Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 201
Filter
1.
Small Methods ; : e2400258, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38962863

ABSTRACT

Nanoengineering polar oxide films have attracted great attention in energy storage due to their high energy density. However, most of them are deposited on thick and rigid substrates, which is not conducive to the integration of capacitors and applications in flexible electronics. Here, an alternative strategy using van der Waals epitaxial oxide dielectrics on ultra-thin flexible mica substrates is developed and increased the disorder within the system through high laser flux. The introduction of defects can efficiently weaken or destroy the long-range ferroelectric ordering, ultimately leading to the emergence of a large numbers of weak-coupling regions. Such polarization configuration ensures fast polarization response and significantly improves energy storage characteristics. A flexible BiFeO3-BaTiO3 (BF-BT) capacitor exhibits a total energy density of 43.5 J cm-3 and an efficiency of 66.7% and maintains good energy storage performance over a wide temperature range (20-200 °C) and under large bending deformation (bending radii ≈ 2 mm). This study provides a feasible approach to improve the energy storage characteristics of dielectric oxide films and paves the way for their practical application in high-energy density capacitors.

2.
Sci Rep ; 14(1): 15684, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38977919

ABSTRACT

The global spread of COVID-19 has profoundly affected health and economies, highlighting the need for precise epidemic trend predictions for effective interventions. In this study, we used infectious disease models to simulate and predict the trajectory of COVID-19. An SEIR (susceptible, exposed, infected, removed) model was established using Wuhan data to reflect the pandemic. We then trained a genetic algorithm-based SEIR (GA-SEIR) model using data from a specific U.S. region and focused on individual susceptibility and infection dynamics. By integrating socio-psychological factors, we achieved a significant enhancement to the GA-SEIR model, leading to the development of an optimized version. This refined GA-SEIR model significantly improved our ability to simulate the spread and control of the epidemic and to effectively track trends. Remarkably, it successfully predicted the resurgence of COVID-19 in mainland China in April 2023, demonstrating its robustness and reliability. The refined GA-SEIR model provides crucial insights for public health authorities, enabling them to design and implement proactive strategies for outbreak containment and mitigation. Its substantial contributions to epidemic modelling and public health planning are invaluable, particularly in managing and controlling respiratory infectious diseases such as COVID-19.


Subject(s)
Algorithms , COVID-19 , COVID-19/epidemiology , COVID-19/virology , COVID-19/psychology , Humans , China/epidemiology , SARS-CoV-2 , Pandemics , United States/epidemiology
3.
J Neurosurg Spine ; : 1-9, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38905714

ABSTRACT

OBJECTIVE: There is still controversy about whether it is necessary to perform prophylactic neurosurgical decompression for severe scoliosis (SS) with syringomyelia (SM) to reduce the risk of neurological complications during subsequent spinal correction. This study aimed to explore the safety and effectiveness of using traction-assisted single-stage spinal correction as a treatment for patients who had SS with SM (SS-SM). METHODS: The patients who had SS-SM without previous neurosurgical intervention and who underwent traction-assisted single-stage posterior spinal correction at a single center were included, and the initial, posttraction, and postoperative clinical data were reviewed. Based on preoperative MRI, the included patients were divided into two categories: those with versus those without Chiari malformation type I (CM-I-related SM [CS] vs idiopathic SM [IS]), and those with a moderate syrinx (MS) versus those with a large syrinx (LS). Different groups' traction and operation contributions were calculated for comparisons (CS vs IS, MS vs LS). RESULTS: A total of 28 patients were included. The initial mean major scoliosis was 101.0° with a mean flexibility of 21.4%. After the operation, the mean total correction rate for scoliosis was 63.9%. The mean traction and operation contributions were 61.5% and 38.5%, respectively. Most of the patients (75%) underwent spinal corrections without 3-column osteotomies, and only 1 patient reported postoperative regional numbness without motor deficits. No differences were found in the mean total correction rates, traction, and operation contributions when comparing CS versus IS and MS versus LS with the comparable initial clinical data (p > 0.05). More than 50% of the total corrections were achieved by preoperative traction in all groups. CONCLUSIONS: Traction-assisted single-stage spinal correction can safely and effectively correct SS-SM without prophylactic neurosurgical decompression under strict patient selection. Additionally, traction can achieve more than half of the final spinal correction, even for patients with varying sizes of SMs.

4.
Nat Commun ; 15(1): 4905, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38851776

ABSTRACT

The moiré potential serves as a periodic quantum confinement for optically generated excitons, creating spatially ordered zero-dimensional quantum systems. However, a broad emission spectrum resulting from inhomogeneity among moiré potentials hinders the investigation of their intrinsic properties. In this study, we demonstrated a method for the optical observation of quantum coherence and interference of a single moiré exciton in a twisted semiconducting heterobilayer beyond the diffraction limit of light. We observed a single and sharp photoluminescence peak from a single moiré exciton following nanofabrication. Our findings revealed the extended duration of quantum coherence in a single moiré exciton, persisting beyond 10 ps, and an accelerated decoherence process with increasing temperature and excitation power density. Moreover, quantum interference experiments revealed the coupling between moiré excitons in different moiré potential minima. The observed quantum coherence and interference of moiré exciton will facilitate potential applications of moiré quantum systems in quantum technologies.

7.
Sci Bull (Beijing) ; 69(13): 2042-2049, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38824120

ABSTRACT

Owing to the outstanding properties provided by nontrivial band topology, topological phases of matter are considered as a promising platform towards low-dissipation electronics, efficient spin-charge conversion, and topological quantum computation. Achieving ferroelectricity in topological materials enables the non-volatile control of the quantum states, which could greatly facilitate topological electronic research. However, ferroelectricity is generally incompatible with systems featuring metallicity due to the screening effect of free carriers. In this study, we report the observation of memristive switching based on the ferroelectric surface state of a topological semimetal (TaSe4)2I. We find that the surface state of (TaSe4)2I presents out-of-plane ferroelectric polarization due to surface reconstruction. With the combination of ferroelectric surface and charge-density-wave-gapped bulk states, an electric-switchable barrier height can be achieved in (TaSe4)2I-metal contact. By employing a multi-terminal-grounding design, we manage to construct a prototype ferroelectric memristor based on (TaSe4)2I with on/off ratio up to 103, endurance over 103 cycles, and good retention characteristics. The origin of the ferroelectric surface state is further investigated by first-principles calculations, which reveal an interplay between ferroelectricity and band topology. The emergence of ferroelectricity in (TaSe4)2I not only demonstrates it as a rare but essential case of ferroelectric topological materials, but also opens new routes towards the implementation of topological materials in functional electronic devices.

9.
Trials ; 25(1): 352, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822360

ABSTRACT

BACKGROUND: Knee osteoarthritis (KOA) is a chronic musculoskeletal disorder characterized by pain and functional impairment. Blood flow restriction (BFR) with low-load resistance training (LLRT) demonstrates a similar improvement in clinical outcomes to high-load resistance training (HLRT) in treating KOA. It has not been established whether intermittent blood flow restriction (iBFR) with LLRT can lead to clinical outcomes that are comparable to those produced by continuous blood flow restriction (cBFR) with LLRT and HLRT. The aim of the proposed study is to evaluate the efficacy of iBFR with LLRT on pain, Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), muscle strength, muscle mass, physical function, perceptions of discomfort and effort, and adherence in KOA patients. METHODS: This is a three-arm, non-inferiority, randomized controlled trial utilizing blinded assessors. Two hundred thirteen participants will be randomly allocated to one of the following three groups: iBFR group-receiving 4 months of LLRT with iBFR, twice weekly (n = 71); cBFR group-receiving 4 months of LLRT with cBFR, twice weekly (n = 71); or HLRT group-receiving 4 months of HLRT without BFR, twice weekly (n = 71). The primary outcome is pain. The secondary outcomes include the WOMAC, muscle strength, muscle mass, physical function, perceptions of discomfort and effort, and adherence. Pain and WOMAC will be measured at the baseline and 4 and 12 months after randomizations. Muscle strength, muscle mass, and physical function will be measured at the baseline and 4 months after randomizations. The perceptions of discomfort and effort will be measured during the first and final sessions. DISCUSSION: BFR with LLRT has a similar improvement in clinical outcomes as HLRT. However, cBFR may cause elevated ratings of perceived exertion and local discomfort, compromising patient tolerability and treatment adherence. If iBFR with LLRT could produce improvement in clinical outcomes analogous to those of HLRT and iBFR with LLRT, it could be considered an alternative approach for treating patients with KOA. TRIAL REGISTRATION: Chinese Clinical Trial Registry ChiCTR2300072820. Registered on June 26, 2023.


Subject(s)
Blood Flow Restriction Therapy , Muscle Strength , Osteoarthritis, Knee , Resistance Training , Humans , Resistance Training/methods , Osteoarthritis, Knee/physiopathology , Osteoarthritis, Knee/therapy , Aged , Treatment Outcome , Blood Flow Restriction Therapy/methods , Female , Male , Middle Aged , Equivalence Trials as Topic , Pain Measurement , Regional Blood Flow , Randomized Controlled Trials as Topic , Recovery of Function , Time Factors , Knee Joint/physiopathology
10.
Front Physiol ; 15: 1404247, 2024.
Article in English | MEDLINE | ID: mdl-38911327

ABSTRACT

Purpose: The blood flow restriction (BFR) training is an effective approach to promoting muscle strength, muscle hypertrophy, and regulating the peripheral vascular system. It is recommended to use to the percentage of individual arterial occlusion pressure (AOP) to ensure safety and effectiveness. The gold standard method for assessing arterial occlusive disease is typically measured using Doppler ultrasound. However, its high cost and limited accessibility restrict its use in clinical and practical applications. A novel wearable BFR training device (Airbands) with automatic AOP assessment provides an alternative solution. This study aims to examine the reliability and validity of the wearable BFR training device. Methods: Ninety-two participants (46 female and 46 male) were recruited for this study. Participants were positioned in the supine position with the wearable BFR training device placed on the proximal portion of the right thigh. AOP was measured automatically by the software program and manually by gradually increasing the pressure until the pulse was no longer detected by color Doppler ultrasound, respectively. Validity, inter-rater reliability, and test-retest reliability were assessed by intraclass correlation coefficients (ICC) and Bland-Altman analysis. Results: The wearable BFR training device demonstrated good validity (ICC = 0.85, mean difference = 4.1 ± 13.8 mmHg [95% CI: -23.0 to 31.2]), excellent inter-rater reliability (ICC = 0.97, mean difference = -1.4 ± 6.7 mmHg [95% CI: -14.4 to 11.7]), and excellent test-retest reliability (ICC = 0.94, mean difference = 0.6 ± 8.6 mmHg [95% CI: -16.3 to 17.5]) for the assessment of AOP. These results were robust in both male and female subgroups. Conclusion: The wearable BFR training device can be used as a valid and reliable tool to assess the AOP of the lower limb in the supine position during BFR training.

11.
Biomed Chromatogr ; : e5932, 2024 Jun 23.
Article in English | MEDLINE | ID: mdl-38922712

ABSTRACT

Abnormal relaxation and contraction of intestinal smooth muscle can cause various intestinal diseases. Diarrhea is a common and important public health problem worldwide in epidemiology. Zingiber officinale Roscoe (fresh ginger) has been found to treat diarrhea, but the material basis and mechanism of action that inhibits intestinal peristalsis remain unclear. Metabolomics and serum pharmacology were used to identify differential metabolites, metabolic pathways, and pharmacodynamic substances, and were then combined with network pharmacology to explore the potential targets of ginger that inhibit intestinal peristalsis during diarrhea treatment, and the targets identified were verified using molecular docking and molecular dynamic simulation. We found that 25 active components of ginger (the six most relevant components), 35 potential key targets (three core targets), 40 differential metabolites (four key metabolites), and four major metabolic pathways were involved in the process by which ginger inhibits intestinal peristalsis during diarrhea treatment. This study reveals the complex mechanism of action and pharmacodynamic material basis of ginger in the inhibition of intestinal peristalsis, and this information helps in the development of new Chinese medicine to treat diarrhea and lays the foundation for the clinical application of ginger.

13.
Article in English | MEDLINE | ID: mdl-38798269

ABSTRACT

The podocyte cytoskeleton determines the stability of podocyte structure and function, and their imbalance plays a pathogenic role in podocyte diseases. However, the underlying mechanism of podocyte cytoskeleton damage is not fully understood. Here, we investigate the specific role of cuproptosis in inducing podocyte cytoskeleton injury. In vitro and in vivo studies, exposure to high levels of copper and adriamycin (ADR) caused significant increases in copper concentration in intracellular and renal tissue. Moreover, excessive accumulation of copper induced cuproptosis, resulting in the destruction of the podocyte cytoskeleton. However, inhibition of copper accumulation to reduce cuproptosis also significantly alleviated the damage of podocyte cytoskeleton. In addition, inhibition of cuproptosis mitigated ADR-induced mitochondrial damage as well as the production of reactive oxygen species and depolarization of mitochondrial membrane potential, and restored ATP synthesis. Among the transcriptome sequencing data, the difference of CXCL5 was the most significant. Both high copper and ADR exposure can cause up-regulation of CXCL5, and CXCL5 deletion inhibits the occurrence of cuproptosis, thereby alleviating the podocyte cytoskeleton damage. This suggests that CXCL5 may act upstream of cuproptosis that mediates podocyte cytoskeleton damage. In conclusion, cuproptosis induced by excessive copper accumulation may induce podocyte cytoskeleton damage by promoting mitochondrial dysfunction, thereby causing podocyte injury. This indicates that cuproptosis plays an important role in the pathogenesis of podocyte injury and provides a basis for seeking potential targets for the treatment of chronic kidney disease.

14.
Colloids Surf B Biointerfaces ; 240: 113991, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38815311

ABSTRACT

Diabetes mellitus is a chronic metabolic disease with prolonged low-grade inflammation and impaired cellular function, leading to poor wound healing. The treatment of diabetic wounds remains challenging due to the complex wound microenvironment. In view of the prominence of fish scales in traditional Chinese medicine and their wide application in modern medicine, we isolated the intercellular components in the scales of sea bass, obtained a natural composite hydrogel, fish scales gel (FSG), and applied it to diabetic chronic wounds. FSG was rich in collagen-like proteins, and possessed low-temperature gelation properties. In vitro, FSG was biocompatible and promoted fibroblast proliferation by approximately 40 %, endothelial cell migration by approximately 20 % and activated the M1 macrophages. In addition, FSG restored the function of fibroblasts and vascular endothelial cells damaged by high glucose. Importantly, FSG normalized the acute inflammatory response to impaired macrophages in a high-glucose microenvironment. Transcriptome analysis implies that this mechanism may involve enhanced cell signaling and cellular communication, improved sensitivity to cytokines, and activation of the TNF signaling pathway. Animal experiments confirmed that FSG significantly improved wound closure by approximately 15 % in diabetic rats, showing similar effects to acute wounds. In conclusion, the regulation of multiple cellular functions by FSG, especially the counterintuitive ability to induce acute inflammation, promoted diabetic wound healing and provides a novel therapeutic strategy for wound repair in diabetic patients.


Subject(s)
Diabetes Mellitus, Experimental , Hydrogels , Wound Healing , Animals , Wound Healing/drug effects , Hydrogels/chemistry , Hydrogels/pharmacology , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/pathology , Rats , Extracellular Matrix/metabolism , Extracellular Matrix/drug effects , Animal Scales/chemistry , Rats, Sprague-Dawley , Cell Proliferation/drug effects , Male , Humans , Macrophages/drug effects , Macrophages/metabolism , Fibroblasts/drug effects , Fibroblasts/metabolism , Cell Movement/drug effects , Mice , Fishes
16.
Vet Sci ; 11(5)2024 May 09.
Article in English | MEDLINE | ID: mdl-38787180

ABSTRACT

Infectious coryza is an acute respiratory infection caused by Avibacterium paragallinarum, which is widely distributed throughout the world. However, there is no effective molecular typing scheme to obtain basic knowledge about the Av. paragallinarum population structure. This study aimed to develop a multilocus sequence typing (MLST) scheme for Av. paragallinarum that allows for the worldwide comparison of sequence data. For this purpose, the genetic variability of 59 Av. paragallinarum strains from different geographical origins and serovars was analyzed to identify correlations. The MLST scheme was developed using seven conserved housekeeping genes, which identified eight STs that clustered all of the strains into three evolutionary branches. The analytical evaluation of the clone group relationship between the STs revealed two clone complexes (CC1 and CC2) and three singletons (ST2, ST5, and ST6). Most of the isolates from China belonged to ST1 and ST3 in CC1. ST8 from Peru and ST7 from North America together formed CC2. Our results showed that the Av. paragallinarum strains isolated from China had a distant genetic relationship with CC2, indicating strong regional specificity. The MLST scheme established in this study can monitor the dynamics and genetic differences of Av. paragallinarum transmission.

18.
Phys Rev Lett ; 132(18): 183801, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38759196

ABSTRACT

Optical amplification and massive information transfer in modern physics depend on stimulated radiation. However, regardless of traditional macroscopic lasers or emerging micro- and nanolasers, the information modulations are generally outside the lasing cavities. On the other hand, bound states in the continuum (BICs) with inherently enormous Q factors are limited to zero-dimensional singularities in momentum space. Here, we propose the concept of spatial information lasing, whose lasing information entropy can be correspondingly controlled by near-field Bragg coupling of guided modes. This concept is verified in gain-loss metamaterials supporting full-k-space BICs with both flexible manipulations and strong confinement of light fields. The counterintuitive high-dimensional BICs exist in a continuous energy band, which provide a versatile platform to precisely control each lasing Fourier component and, thus, can directly convey rich spatial information on the compact size. Single-mode operation achieved in our scheme ensures consistent and stable lasing information. Our findings can be expanded to different wave systems and open new scenarios in informational coherent amplification and high-Q physical frameworks for both classical and quantum applications.

19.
Small ; : e2402863, 2024 May 19.
Article in English | MEDLINE | ID: mdl-38764314

ABSTRACT

Facing the increasing global shortage of freshwater resources, this study presents a suspended multilayer evaporator (SMLE), designed to tackle the principal issues plaguing current solar-driven interfacial evaporation technologies, specifically, substantial thermal losses and limited water production. This approach, through the implementation of a multilayer structural design, enables superior thermal regulation throughout the evaporation process. This evaporator consists of a radiation damping layer, a photothermal conversion layer, and a bottom layer that leverages radiation, wherein the bottom layer exhibits a notable infrared emissivity. The distinctive feature of the design effectively reduces radiative heat loss and facilitates dual-interface evaporation by heating the water surface through mid-infrared radiation. The refined design leads to a notable evaporation rate of 2.83 kg m-2 h-1. Numerical simulations and practical performance evaluations validate the effectiveness of the multilayer evaporator in actual use scenarios. This energy-recycling and dual-interface evaporation multilayered approach propels the design of high-efficiency solar-driven interfacial evaporators forward, presenting new insights into developing effective water-energy transformation systems.

20.
Foods ; 13(8)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38672845

ABSTRACT

Natural polysaccharides are important active biomolecules. However, the analysis and structural characterization of polysaccharides are challenging tasks that often require multiple techniques and maps to reflect their structural features. This study aimed to propose a new heart-cutting two-dimensional liquid chromatography (2D-LC) method for separating and analyzing polysaccharides to explore the multidimensional information of polysaccharide structure in a single map. That is, the first-dimension liquid chromatography (1D-LC) presents molecular-weight information, and the second-dimension liquid chromatography (2D-LC) shows the fingerprints of polysaccharides. In this 2D-LC system, the size-exclusion chromatography-hydrophilic interaction chromatography (SEC-HILIC) model was established. Coupling with a charged aerosol detector (CAD) eliminated the need for the derivatization of the polysaccharide sample, allowing the whole process to be completed within 80 min. The methods were all validated in terms of precision, linearity, stability, and repeatability. The capability of the new 2D-LC method was demonstrated in determining various species of natural polysaccharides. Our experimental data demonstrated the feasibility of the whole systematic approach, opening the door for further applications in the field of natural polysaccharide analysis.

SELECTION OF CITATIONS
SEARCH DETAIL
...