Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 80
Filter
Add more filters










Publication year range
1.
Angew Chem Int Ed Engl ; : e202404921, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953122

ABSTRACT

The cathode interlayer is crucial for the development of organic solar cells (OSCs), but the research on simple and efficient interlayer materials is lagging behind. Here, a donor-acceptor (D-A) typed selenophene-fused perylene diimide (PDI) derivative (SePDI3) is developed as cathode interlayer material (CIM) for OSCs, and a non-fused PDI derivative (PDI3) is used as the control CIM for comparison. Compared to PDI3, SePDI3 shows a stronger self-doping effect and better crystallinity, resulting in better charge transport ability. Furthermore, the interaction between SePDI3 and L8-BO can form an efficient extraction channel, leading to superior charge extraction behavior. Finally, benefitting from significantly enhanced charge transport and extraction capacity, the SePDI3-based device displays a champion PCE of 19.04% with an ultrahigh fill factor of 81.65% for binary OSCs based on PM6:L8-BO active layer, which is one of the top efficiencies reported to date in binary OSCs based novel CIMs. Our work prescribes a facile and effective fusion strategy to develop high-efficiency CIMs for OSCs.

2.
Nat Commun ; 15(1): 5375, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38918392

ABSTRACT

Coupling the Si-based anodes with nickel-rich LiNixMnyCo1-x-yO2 cathodes (x ≥ 0.8) in the energy-dense cell prototype suffers from the mechanical instability of the Li-Si alloys, cathode collapse upon the high-voltage cycling, as well as the severe leakage current at elevated temperatures. More seriously, the cathode-to-anode cross-talk effect of transitional metal aggravates the depletion of the active Li reservoir. To reconcile the cation utilization degree, stress dissipation, and extreme temperature tolerance of the Si-based anode||NMC prototype, we propose a gel polymer electrolyte to reinforce the mechanical integrity of Si anode and chelate with the transitional cations towards the stabilized interfacial property. As coupling the conformal gel polymer electrolyte encapsulation with the spatial arranged Si anode and NMC811 cathode, the 2.7 Ah pouch-format cell could achieve the high energy density of 325.9 Wh kg-1 (based on the whole pouch cell), 88.7% capacity retention for 2000 cycles, self-extinguish property as well as a wide temperature tolerance. Therefore, this proposed polymerization strategy provides a leap toward the secured Li batteries.

3.
Appl Microbiol Biotechnol ; 108(1): 383, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38896301

ABSTRACT

Herpes simplex virus type 1 (HSV-1) plays an important role in the field of gene therapy and viral vaccines, especially as an oncolytic virus. However, the mass production of HSV-1 viral vectors remains a challenge in the industry. In this study, a microcarrier-mediated serum-reduced medium culture was used to improve the bioprocess of HSV-1 production and increase HSV-1 yields. The composition of the culture media, which included a basal medium, serum concentration, and glutamine additive, was optimized. The process was successfully conducted in a 1 L bioreactor, and virus production was threefold greater than that of conventional processes with a 10% serum medium. The bead-to-bead transfer process was also developed to further increase scalability. In spinner flasks, the detachment rate increased from 49.4 to 80.6% when combined agitation was performed during digestion; the overall recovery proportion increased from 37.9 to 71.1% after the operational steps were optimized. Specifically, microcarrier loss was reduced during aspiration and transfer, and microcarriers and detached cells were separated with filters. Comparable cell growth was achieved with the baseline process using 2D culture as the inoculum by exchanging the subculture medium. To increase virus production after bead-to-bead transfer, critical parameters, including shear stress during digestion, TrypLE and EDTA concentrations in the subculture, and the CCI, were identified from 47 parameters via correlation analysis and principal component analysis. The optimized bead-to-bead transfer process achieved an average of 90.4% overall recovery and comparable virus production compared to that of the baseline process. This study is the first to report the optimization of HSV-1 production in Vero cells cultured on microcarriers in serum-reduced medium after bead-to-bead transfer. KEY POINTS: • An HSV-1 production process was developed that involves culturing in serum-reduced medium, and this process achieved threefold greater virus production than that of traditional processes. • An indirect bead-to-bead transfer process was developed with over 90% recovery yield in bioreactors. • HSV-1 production after bead-to-bead transfer was optimized and was comparable to that achieved with 2D culture as inoculum.


Subject(s)
Bioreactors , Culture Media , Herpesvirus 1, Human , Virus Cultivation , Herpesvirus 1, Human/growth & development , Bioreactors/virology , Culture Media/chemistry , Chlorocebus aethiops , Virus Cultivation/methods , Vero Cells , Animals
4.
Pathol Res Pract ; 259: 155353, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38797129

ABSTRACT

Ferroptosis is a novel type of iron-dependent programmed cell death characterised by intracellular iron overload, increased lipid peroxidation and abnormal accumulation of reactive oxygen species.It has been implicated in the progression of several diseases including cancer, ischaemia-reperfusion injury, neurodegenerative diseases and liver disease. The etiology of endometriosis (EMS) is still unclear and is associated with multiple factors, often accompanied by various forms of cell death and a complex microenvironment. In recent decades, the role of non-traditional forms of cell death, represented by ferroptosis, in endometriosis has come to the attention of researchers. This article reviews the transitional role of iron homeostasis in the development of ferroptosis, the characteristics and regulatory mechanisms of ferroptosis, and focuses on summarising the links between iron death and various pathogenic mechanisms of EMS, including oxidative stress, dysregulation of lipid metabolism, inflammation, autophagy and epithelial-mesenchymal transition. The possible applications of ferroptosis in the treatment of EMS, future research directions and current issues are discussed with the aim of providing new ideas for further understanding of EMS.


Subject(s)
Endometriosis , Ferroptosis , Iron , Oxidative Stress , Ferroptosis/physiology , Endometriosis/pathology , Endometriosis/metabolism , Humans , Female , Iron/metabolism , Oxidative Stress/physiology , Lipid Peroxidation/physiology , Animals , Reactive Oxygen Species/metabolism , Autophagy/physiology , Epithelial-Mesenchymal Transition/physiology , Lipid Metabolism/physiology
5.
ACS Nano ; 18(10): 7596-7609, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38415583

ABSTRACT

The compact design of an environmentally adaptive battery and effectors forms the foundation for wearable electronics capable of time-resolved, long-term signal monitoring. Herein, we present a one-body strategy that utilizes a hydrogel as the ionic conductive medium for both flexible aqueous zinc-ion batteries and wearable strain sensors. The poly(vinyl alcohol) hydrogel network incorporates nano-SiO2 and cellulose nanofibers (referred to as PSC) in an ethylene glycol/water mixed solvent, balancing the mechanical properties (tensile strength of 6 MPa) and ionic diffusivity at -20 °C (2 orders of magnitude higher than 2 M ZnCl2 electrolyte). Meanwhile, cathode lattice breathing during the solvated Zn2+ intercalation and dendritic Zn protrusion at the anode interface are mitigated. Besides the robust cyclability of the Zn∥PSC∥V2O5 prototype within a wide temperature range (from -20 to 80 °C), this microdevice seamlessly integrates a zinc-ion battery with a strain sensor, enabling precise monitoring of the muscle response during dynamic body movement. By employing transmission-mode operando XRD, the self-powered sensor accurately documents the real-time phasic evolution of the layered cathode and synchronized strain change induced by Zn deposition, which presents a feasible solution of health monitoring by the miniaturized electronics.

6.
Foods ; 13(2)2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38254536

ABSTRACT

Oat protein is unstable in intestinal fluid digestion, and it is easily degraded by trypsin and chymotrypsin, producing low molecular weight peptides. Endopeptidase hydrolysis can improve the bioavailability of active peptides and avoid further digestion in the gastrointestinal tract. Antimicrobial peptides (AMPs) can effectively improve host immunity, but most related studies focus on physiology and ecology, and there are few reports on their molecular level. Therefore, in this article, oat peptides were prepared via the simulated digestion method in vitro, and the main metabolites and action factors affecting colitis were screened by using the multi-omics methods in a high-throughput mode to analyze the effect and mechanism of colitis. Firstly, oat antimicrobial peptides were prepared from cationic resin combined with HPLC, and the anti-inflammatory effects of antimicrobial peptides were analyzed in vitro through the use of human colon epithelial (HCoEpiC) anti-inflammatory cells. In vivo experiments using rats have verified that AMPs can effectively prevent colitis caused by dextran sodium sulfate (DSS), reduce intestinal inflammatory cell infiltration and glandular disappearance in the colon, and reduce the apoptosis rate of colon cells. Secondly, metabolomics and transcriptomics were combined to analyze the mechanism of preventing enteritis, and it was found that oat antimicrobial peptides can promote DAG diglycerol production and inhibit the activation of T helper cells (TH), resulting in the down-regulation of key factors in the main downstream pathways of TH1, TH2 and TH17, and inhibit the production of inflammatory cells. At the same time, AMP can activate the wnt pathway, improve the expression of key genes of wnt and frizzled, promote the generation of intestinal stem cells, facilitate the differentiation and repair of intestinal epithelial cells, and prevent the generation of enteritis. Finally, the underlying genetic regulatory network of the important pathway was constructed from the effect of AMP on rat colitis.

7.
Phytochem Anal ; 35(2): 409-418, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37872850

ABSTRACT

INTRODUCTION: Panax ginseng and Panax quinquefolium are traditional Chinese herb medicines and similar in morphology and some chemical components but differ in drug properties, so they cannot be mixed. However, the processed products of them are often sold in the form of slices, powder, and capsules, which are difficult to identify by traditional morphological methods. Furthermore, an accurate evaluation of P. ginseng, P. quinquefolium and the processed products have not been conducted. OBJECTIVE: This study aimed to establish a catalysed hairpin assembly (CHA) identification method for authenticating products made from P. ginseng and P. quinquefolium based on single nucleotide polymorphism (SNP) differences. METHOD: By analysing the differences of SNP in internal transcribed spacer 2 (ITS2) in P. ginseng and P. quinquefolium to design CHA-specific hairpins. Establish a sensitive and efficient CHA method that can identify P. ginseng and P. quinquefolium, use the sequencing technology to verify the accuracy of this method in identifying Panax products, and compare this method with high-resolution melting (HRM). RESULTS: The reaction conditions of CHA were as follows: the ratio of forward and reverse primers, 20:1; hairpin concentration, 5 ng/µL. Compared with capillary electrophoresis, this method had good specificity and the limit of detection was 0.5 ng/µL. The result of Panax product identification with CHA method were coincidence with that of the sequencing method; the positive rate of CHA reaction was 100%. CONCLUSION: This research presents an effective identification method for authenticating P. ginseng and P. quinquefolium products, which is helpful to improve the quality of Panax products.


Subject(s)
Panax , Panax/genetics , Panax/chemistry , Medicine, Chinese Traditional , Polymorphism, Single Nucleotide , Technology
8.
Chem Asian J ; 19(1): e202300883, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-37950799

ABSTRACT

Organochalcogen molecules have extensive applications in various fields. They serve as pharmaceuticals, ligands, organocatalysts, agrochemicals, and other functional materials. Difunctionalization of olefins, which belong to a class of multicomponent reactions, is a successful technique for introducing two functional moieties in a single-step reaction, both in terms of atom economy and step economy. The difunctionalization of olefins with diorganyl dichalcogenides may effectively increase the molecular complexity, which has achieved significant advancements in recent decades. This article describes recent advancements in the difunctionalization of olefins with diorganyl diselenides and diorganyl disulfides.

9.
J Oral Rehabil ; 51(5): 805-816, 2024 May.
Article in English | MEDLINE | ID: mdl-38146807

ABSTRACT

BACKGROUND: Abnormal lipid metabolism is involved in the development of osteoarthritis (OA). ATP-binding cassette protein G1 (ABCG1) is crucial in mediating the outflow of cholesterol, phosphatidylcholine and sphingomyelin and reducing intracellular lipid accumulation. OBJECTIVE: This study aimed to evaluate whether ABCG1 participates in the abnormal adipogenesis of chondrocytes in osteoarthritic cartilage of temporomandibular joint. METHODS: Eight-week-old female rats were subjected to unilateral anterior crossbite (UAC) to induce OA in the temporomandibular joint (TMJ). Histochemical staining, immunohistochemical (IHC) staining, and qRT-PCR were performed. Primary condylar chondrocytes of rats were transfected with ABCG1 shRNA or overexpression lentivirus and then stimulated with fluid flow shear stress (FFSS). Cells were collected for oil red O staining, immunofluorescence staining, and qRT-PCR analysis. RESULTS: Abnormal adipogenesis, characterized by increased expression of Adiponectin, CCAAT/enhancer-binding protein α (Cebpα), fatty acid binding protein 4 (Fabp4) and Perilipin1, was enhanced in the degenerative cartilage of TMJ OA in rats with UAC, accompanied by decreased expression of ABCG1. After FFSS stimulation, we observed lipid droplets in the cytoplasm of cultured cells with increased expression of Adiponectin, Cebpα, Fabp4 and Perilipin1 and decreased expression of ABCG1. Knockdown of Abcg1 induced abnormal adipogenesis and differentiation of condylar chondrocytes. Overexpression of ABCG1 alleviated the abnormal adipogenesis and differentiation of condylar chondrocytes induced by FFSS. CONCLUSIONS: Abnormal adipogenesis of chondrocytes and decreased ABCG1 expression were observed in degenerative cartilage of TMJ OA. ABCG1 overexpression effectively inhibits the adipogenesis of chondrocytes and thus alleviates TMJ condylar cartilage degeneration.


Subject(s)
Cartilage, Articular , Malocclusion , Osteoarthritis , Animals , Female , Rats , Adenosine Triphosphate/metabolism , Adipogenesis , Adiponectin/metabolism , Cartilage, Articular/metabolism , Chondrocytes/metabolism , Malocclusion/metabolism , Temporomandibular Joint/metabolism
10.
ACS Nano ; 17(21): 21850-21864, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37874620

ABSTRACT

The scalable development of an environmentally adaptive and homogeneous Li+ supplementary route remains a formidable challenge for the existing prelithiation technologies, restricting the full potential of high-capacity anodes. In this study, we present a moisture-tolerant interfacial prelithiation approach through casting a hydrophobic poly(vinylidene-co-hexafluoropropylene) membrane blended with a deep-lithiated alloy (Li22Si5@C/PVDF-HFP) onto Si based anodes. This strategy could not only extend to various high-capacity anode systems (SiOx@C, hard carbon) but also align with industrial roll-to-roll assembly processes. By carefully adjusting the thickness of the prelithiation layer, the densely packed Si@C electrode (4.5 mAh cm-2) exhibits significantly improved initial Coulombic efficiency until a close-to-unit value, as well as extreme moisture tolerance (60% relative humidity). Furthermore, it achieves more than 10-fold enhancement of ionic conductivity across the electrode. As pairing the prelithiated Si@C anode with the LiNi0.8Co0.1Mn0.1O2 cathode, the 2 Ah pouch-format prototype balances an energy density of ∼371 Wh kg-1 and an extreme power output of 2450 W kg-1 as well as 83.8% capacity retention for 1000 cycles. The combined operando phase tracking and spatial arrangement analysis of the intermediate alloy elucidate that the enhanced Li utilization derives from the gradient stress dissipation model upon a spontaneous Li+ redistribution process.

11.
ISME J ; 17(11): 2023-2034, 2023 11.
Article in English | MEDLINE | ID: mdl-37715043

ABSTRACT

Biological nitrogen fixation (BNF), the conversion of N2 into bioavailable nitrogen (N), is the main process for replenishing N loss in the biosphere. However, BNF in groundwater systems remains poorly understood. In this study, we examined the activity, abundance, and community composition of diazotrophs in groundwater in the Hetao Plain of Inner Mongolia using 15N tracing methods, reverse transcription qPCR (RT-qPCR), and metagenomic/metatranscriptomic analyses. 15N2 tracing incubation of near in situ groundwater (9.5-585.4 nmol N L-1 h-1) and N2-fixer enrichment and isolates (13.2-1728.4 nmol N g-1 h-1, as directly verified by single-cell resonance Raman spectroscopy), suggested that BNF is a non-negligible source of N in groundwater in this region. The expression of nifH genes ranged from 3.4 × 103 to 1.2 × 106 copies L-1 and was tightly correlated with dissolved oxygen (DO), Fe(II), and NH4+. Diazotrophs in groundwater were chiefly aerobes or facultative anaerobes, dominated by Stutzerimonas, Pseudomonas, Paraburkholderia, Klebsiella, Rhodopseudomonas, Azoarcus, and additional uncultured populations. Active diazotrophs, which prefer reducing conditions, were more metabolically diverse and potentially associated with nitrification, sulfur/arsenic mobilization, Fe(II) transport, and CH4 oxidation. Our results highlight the importance of diazotrophs in subsurface geochemical cycles.


Subject(s)
Groundwater , Nitrogen Fixation , China , Pseudomonas , Groundwater/chemistry , Nitrogen/analysis , Ferrous Compounds
12.
Anal Biochem ; 679: 115298, 2023 10 15.
Article in English | MEDLINE | ID: mdl-37619904

ABSTRACT

Panax ginseng and Panax quinquefolium are two valuable Chinese herbal medicines that should not be mixed because they differ in drug properties and efficacy. The traditional identification method is easily affected by subjective factors and cannot effectively distinguish between ginseng products. This study aimed to develop a new chemical analysis method to visually identify P. ginseng and P. quinquefolium. In this method, a large number of sequences containing G-quadruplex were generated by loop-mediated isothermal amplification, and the combination of G-quadruplex and hemin was used to form deoxyribozyme, which catalyzed the color change of H2O2. Artificial simulation of adulteration experiments revealed that this method could detect more than 20% adulterated P. quinquefolium. Compared with the traditional identification methods, this technology was simpler and more efficient, providing a reference for developing rapid visual identification methods and reagents for P. ginseng and P. quinquefolium.


Subject(s)
DNA, Catalytic , Panax , Hydrogen Peroxide , Chromatography, Gas , Computer Simulation
13.
J Control Release ; 361: 604-620, 2023 09.
Article in English | MEDLINE | ID: mdl-37579974

ABSTRACT

Intravenous administration of drugs is a widely used cancer therapy approach. However, the efficacy of these drugs is often hindered by various biological barriers, including circulation, accumulation, and penetration, resulting in poor delivery to solid tumors. Recently, cell-based drug delivery platforms have emerged as promising solutions to overcome these limitations. These platforms offer several advantages, including prolonged circulation time, active targeting, controlled release, and excellent biocompatibility. Cell-based delivery systems encompass cell membrane coating, intracellular loading, and extracellular backpacking. These innovative platforms hold the potential to revolutionize cancer diagnosis, monitoring, and treatment, presenting a plethora of opportunities for the advancement and integration of pharmaceuticals, medicine, and materials science. Nevertheless, several technological, ethical, and financial barriers must be addressed to facilitate the translation of these platforms into clinical practice. In this review, we explore the emerging strategies to overcome these challenges, focusing specifically on the functions and advantages of cell-mediated drug delivery in cancer treatment.


Subject(s)
Medicine , Neoplasms , Humans , Drug Delivery Systems , Neoplasms/drug therapy , Pharmaceutical Preparations , Cell Membrane
14.
ACS Nano ; 17(17): 17359-17371, 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37607049

ABSTRACT

Rechargeable aqueous zinc batteries (RAZBs) represent a sustainable, environmentally benign, cost-efficient energy storage solution for the scaled renewable power system. However, the cycling endurance and temperature adaptability of RAZBs are hindered by practical technological barriers such as the subzero freezing point of aqueous electrolyte, severe cation dissolution of the cathode, and dendrite growth on the Zn anode. Herein, we optimize the hybrid electrolyte formulation of 8 M ZnCl2 in the ethylene glycol-water mixed solvent to reconfigure the hydrogen bonding and [Zn(H2O)1.80(EG)0.23]2+ solvation sheath, which well balances the ionic conductivity and the antifreezing property until -125 °C. As monitored by operando X-ray diffraction, meanwhile, the structural dissolution of the V2O5 cathode upon the dynamic cycling and static idling storage at elevated temperature are effectively restrained. At the anode side, the thermally induced substitution between the Ag2Se overcoating and Zn foil in situ constructs the site-selective, mosaic interface layer, in which the solvophilic ZnSe facilitates the desolvation, while the Ag species provide zincophilic nucleation sites for high-throughput Zn deposition. The synergistic coupling of the antifreezing electrolyte and anode interfacial design enables the wide-temperature-range adaptability of the RAZB prototype (10 µm Zn foil and 1 mAh cm-2 V2O5 cathode), which balances the cycling endurance (92.5% capacity retention rate for 1000 cycles), 84.7% mitigation of the self-discharge rate at 55 °C, as well as the secured cyclability even at -40 °C.

15.
Angew Chem Int Ed Engl ; 62(39): e202306847, 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37565778

ABSTRACT

A third component featuring a planar backbone structure similar to the binary host molecule has been the preferred ingredient for improving the photovoltaic performance of ternary organic solar cells (OSCs). In this work, we explored a new avenue that introduces 3D-structured molecules as guest acceptors. Spirobifluorene (SF) is chosen as the core to combine with three different terminal-modified (rhodanine, thiazolidinedione, and dicyano-substituted rhodanine) benzotriazole (BTA) units, affording three four-arm molecules, SF-BTA1, SF-BTA2, and SF-BTA3, respectively. After adding these three materials to the classical system PM6 : Y6, the resulting ternary devices obtained ultra-high power-conversion efficiencies (PCEs) of 19.1 %, 18.7 %, and 18.8 %, respectively, compared with the binary OSCs (PCE=17.4 %). SF-BTA1-3 can work as energy donors to increase charge generation via energy transfer. In addition, the charge transfer between PM6 and SF-BTA1-3 also acts to enhance charge generation. Introducing SF-BTA1-3 could form acceptor alloys to modify the molecular energy level and inhibit the self-aggregation of Y6, thereby reducing energy loss and balancing charge transport. Our success in 3D multi-arm materials as the third component shows good universality and brings a new perspective. The further functional development of multi-arm materials could make OSCs more stable and efficient.

16.
Nutrition ; 115: 112148, 2023 11.
Article in English | MEDLINE | ID: mdl-37541145

ABSTRACT

OBJECTIVES: Buckwheat quercetin (QUE) was used as a dietary supplement to investigate the mechanism of QUE on the regulation of lipid metabolism and intestinal flora in hyperlipidemic rats. METHODS: Here, using a high-fat diet-induced hyperlipidemia model, the intervention was carried out by gavage of QUE at doses of 50, 100, and 200 mg/kg. Serum lipid levels, liver biochemical parameters, and histopathologic changes in the liver and intestinal microorganisms were measured in rats by enzyme-linked immunosorbent assay, hematoxylin-eosin, and high-throughput sequencing, respectively. RESULTS: Our results found that QUE, at a dose of 200 mg/kg, significantly reduced body weight, liver index, and lipid levels in rats (P < 0.05); improved hepatic oxidative stress; and repaired liver injury. In addition, the upregulation of beneficial bacteria, such as christensenellaceae and Bifidobacterium, in the organism increased the content of short-chain fatty acids, thus interfering with intestinal pH and improving the intestinal environment, while downregulating the relative abundance of Proteobacteria and Eubacterium_coprostanoligenes_group, and regulating the overproduction of butyrate. The real-time fluorescence quantitative polymerase chain reaction results found that QUE inhibited the expression of Toll-like receptor 4 (TLR4) and nuclear factor κB (NF-κB) mRNA content and blocked the activation of the TLR4/NF-κB signaling pathway, thus affecting the downregulation of lipid levels and restoring intestinal homeostasis. CONCLUSIONS: A QUE dose of 200 mg/kg may improve lipid levels and the composition of intestinal flora through the TLR4/NF-κB pathway, suggesting that proteobacteria and christensenellaceae abundance changes may be biomarkers of potential diseases.


Subject(s)
Fagopyrum , Gastrointestinal Microbiome , Rats , Animals , NF-kappa B/metabolism , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Fagopyrum/metabolism , Quercetin/pharmacology , Lipid Metabolism , Diet, High-Fat/adverse effects , Gastrointestinal Microbiome/physiology , Lipids
17.
ACS Macro Lett ; 12(8): 1144-1150, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37503885

ABSTRACT

Herein, we originally developed a fused ring building block as an acceptor unit, namely, 2,6,10-trihydro-carbazole[3,4-c:5,6-c]bis[1,2,5]-triazole (CTA), through fusing two benzotriazoles (BTA) with a pyrrole ring. A p-type polymer PE93 containing the CTA unit exhibits relatively high molecular energy levels and excellent luminescent properties. The PE93:BTA76-based solar cell obtained a device efficiency of 12.16%, with a VOC of 0.94 V and a low nonradiative recombination loss of 0.18 eV. The results suggest that the CTA unit is an efficient acceptor unit to achieve excellent photovoltaic performance.

18.
J Med Chem ; 66(10): 6981-6993, 2023 05 25.
Article in English | MEDLINE | ID: mdl-37191335

ABSTRACT

Inhibiting TNF-α-mediated acute inflammation is an effective treatment against inflammatory bowel disease. In this study, TNF-α-based T7 phage display library screening combined with in vitro and in vivo assays was applied. A lead peptide, pep2 (ACHAWAPTR, KD = 5.14 µM), could directly bind to TNF-α and block TNF-α-triggered signaling activation. Peptide pep2 inhibits TNF-α-induced cytotoxicity and attenuates the inflammation by decreasing NF-κB and MAPK signaling activities in a variety of cells. Furthermore, pep2 attenuated colitis induced by dextran sodium sulfate in mice in both prophylactic and therapeutic settings. Moreover, pep2 reduced the phosphorylation of p38, ERK1/2, JNK1/2, p65, and IκBα in colonic tissues as well as downregulated inflammatory genes. And HIS3, TRP5, and ARG9 may be the key amino acids in pep2 to bind TNF-α by molecular docking. Collectively, targeting TNF-α with pep2 can attenuate the inflammation in vivo and vitro by inhibiting NF-κB and MAPK signaling pathways.


Subject(s)
Inflammatory Bowel Diseases , NF-kappa B , Animals , Mice , NF-kappa B/metabolism , Tumor Necrosis Factor-alpha/metabolism , Bacteriophage T7/metabolism , Tumor Necrosis Factor Inhibitors , Molecular Docking Simulation , Inflammatory Bowel Diseases/drug therapy , Peptides/pharmacology , Peptides/therapeutic use , Inflammation , Dextran Sulfate
19.
Small ; 19(21): e2207638, 2023 May.
Article in English | MEDLINE | ID: mdl-36843222

ABSTRACT

Hard carbons (HCs) are extensively investigated as the potential anodes for commercialization of sodium-ion batteries (SIBs). However, the practical deployment of HC anode suffers from the retarded Na+ diffusion at the high-rate or low-temperature operation scenarios. Herein, a multiscale modification strategy by tuning HC microstructure on the particle level as well as replenishing extra Na+ reservoir for the electrode through a homogeneous presodiation therapy is presented. Consequently, the coulombic efficiency of HC anode can be precisely controlled till the close-to-unit value. Detailed kinetics analysis observes that the Na+ diffusivity can be drastically enhanced by two orders of magnitude at the low potential region (< 0.1 V vs. Na+ /Na), which accelerates the rate-limiting step. As pairing the presodiated HC anode (≈5.0 ± 0.2 mg cm-2 ) with the NaVPO4 F cathode (≈10.3 mg cm-2 ) in the 200 mAh pouch cell, the optimal balance of the cyclability (83% over 1000 cycles), low-temperature behavior till -40 °C as well as the maximized power output of 1500 W kg-1 can be simultaneously achieved. This synergistic modification strategy opens a new avenue to exploit the reversible, ultrafast Na+ storage kinetics of HC anodes, which thus constitutes a quantum leap forward toward high-rate SIB prototyping.

20.
Water Res ; 233: 119734, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36804337

ABSTRACT

Reactive oxygen species (ROS) are ubiquitous in O2-perturbed aquifers, but their role in shaping ammonia-oxidizing microbial communities is not clear. This study examined the dynamic responses of ammonia-oxidizing microorganisms (AOMs) in redox-fluctuating aquifers to ROS via field investigation and in-lab verification using transcriptomes/ metatranscriptome and RT-qPCR. Ammonia-oxidizing archaea (AOA) dominated recharge aquifers with lower ROS levels, whereas ammonia-oxidizing bacteria (AOB) and heterotrophic nitrifying aerobic bacteria (HNB) predominated in discharge areas with higher ROS levels. Similar succession in AOM enrichments was found in that the dominant AOMs changed from AOA Nitrosopumilus to AOB Nitrosomonas with increasing ROS. Ammonia oxidation and antioxidant capacity differed significantly among three AOM isolates exposed to ROS. ROS decreased the amoA gene expression of AOA strain Nitrososphaera viennensis PLX03, accompanied by inhibited ammonia oxidation capacity. By contrast, the catalase and superoxide dismutase activities of the AOB strain Nitrosomonas oligotropha PLL12 and HNB strain Pseudomonas aeruginosa PLL01 increased, and the antioxidant genes katG, sodA, ahpC, and ahpF were significantly upregulated. These results demonstrate that ROS exert an important influence on AOMs in redox-fluctuating aquifers. This study improves our understanding of the ecological niches of AOMs in surface/subsurface environments.


Subject(s)
Ammonia , Microbiota , Ammonia/metabolism , Bacteria/metabolism , Reactive Oxygen Species/metabolism , Antioxidants , Archaea/metabolism , Oxidation-Reduction , Phylogeny , Soil Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...