comamonas, Clostridium sensu stricto 1, Ruminiclostridium, Syntrophus Lutispora, at the genus level Syntrophorhabdus, Paeniclostridium, Clostridium sensu stricto 6, Candidatus Caldatribacterium, Spirochaeta Synergistaceae, Syner-01, [Eubacterium] xylanophilum group, Cellulosilyticum, ADurb.Bin120, and Devosia were significantly upregulated in the HS group. The metabolism of the HS group was considerably upregulated compared with the metabolism of the CON group, according to principal component analysis (PCA) and least-squares discriminant analysis (PLS-DA). HS increased the concentrations of 4-pyridoxic acid, kynurenine, 20-OH-leukotriene B4, and dopamine and decreased the concentration of pyridoxal. In the rabbit gut, these compounds primarily impact the metabolic pathways of vitamin B6, tryptophan, neutrophil activation, and prolactin. 4-Pyridoxic acid, pyridoxal, kynurenine, 20-OH-leukotriene B4, and dopamine are essential inflammatory response markers and oxidative stress.

SELECTION OF CITATIONS
SEARCH DETAIL