Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
1.
Pediatr Surg Int ; 40(1): 129, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38727920

ABSTRACT

BACKGROUND: Choledochal cyst with perforation (CC with perforation) rarely occurs, early diagnosis and timely treatment plan are crucial for the treatment of CC with perforation. This study aims to forecast the occurrence of CC with perforation. METHODS: All 1111 patients were conducted, who underwent surgery for choledochal cyst at our hospital from January 2011 to October 2022. We conducted univariate and multivariate logistic regression analysis to screen for independent predictive factors for predicting CC with perforation, upon which established a nomogram. The predictive performance of the nomogram was evaluated using receiver operating characteristic (ROC) curves, calibration plots, and decision curve analysis (DCA) curves. RESULTS: The age of children with choledochal cyst perforation is mainly concentrated between 1 and 3 years old. Logistic regression analysis indicates that age, alanine aminotransferase, glutamyl transpeptidase, C-reactive protein, vomiting, jaundice, abdominal distension, and diarrhea are associated with predicting the occurrence of choledochal cyst perforation. ROC curves, calibration plots, and DCA curve analysis curves demonstrate that the nomogram has great discriminative ability and calibration, as well as significant clinical utility. CONCLUSION: The age of CC with perforation is mainly concentrated between 1 and 3 years old. A nomogram for predicting the perforation of choledochal cyst was established.


Subject(s)
Choledochal Cyst , Nomograms , Humans , Choledochal Cyst/surgery , Choledochal Cyst/complications , Choledochal Cyst/diagnosis , Child, Preschool , Male , Female , Infant , Child , Retrospective Studies , ROC Curve
2.
Biol Reprod ; 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38531779

ABSTRACT

Pigs serve as a robust animal model for the study of human diseases, notably in the context of disorders of sex development (DSD). This study aims to investigate the phenotypic characteristics and molecular mechanisms underlying the reproductive and developmental abnormalities of 38,XX ovotestis-DSD (OT-DSD) and 38,XX testis-DSD (T-DSD) in pigs. Clinical and transcriptome sequencing analyses were performed on DSD and normal female pigs. Cytogenetic and SRY analyses confirmed that OT/T-DSD pigs exhibited a 38,XX karyotype and lacked the SRY gene. The DSD pigs had higher levels of follicle-stimulating hormone, luteinizing hormone, and progesterone, but lower testosterone levels when compared with normal male pigs. The reproductive organs of OT/T-DSD pigs exhibit abnormal development, displaying both male and female characteristics, with an absence of germ cells in the seminiferous tubules. Sex determination and development-related differentially-expressed genes (DEGs) shared between DSD pigs were identified in the gonads, including WT1, DKK1, CTNNB1, WTN9B, SHOC, PTPN11, NRG1 and NXK3-1. DKK1 is proposed as a candidate gene for investigating the regulatory mechanisms underlying gonadal phenotypic differences between OT-DSD and T-DSD pigs. Consequently, our findings provide insights into the molecular pathogenesis of DSD pigs and present an animal model for studying into DSD in humans.

3.
Int J Phytoremediation ; 26(3): 339-348, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37553855

ABSTRACT

Cadmium (Cd) pollution is a huge threat to ecosystem health. In the manuscript, pot experiments were conducted to investigate the changes in plant biomass and antioxidant indicators under different cadmium pollution levels (0, 25, 50, and 100 mg/kg) of inoculation of plant growth-promoting bacteria ZG7 on sugar beet. The results showed that the accumulation of excess Cd in sugar beet exhibited different symptoms, including reduced biomass (p < 0.05). Compared with the group treated with uninoculated strain ZG7, inoculation of strain ZG7 significantly reduced the toxicity of sugar beet to Cd and enhanced its antioxidant capacity, with no significant differences in root biomass and increases in leaf biomass of 15.71, 5.84, and 74.12 under different Cd concentration treatments (25, 50, and 100 mg/kg), respectively. The root enrichment of Cd was reduced by 49.13, 47.26, and 21.50%, respectively (p < 0.05). The leaf fraction was reduced by 59.35, 29.86, and 30.99%, respectively (p < 0.05). In addition, the enzymatic activities of sucrase, urease, catalase, and neutral phosphatase were significantly enhanced in the soil (p < 0.05). This study helps us to further investigate the mechanism of cadmium toxicity reduction by inoculated microorganisms and provides a theoretical reference for growing plants in cadmium-contaminated agricultural fields.


The combination of microorganisms and phytoremediation is becoming a popular research topic. The selection of suitable plant growth promoting bacteria can not only promote the growth and development of plants and enhance their cadmium resistance, but also improve the soil quality. And the results of this study will be important for growing edible plants and improving soils in cadmium-contaminated areas.


Subject(s)
Cadmium , Soil Pollutants , Cadmium/toxicity , Antioxidants , Ecosystem , Biodegradation, Environmental , Soil , Bacteria , Sugars , Soil Pollutants/toxicity , Soil Pollutants/analysis , Plant Roots/chemistry
4.
Cell Prolif ; 57(3): e13552, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37905345

ABSTRACT

Cebpa is a master transcription factor gene for adipogenesis. However, the mechanisms of enhancer-promoter chromatin interactions controlling Cebpa transcriptional regulation during adipogenic differentiation remain largely unknown. To reveal how the three-dimensional structure of Cebpa changes during adipogenesis, we generated high-resolution chromatin interactions of Cebpa in 3T3-L1 preadipocytes and 3T3-L1 adipocytes using circularized chromosome conformation capture sequencing (4C-seq). We revealed dramatic changes in chromatin interactions and chromatin status at interaction sites during adipogenic differentiation. Based on this, we identified five active enhancers of Cebpa in 3T3-L1 adipocytes through epigenomic data and luciferase reporter assays. Next, epigenetic repression of Cebpa-L1-AD-En2 or -En3 by the dCas9-KRAB system significantly down-regulated Cebpa expression and inhibited adipocyte differentiation. Furthermore, experimental depletion of cohesin decreased the interaction intensity between Cebpa-L1-AD-En2 and the Cebpa promoter and down-regulated Cebpa expression, indicating that long-range chromatin loop formation was mediated by cohesin. Two transcription factors, RXRA and PPARG, synergistically regulate the activity of Cebpa-L1-AD-En2. To test whether Cebpa-L1-AD-En2 plays a role in adipose tissue development, we injected dCas9-KRAB-En2 lentivirus into the inguinal white adipose tissue (iWAT) of mice to suppress the activity of Cebpa-L1-AD-En2. Repression of Cebpa-L1-AD-En2 significantly decreased Cebpa expression and adipocyte size, altered iWAT transcriptome, and affected iWAT development. We identified functional enhancers regulating Cebpa expression and clarified the crucial roles of Cebpa-L1-AD-En2 and Cebpa promoter interaction in adipocyte differentiation and adipose tissue development.


Subject(s)
Adipogenesis , Chromatin , Animals , Mice , Adipocytes , Adipogenesis/genetics , Adipose Tissue , Cell Differentiation
5.
Appl Microbiol Biotechnol ; 108(1): 22, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38159121

ABSTRACT

Three new strains of dissimilatory perchlorate-reducing bacteria (DPRB), QD19-16, QD1-5, and P3-1, were isolated from an active sludge. Phylogenetic trees based on 16S rRNA genes indicated that QD19-16, QD1-5, and P3-1 belonged to Brucella, Acidovorax, and Citrobacter, respectively, expanding the distribution of DPRB in the Proteobacteria. The three strains were gram-negative and facultative anaerobes with rod-shaped cells without flagella, which were 1.0-1.6 µm long and 0.5-0.6 µm wide. The three DPRB strains utilized similar broad spectrum of electron donors and acceptors and demonstrated a similar capability to reduce perchlorate within 6 days. The enzyme activity of perchlorate reductase in QD19-16 toward chlorate was higher than that toward perchlorate. The high sequence similarity of the perchlorate reductase operon and chlorite dismutase genes in the perchlorate reduction genomic islands (PRI) of the three strains implied that they were monophyletic origin from a common ancestral PRI. Two transposase genes (tnp1 and tnp2) were found in the PRIs of strain QD19-16 and QD1-5, but were absent in the strain P3-1 PRI. The presence of fragments of IR sequences in the P3-1 PRI suggested that P3-1 PRI had previously contained these two tnp genes. Therefore, it is plausible to suggest that a common ancestral PRI transferred across the strains Brucella sp. QD19-16, Acidovorax sp. QD1-5, and Citrobacter sp. P3-1 through horizontal gene transfer, facilitated by transposases. These results provided a direct evidence of horizontal gene transfer of PRI that could jump across phylogenetically unrelated bacteria through transposase. KEY POINTS: • Three new DPRB strains can effectively remove high concentration of perchlorate. • The PRIs of three DPRB strains are acquired from a single ancestral PRI. • PRIs are incorporated into different bacteria genome through HGT by transposase.


Subject(s)
Genomic Islands , Perchlorates , Phylogeny , Oxidation-Reduction , Gene Transfer, Horizontal , RNA, Ribosomal, 16S/genetics , Bacteria/genetics , Oxidoreductases/genetics , Ecosystem , Transposases/genetics
6.
Sensors (Basel) ; 23(23)2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38067812

ABSTRACT

The cornea is an important refractive structure in the human eye. The corneal segmentation technique provides valuable information for clinical diagnoses, such as corneal thickness. Non-contact anterior segment optical coherence tomography (AS-OCT) is a prevalent ophthalmic imaging technique that can visualize the anterior and posterior surfaces of the cornea. Nonetheless, during the imaging process, saturation artifacts are commonly generated due to the tangent of the corneal surface at that point, which is normal to the incident light source. This stripe-shaped saturation artifact covers the corneal surface, causing blurring of the corneal edge, reducing the accuracy of corneal segmentation. To settle this matter, an inpainting method that introduces structural similarity and frequency loss is proposed to remove the saturation artifact in AS-OCT images. Specifically, the structural similarity loss reconstructs the corneal structure and restores corneal textural details. The frequency loss combines the spatial domain with the frequency domain to ensure the overall consistency of the image in both domains. Furthermore, the performance of the proposed method in corneal segmentation tasks is evaluated, and the results indicate a significant benefit for subsequent clinical analysis.


Subject(s)
Artifacts , Tomography, Optical Coherence , Humans , Tomography, Optical Coherence/methods , Cornea/diagnostic imaging , Refraction, Ocular
7.
bioRxiv ; 2023 Oct 14.
Article in English | MEDLINE | ID: mdl-37873183

ABSTRACT

Plate-based quantitative metabolic flux analysis has emerged as the central technology to examine cellular metabolism and mitochondrial bioenergetics. However, accurate interpretation of metabolic activity between different experimental conditions in multi-well microplates requires data normalization based on in situ cell counts. Here, we describe FluxNorm, a platform-independent semi-automated computational workflow, validated for three different cell types, to normalize cell density for accurate assessment of cellular bioenergetics.

8.
bioRxiv ; 2023 Sep 08.
Article in English | MEDLINE | ID: mdl-37662343

ABSTRACT

Glucose, the primary cellular energy source, is metabolized through glycolysis initiated by the rate-limiting enzyme Hexokinase (HK). In energy-demanding tissues like the brain, HK1 is the dominant isoform, primarily localized on mitochondria, crucial for efficient glycolysis-oxidative phosphorylation coupling and optimal energy generation. This study unveils a unique mechanism regulating HK1 activity, glycolysis, and the dynamics of mitochondrial coupling, mediated by the metabolic sensor enzyme O-GlcNAc transferase (OGT). OGT catalyzes reversible O-GlcNAcylation, a post-translational modification, influenced by glucose flux. Elevated OGT activity induces dynamic O-GlcNAcylation of HK1's regulatory domain, subsequently promoting the assembly of the glycolytic metabolon on the outer mitochondrial membrane. This modification enhances HK1's mitochondrial association, orchestrating glycolytic and mitochondrial ATP production. Mutations in HK1's O-GlcNAcylation site reduce ATP generation, affecting synaptic functions in neurons. The study uncovers a novel pathway that bridges neuronal metabolism and mitochondrial function via OGT and the formation of the glycolytic metabolon, offering new prospects for tackling metabolic and neurological disorders.

9.
World J Psychiatry ; 13(8): 533-542, 2023 Aug 19.
Article in English | MEDLINE | ID: mdl-37701542

ABSTRACT

BACKGROUND: As the perioperative risk of elderly patients with extremely unstable hip fractures (EUHFs) is relatively high and therapeutic effect is not satisfactory, new thera-peutic strategies need to be proposed urgently to improve the efficacy and clinical outcomes of such patients. AIM: To determine the influence of two surgical treatment modalities on postoperative cognitive function (CF) and delirium in elderly patients with EUHFs. METHODS: A total of 60 elderly patients consecutively diagnosed with EUHF between September 2020 and January 2022 in the Chongqing University Three Gorges Hospital were included. Of them, 30 patients received conventional treatment (control group; general consultation + fracture type-guided internal fixation), and the other 30 received novel treatment (research group; perioperative multidisciplinary treatment diagnosis and treatment + individualized surgical plan + risk prediction). Information on hip function [Harris hip score (HHS)], perioperative risk of orthopedic surgery [Physiological and Operative Severity Score for the Enumeration of Mortality and Morbidity (POSSUM)], CF [Montreal cognitive assessment scale (MoCA)], postoperative delirium [mini-cognitive (Mini-Cog)], adverse events (AEs; internal fixation failure, infection, nonunion, malunion, and postoperative delirium), and clinical indicators [operation time (OT), postoperative hospital length of stay (HLOS), ambulation time, and intraoperative blood loss (IBL)] were collected from both groups for comparative analyses. RESULTS: The HHS scores were similar between both groups. The POSSUM score at 6 mo after surgery was significantly lower in the research group compared with the control group, and MoCA and Mini-Cog scores were statistically higher. In addition, the overall postoperative complication rate was significantly lower in the research than in the control group, including reduced OT, postoperative HLOS, ambulation time, and IBL. CONCLUSION: The new treatment modality has more clinical advantages over the conventional treatment, such as less IBL, faster functional recovery, more effectively optimized perioperative quality control, improved postoperative CF, mitigated postoperative delirium, and reduced operation-related AEs.

10.
Sheng Wu Gong Cheng Xue Bao ; 39(6): 2410-2429, 2023 Jun 25.
Article in Chinese | MEDLINE | ID: mdl-37401601

ABSTRACT

The current linear economy model relies on fossil energy and increases CO2 emissions, which contributes to global warming and environmental pollution. Therefore, there is an urgent need to develop and deploy technologies for carbon capture and utilization to establish a circular economy. The use of acetogens for C1-gas (CO and CO2) conversion is a promising technology due to high metabolic flexibility, product selectivity, and diversity of the products including chemicals and fuels. This review focuses on the physiological and metabolic mechanisms, genetic and metabolic engineering modifications, fermentation process optimization, and carbon atom economy in the process of C1-gas conversion by acetogens, with the aim to facilitate the industrial scale-up and carbon negative production through acetogen gas fermentation.


Subject(s)
Carbon Dioxide , Gases , Fermentation , Gases/metabolism , Carbon Dioxide/metabolism , Metabolic Engineering , Carbon/metabolism
11.
mBio ; 14(4): e0062923, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37283539

ABSTRACT

Anthracnose diseases caused by Colletotrichum species are among the most common fungal diseases. These symptoms typically manifest as dark, sunken lesions on leaves, stems, and fruit. In China, mango anthracnose seriously affects fruit yield and quality. Genome sequencing of several species shows the presence of mini-chromosomes. These are thought to contribute to virulence, but their formation and activity remain to be fully elucidated. Here, we assembled 17 Colletotrichum genomes (16 isolated from mango plus one from persimmon) through PacBio long-read sequencing. Half of the assembled scaffolds had telomeric repeats at both ends indicating full-length chromosomes. Based on comparative genomics analysis at interspecies and intraspecies levels, we identified extensive chromosomal rearrangements events. We analyzed mini-chromosomes of Colletotrichum spp. and found large variation among close relatives. In C. fructicola, homology between core chromosomes and mini-chromosomes suggested that some mini-chromosomes were generated by recombination of core chromosomes. In C. musae GZ23-3, we found 26 horizontally transferred genes arranged in clusters on mini-chromosomes. In C. asianum FJ11-1, several potential pathogenesis-related genes on mini-chromosomes were upregulated, especially in strains with highly pathogenic phenotypes. Mutants of these upregulated genes showed obvious defects in virulence. Our findings provide insights into the evolution and potential relationships to virulence associated with mini-chromosomes. IMPORTANCE Colletotrichum is a cosmopolitan fungal genus that seriously affects fruit yield and quality of many plant species. Mini-chromosomes have been found to be related to virulence in Colletotrichum. Further examination of mini-chromosomes can help us elucidate some pathogenic mechanisms of Colletotrichum. In this study, we generated novel assemblies of several Colletotrichum strains. Comparative genomic analyses within and between Colletotrichum species were conducted. We then identified mini-chromosomes in our sequenced strains systematically. The characteristics and generation of mini-chromosomes were investigated. Transcriptome analysis and gene knockout revealed pathogenesis-related genes located on mini-chromosomes of C. asianum FJ11-1. This study represents the most comprehensive investigation of chromosome evolution and potential pathogenicity of mini-chromosomes in the Colletotrichum genus.


Subject(s)
Colletotrichum , Mangifera , Colletotrichum/genetics , Plant Diseases/microbiology , Mangifera/genetics , Mangifera/microbiology , China , Chromosomes
12.
Curr Microbiol ; 80(6): 213, 2023 May 16.
Article in English | MEDLINE | ID: mdl-37191724

ABSTRACT

Heavy metals are considered to be one of the main sources of soil contamination. In this study, three tolerant bacteria were isolated from the heavy metal-contaminated soil in mining area, and immobilized bacteria were constructed using corn straw as the carrier. The combined remediation effect of immobilized bacteria and alfalfa in pot experiments was explored in heavy metal-contaminated soil. Under heavy metal stress, inoculation with immobilized bacteria significantly promoted the growth of alfalfa, in which the dry weights of roots, stems, and leaves increased by 19.8, 6.89, and 14.6%, respectively (P < 0.05). Also, inoculation with immobilized bacteria improved the antioxidant capacity of plants and the activity of soil enzymes and improved soil quality (P < 0.05). Microbial-phytoremediation technology effectively reduced the heavy metal content in the soil, and can restore the soil contaminated by heavy metals. The results will help to further understand the mechanism of microbial inoculation to reduce the toxicity of heavy metals, and provide guidance for the cultivation of forage grasses in heavy metal-contaminated soils.


Subject(s)
Metals, Heavy , Soil Pollutants , Medicago sativa , Soil Pollutants/analysis , Metals, Heavy/analysis , Biodegradation, Environmental , Bacteria , Soil
13.
FASEB J ; 37(6): e22993, 2023 06.
Article in English | MEDLINE | ID: mdl-37235502

ABSTRACT

Lacking PTRF (polymerase I and transcript release factor), an essential caveolae component, causes a secondary deficiency of caveolins resulting in muscular dystrophy. The transcriptome responses of different types of muscle fibers and mononuclear cells in skeletal muscle to muscular dystrophy caused by Ptrf deletion have not been explored. Here, we created muscular dystrophy mice by Ptrf knockout and applied single-nucleus RNA sequencing (snRNA-seq) to unveil the transcriptional changes of the skeletal muscle at single-nucleus resolution. 11 613 muscle nuclei (WT, 5838; Ptrf KO, 5775) were classified into 12 clusters corresponding to 11 nuclear types. Trajectory analysis revealed the potential transition between type IIb_1 and IIb_2 myonuclei upon muscular dystrophy. Functional enrichment analysis indicated that apoptotic signaling and enzyme-linked receptor protein signaling pathway were significantly enriched in type IIb_1 and IIb_2 myonuclei of Ptrf KO, respectively. The muscle structure development and the PI3K-AKT signaling pathway were significantly enriched in type IIa and IIx myonuclei of Ptrf KO. Meanwhile, metabolic pathway analysis showed a decrease in overall metabolic pathway activity of myonuclei subtypes upon muscular dystrophy, with the most decrease in type IIb_1 myonuclei. Gene regulatory network analysis found that the activity of Mef2c, Mef2d, Myf5, and Pax3 regulons was enhanced in type II myonuclei of Ptrf KO, especially in type IIb_2 myonuclei. In addition, we investigated the transcriptome changes in adipocytes and found that muscular dystrophy enhanced the lipid metabolic capacity of adipocytes. Our findings provide a valuable resource for exploring the molecular mechanism of muscular dystrophy due to Ptrf deficiency.


Subject(s)
Muscular Dystrophies , Transcriptome , Mice , Animals , Phosphatidylinositol 3-Kinases/metabolism , Muscular Dystrophies/genetics , Muscle, Skeletal/metabolism , Muscle Fibers, Skeletal/metabolism
14.
Clin Transl Med ; 13(1): e1158, 2023 01.
Article in English | MEDLINE | ID: mdl-36604982

ABSTRACT

BACKGROUND: Circular RNAs (CircRNAs) are important and have different roles in disease progression. Herein, we aim to elucidate the roles of a novel CircRNA (CircZSWIM6) which is upregulated in ageing chondrocytes. METHODS: We verified the roles of CircZSWIM6 in senescent and osteoarthritis (OA) development in vitro through CircZSWIM6 knockdown and overexpression. RNA pulldown assay and RNA binding protein immunoprecipitation were performed to identify the interaction between CircZSWIM6 and Ribosomal protein S14 (RPS14). The roles of CircZSWIM6 in ageing-related OA were also confirmed in non-traumatic and traumatic model respectively. RESULTS: CircZSWIM6 regulates extracellular matrix (ECM) and energy metabolism in ageing chondrocyte. Mechanistically, CircZSWIM6 competitively bound to the E3 ligase STUB1 binding site on RPS14 (K125) to inhibit proteasomal degradation of RPS14 to maintain RPS14 function. CircZSWIM6-RPS14 axis is highly associated with AMPK signaling transduction, which keeps energy metabolism in chondrocyte. Furthermore, CircZSWIM6 AAV infection leads to senescent and OA phenotypes in a non-traumatic model and accelerates OA progression in a traumatic model. CONCLUSION: Our results revealed a significant role of CircZSWIM6 in age-related OA by regulating ECM metabolism and AMPK-associated energy metabolism. We highlight the CircZSWIM6-RPS14-PCK1-AMPK axis is a potential biomarker for OA.


Subject(s)
Cartilage, Articular , MicroRNAs , Chondrocytes/metabolism , MicroRNAs/genetics , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , Cartilage, Articular/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , Extracellular Matrix/genetics , Extracellular Matrix/metabolism , Homeostasis
15.
Article in English | MEDLINE | ID: mdl-36497949

ABSTRACT

The physiological mechanisms and phytoremediation effects of three kinds of native quinoa in a desert mining area were studied. We used two different types of local soils (native soil and tailing soil) to analyze the changes in the heavy metal content, leaf physiology, photosynthetic parameters, stem hydraulics, and anatomical characteristics of potted quinoa. The results show that the chlorophyll content, photosynthetic rate, stomatal conductance, and transpiration rate of Kochia scoparia were decreased, but intercellular CO2 concentration (Ci) was increased under heavy metal stress, and the net photosynthetic rate (Pn) was decreased due to non-stomatal limitation. The gas exchange of Chenopodium glaucum and Atriplex centralasiatica showed a decrease in Pn, stomatal conductance (Gs), and transpiration rate (E) due to stomatal limitation. The three species showed a similar change in heavy metal content; they all showed elevated hydraulic parameters, decreased vessel density, and significantly thickened vessel walls under heavy metal stress. Physiological indicators such as proline content and activity of superoxide dismutase (SOD) and peroxidase (POD) increased, but the content of malondialdehyde (MDA) and glutathione (GSH), as well as catalase (CAT) activity, decreased in these three plants. Therefore, it can be concluded that these three species of quinoa, possibly the most dominant 30 desert plants in the region, showed a good adaptability and accumulation capacity under the pressure of heavy metal stress, and these plants can be good candidates for tailings remediation in the Jinchang desert mining area.


Subject(s)
Metals, Heavy , Metals, Heavy/toxicity , Photosynthesis , Superoxide Dismutase/metabolism , Malondialdehyde , Soil , Plants/metabolism , Antioxidants/metabolism , Glutathione/metabolism
16.
Article in English | MEDLINE | ID: mdl-36498118

ABSTRACT

Mining activities have led to serious environmental (soil erosion, degradation of vegetation, and groundwater contamination) and human health (musculoskeletal problems, diarrheal conditions, and chronic diseases) issues at desert mining areas in northwest China. Native plant species grown naturally in desert regions show a unique tolerance to arid and semiarid conditions and are potential candidates for soil phytoremediation. Here, an ex situ experiment involving pot planting of seedlings of three native plant species (Suaeda glauca, Artemisia desertorum, and Atriplex canescens) was designed to explore their phytoremediation potential and the underlying physiological mechanism. For Zn and Cu, the three plants were all with a biological accumulation coefficient (BAC) greater than 1. For Cd, Ni, and Pb, Atriplex canescens had the highest bioaccumulation concentrations (521.52, 862.23, and 1734.59 mg/kg), with BAC values (1.06, 1.30, 1.25) greater than 1, which indicates that Atriplex canescens could be a broad-spectrum metal extraction plant. Physiological analysis (antioxidation, extracellular secretions, photosynthesis, and hydraulics) showed that the three desert plants exploited their unique strategy to protect against the stress of complex metals in soils. Moreover, the second growing period was the main heavy metal accumulation and extraction stage concomitant with highest water use efficiency (iWUE). Taken together, the three desert plants exhibited the potent heavy metal extraction ability and physiological and ecological adaptability to a harsh polluted environment in arid desert areas, providing potential resources for the bioremediation of metal-contaminated soils in an arid and semiarid desert environment.


Subject(s)
Artemisia , Atriplex , Chenopodiaceae , Metals, Heavy , Soil Pollutants , Humans , Atriplex/metabolism , Soil Pollutants/analysis , Biodegradation, Environmental , Metals, Heavy/analysis , Soil , Plants/metabolism
17.
Animals (Basel) ; 12(21)2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36359049

ABSTRACT

The intestine is a tubular organ with multiple functions such as digestion absorption and immunity, but the functions of each intestinal segments are different. Intestinal regionalization is necessary for normal physiological function, but it also means the research results obtained at specific sites may not be applicable to other intestinal segments. In order to comprehensively describe the functional changes in the intestine, different intestinal segments and their contents (duodenum, jejunum, ileum, cecum, colon, and rectum) of guinea pigs were collected for RNA seq and 16S rRNA seq, respectively. The results showed differential genes of each intestinal segment mainly involve mucosa, digestion, absorption, and immunity. The gene sets related to fat, bill salts, vitamins, aggregates, amino acids, and water absorption were highly expressed in the small intestine, and the gene sets related to metal ions, nucleotides, and SCFAs were highly expressed in the large intestine. In terms of immunity, the CD8+ T, Th1, eosinophils, pDCs, and natural killer (NK) T cells in the small intestine showed higher scores than those in the large intestine, while the pattern-recognition receptor signaling pathway-related genes are highly expressed in the large intestine. In terms of microbial composition, Proteobacteria and Actinobacteria are abundant in the small intestine, while Firmicutes and Spirochaete are abundant in large intestine. The correlation analysis showed a high correlation between intestinal microorganisms and gene modules related to digestion and absorption. In addition, cross-species analysis showed the SCFA metabolism gene expression trends in human and rodent intestine were different. In conclusion, we analyzed the changes in substance transport, immune and microbial composition between different intestinal segments of guinea pigs, and explored the relationship between intestinal transcriptome and microorganisms, our research will provides a reference for subsequent intestinal-related research.

18.
Int J Biol Sci ; 18(9): 3676-3696, 2022.
Article in English | MEDLINE | ID: mdl-35813471

ABSTRACT

Background: Nucleus pulposus (NP) degeneration is the core pathological change of intervertebral disc (IVD) degenerative diseases, but currently, no effective therapy is available. With the rapid development of biomaterials and tissue engineering in recent years, biomaterial-assisted cell transplantation becomes a promising therapy for IVD degeneration. However, the application is severely limited by the weak biological characteristics of NP cells (NPCs), such as a moderate proliferation ability, weak self-renewal capacity, and minimal extracellular matrix (ECM) synthesis capacity, caused by the current inappropriate cell seeding or grafting methods. Methods: Here, we developed a three-dimensional (3D) spheroidizing culture method to construct NPC spheroids and investigated repair and regeneration potential of these spheroids in vitro and in vivo. The in vitro biological characteristics (including cell viability and proliferation), and in vivo functions (including anti-degeneration potential and ability to induce tissue repair) of NPC spheroids and monolayer-cultured NPCs were compared. Furthermore, an RNA-seq-based transcriptome analysis and a series of function experiments were performed to elucidate the potential mechanisms of their differences that were involved in the tissue regeneration process. Results: NPC spheroids exhibited obviously superior self-renewal and ECM synthesis capacities compared to monolayers of NPCs in vitro. In vivo, NPC spheroids generated more functional ECM components, primarily aggrecan (ACAN) and collagen type II (Col2), and markedly promoted NP regeneration in the disc degeneration model induced by partial NP excision. Additionally, the biological characteristics and functions of NPC spheroids were to some extent regulated by the interaction of N-cadherin (N-CDH) and Integrinß1 (ITGß1), two key mechanosensing ECM-receptors expressed on NPCs. Conclusions: The NPC spheroidizing culture method is beneficial for cell renewal and the generation of functional ECM in NP tissue. The molecular mechanism involved in this regeneration process is closely associated with the regulation of the N-CDH and ITGß1 interaction-mediated ECM homeostesis. Moreover, the strategy of hydrogel-assisted NPC spheroids transplantation may potentially be used in the future treatment of IVD degeneration.


Subject(s)
Intervertebral Disc Degeneration , Nucleus Pulposus , Cadherins/metabolism , Extracellular Matrix/metabolism , Humans , Intervertebral Disc Degeneration/genetics , Intervertebral Disc Degeneration/metabolism , Intervertebral Disc Degeneration/therapy , Nucleus Pulposus/metabolism , Tissue Engineering
19.
Oxid Med Cell Longev ; 2022: 7427255, 2022.
Article in English | MEDLINE | ID: mdl-35746961

ABSTRACT

Objective: Type C fracture is a complete intra-articular fracture, and the mainstay of treatment remains open reduction and internal fixation. The purpose of the study is to observe the clinical effect of an anterior ankle C approach (ankle-C) combined with minimal invasive plate osteosystems (MIPO) for tibial pilon fractures (AO/OTA 43C, combined with fibula fractures). Methods: A retrospective comparative analysis was performed on the clinical data of 33 patients with C-type pilon fractures (combined fibula fractures) admitted to our department from July 2018 to July 2021, including 12 cases treated with ankle-C (a-C) approach and 21 cases with conventional approach (including combined approach). All patients were followed up for over 6 months. Visual Analogue Scale (VAS), AOFAS Ankle-Hindfoot Scale (AOFAS-AHS), wound healing time, fracture healing time, and complications were used to evaluate the clinical efficacy. Results: The scores of VAS and AOFAS in the a-C group scored better than the conventional group (P < 0.05), especially in the extent of limited range of motion (LROM) of ankle dorsiflexion-plantarflexion in 1 month after operation and at the last follow-up (P < 0.01). Bone healing was achieved in both groups 6 months after operation, with no implant exposure or infection. Among them, 4 cases in the conventional approach group had wound healing time exceeding 2 weeks. Conclusions: For type C pilon fractures (combined with fibula fractures), ankle-C approach combined with MIPO technique has certain advantages in ankle function recovery and soft tissue repair, which provides an alternative for the treatment of type C pilon fractures.


Subject(s)
Bone Plates , Tibial Fractures , Fracture Fixation, Internal/methods , Humans , Retrospective Studies , Tibial Fractures/surgery , Treatment Outcome
20.
Stem Cells Int ; 2022: 9179111, 2022.
Article in English | MEDLINE | ID: mdl-35599845

ABSTRACT

Change of biophysical factors in tissue microenvironment is an important step in a chronic disease development process. A mechanical and biochemical factor from cell living microniche can regulate cell epigenetic decoration and, therefore, further induce change of gene expression. In this review, we will emphasize the mechanism that biophysical microenvironment manipulates cell behavior including gene expression and protein decoration, through modifying histone amino acid residue modification. The influence given by different mechanical forces, including mechanical stretch, substrate surface stiffness, and shear stress, on cell fate and behavior during chronic disease development including tumorigenesis will also be teased out. Overall, the recent work summarized in this review culminates on the hypothesis that a mechanical factor stimulates the modification on histone which could facilitate disease detection and potential therapeutic target.

SELECTION OF CITATIONS
SEARCH DETAIL
...