Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Dev Cell ; 59(3): 384-399.e5, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38198890

ABSTRACT

Different types of cells uptake fatty acids in response to different stimuli or physiological conditions; however, little is known about context-specific regulation of fatty acid uptake. Here, we show that muscle injury induces fatty acid uptake in muscle stem cells (MuSCs) to promote their proliferation and muscle regeneration. In humans and mice, fatty acids are mobilized after muscle injury. Through CD36, fatty acids function as both fuels and growth signals to promote MuSC proliferation. Mechanistically, injury triggers the translocation of CD36 in MuSCs, which relies on dynamic palmitoylation of STX11. Palmitoylation facilitates the formation of STX11/SNAP23/VAMP4 SANRE complex, which stimulates the fusion of CD36- and STX11-containing vesicles. Restricting fatty acid supply, blocking fatty acid uptake, or inhibiting STX11 palmitoylation attenuates muscle regeneration in mice. Our studies have identified a critical role of fatty acids in muscle regeneration and shed light on context-specific regulation of fatty acid sensing and uptake.


Subject(s)
Fatty Acids , Lipoylation , Muscle, Skeletal , Qa-SNARE Proteins , Regeneration , Animals , Humans , Mice , Biological Transport , CD36 Antigens/metabolism , Cell Membrane/metabolism , Fatty Acids/metabolism , Muscle, Skeletal/injuries , Muscle, Skeletal/physiology , Qa-SNARE Proteins/metabolism
2.
J Immunol ; 212(3): 397-409, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38088801

ABSTRACT

SHP-1 (Src homology region 2 domain-containing phosphatase 1) is a well-known negative regulator of T cells, whereas its close homolog SHP-2 is the long-recognized main signaling mediator of the PD-1 inhibitory pathway. However, recent studies have challenged the requirement of SHP-2 in PD-1 signaling, and follow-up studies further questioned the alternative idea that SHP-1 may replace SHP-2 in its absence. In this study, we systematically investigate the role of SHP-1 alone or jointly with SHP-2 in CD8+ T cells in a series of gene knockout mice. We show that although SHP-1 negatively regulates CD8+ T cell effector function during acute lymphocytic choriomeningitis virus (LCMV) infection, it is dispensable for CD8+ T cell exhaustion during chronic LCMV infection. Moreover, in contrast to the mortality of PD-1 knockout mice upon chronic LCMV infection, mice double deficient for SHP-1 and SHP-2 in CD8+ T cells survived without immunopathology. Importantly, CD8+ T cells lacking both phosphatases still differentiate into exhausted cells and respond to PD-1 blockade. Finally, we found that SHP-1 and SHP-2 suppressed effector CD8+ T cell expansion at the early and late stages, respectively, during chronic LCMV infection.


Subject(s)
Lymphocytic Choriomeningitis , Lymphocytic choriomeningitis virus , Animals , Mice , CD8-Positive T-Lymphocytes/metabolism , Mice, Inbred C57BL , Mice, Knockout , Programmed Cell Death 1 Receptor/metabolism , T-Cell Exhaustion
3.
World J Clin Cases ; 11(31): 7543-7552, 2023 Nov 06.
Article in English | MEDLINE | ID: mdl-38078121

ABSTRACT

BACKGROUND: Deep vein thrombosis (DVT) of the lower extremity is one of the most common postoperative complications, especially after craniocerebral surgery. DVT may lead to pulmonary embolism, which has a devastating impact on patient prognosis. This study aimed to investigate the incidence and risk factors of DVT in the lower limbs following craniocerebral surgery. AIM: To identify independent risk factors for the development of postoperative DVT and to develop an effective risk prediction model. METHODS: The demographic and clinical data of 283 patients who underwent craniocerebral surgery between December 2021 and December 2022 were retrospectively analyzed. The independent risk factors for lower extremity DVT were identified by univariate and multivariate analyses. A nomogram was created to predict the likelihood of lower extremity DVT in patients who had undergone craniocerebral surgery. The efficacy of the prediction model was determined by receiver operating characteristic curve using the probability of lower extremity DVT for each sample. RESULTS: Among all patients included in the analysis, 47.7% developed lower extremity DVT following craniocerebral surgery. The risk of postoperative DVT was higher in those with a longer operative time, and patients with intraoperative intermittent pneumatic compression were less likely to develop postoperative DVT. CONCLUSION: The incidence of lower extremity DVT following craniocerebral surgery is significant, highlighting the importance of identifying independent risk factors. Interventions such as the use of intermittent pneumatic compression during surgery may prevent the formation of postoperative DVT.

4.
Chemistry ; 29(48): e202301121, 2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37300353

ABSTRACT

Lithium-sulfur (Li-S) batteries are a promising energy storage technology due to their tempting high theoretical capacity and energy density. Nevertheless, the wastage of active materials that originates from the shuttling effect of polysulfides still hinders advancement of Li-S batteries. The effective design of cathode materials is extremely pivotal to solve this thorny problem. Herein, surface engineering in covalent organic polymers (COPs) has been performed to investigate the influence of pore wall polarity on the performance of COP-based cathodes used for Li-S batteries. With the assistance of experimental investigation and theoretical calculations, performance improvement by increasing pore surface polarity and a synergy effect of the polarized functionalities, along with nano-confinement effect of the COPs, are disclosed, to which the improved performance of Li-S batteries including outstanding Coulombic efficiency (99.0 %) and extremely low capacity decay (0.08 % over 425 cycles at 1.0 C) is attributed. This work not only enlightens the designable synthesis and applications of covalent polymers as polar sulfur hosts with high utilization of active materials, but also provides a feasible guide for the design of effective cathode materials for future advanced Li-S batteries.

5.
Nat Commun ; 14(1): 2342, 2023 04 24.
Article in English | MEDLINE | ID: mdl-37095176

ABSTRACT

Triple-negative breast cancer (TNBC) is a subtype of breast cancer with poor outcome and lacks of approved targeted therapy. Overexpression of epidermal growth factor receptor (EGFR) is found in more than 50% TNBC and is suggested as a driving force in progression of TNBC; however, targeting EGFR using antibodies to prevent its dimerization and activation shows no significant benefits for TNBC patients. Here we report that EGFR monomer may activate signal transducer activator of transcription-3 (STAT3) in the absence of transmembrane protein TMEM25, whose expression is frequently decreased in human TNBC. Deficiency of TMEM25 allows EGFR monomer to phosphorylate STAT3 independent of ligand binding, and thus enhances basal STAT3 activation to promote TNBC progression in female mice. Moreover, supplying TMEM25 by adeno-associated virus strongly suppresses STAT3 activation and TNBC progression. Hence, our study reveals a role of monomeric-EGFR/STAT3 signaling pathway in TNBC progression and points out a potential targeted therapy for TNBC.


Subject(s)
Triple Negative Breast Neoplasms , Humans , Female , Animals , Mice , Triple Negative Breast Neoplasms/metabolism , ErbB Receptors/metabolism , Signal Transduction/physiology , Cell Line, Tumor , STAT3 Transcription Factor/metabolism , Cell Proliferation/physiology
6.
Adv Sci (Weinh) ; 10(18): e2300640, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37088735

ABSTRACT

The scarcity of high electrocatalysis composite electrode materials has long been suppressing the redox reaction of V(II)/V(III) and V(IV)/V(V) couples in high performance vanadium redox flow batteries (VRFBs). Herein, through ingeniously regulating the growth of Aspergillus Niger, a wrinkle-like carbon (WLC) material that possesses edge-rich carbon, abundant heteroatoms, and nature wrinkle-like structure is obtained, which is subsequently successfully introduced and uniform dispersed on the surface of carbon fiber of graphite felt (GF). This composite electrode presents a lower overpotential and higher charge transfer ability, as the codoped multiheteroatoms increase the electrocatalysis activity and the wrinkled structure affords more abundant reaction area for vanadium ions in the electrolyte when compared with the pristine GF electrode, which is also supported by the density functional theory (DFT) calculations. Hence, the assembled battery using WLC electrodes achieves a high energy efficiency of 74.5% for 300 cycles at a high current density of 200 mA cm-2 , as well as the highest current density of 450 mA cm-2 . The WLC material not only uncovers huge potential in promoting the application of VRFBs, but also offers referential solution to synthesis microorganism-based high-performance electrode in other energy storage systems.


Subject(s)
Carbon , Graphite , Carbon/chemistry , Aspergillus niger , Vanadium/chemistry , Graphite/chemistry , Oxidation-Reduction , Electrodes
7.
Cell Mol Immunol ; 20(5): 512-524, 2023 05.
Article in English | MEDLINE | ID: mdl-36977779

ABSTRACT

CD8+ T cells play a central role in antiviral immune responses. Upon infection, naive CD8+ T cells differentiate into effector cells to eliminate virus-infected cells, and some of these effector cells further differentiate into memory cells to provide long-term protection after infection is resolved. Although extensively investigated, the underlying mechanisms of CD8+ T-cell differentiation remain incompletely understood. Themis is a T-cell-specific protein that plays critical roles in T-cell development. Recent studies using Themis T-cell conditional knockout mice also demonstrated that Themis is required to promote mature CD8+ T-cell homeostasis, cytokine responsiveness, and antibacterial responses. In this study, we used LCMV Armstrong infection as a probe to explore the role of Themis in viral infection. We found that preexisting CD8+ T-cell homeostasis defects and cytokine hyporesponsiveness do not impair viral clearance in Themis T-cell conditional knockout mice. Further analyses showed that in the primary immune response, Themis deficiency promoted the differentiation of CD8+ effector cells and increased their TNF and IFNγ production. Moreover, Themis deficiency impaired memory precursor cell (MPEC) differentiation but promoted short-lived effector cell (SLEC) differentiation. Themis deficiency also enhanced effector cytokine production in memory CD8+ T cells while impairing central memory CD8+ T-cell formation. Mechanistically, we found that Themis mediates PD-1 expression and its signaling in effector CD8+ T cells, which explains the elevated cytokine production in these cells when Themis is disrupted.


Subject(s)
CD8-Positive T-Lymphocytes , Lymphocytic Choriomeningitis , Mice , Animals , Lymphocytic choriomeningitis virus , Cell Differentiation , Cytokines/metabolism , Mice, Knockout , Mice, Inbred C57BL , Immunologic Memory , Intercellular Signaling Peptides and Proteins/metabolism
8.
Imeta ; 2(4): e133, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38868220

ABSTRACT

The prevalence of cadmium (Cd)-polluted agricultural soils is increasing globally, and arbuscular mycorrhizal fungi (AMF) can reduce the absorption of heavy metals by plants and improve mineral nutrition. However, the immobilization of the rhizosphere on cadmium is often overlooked. In this study, Glomus mosseae and Medicago sativa were established as symbiotes, and Cd migration and environmental properties in the rhizosphere were analyzed. AMF reduced Cd migration, and Cd2+ changed to an organic-bound state. AMF symbiosis treatment and Cd exposure resulted in microbial community variation, exhibiting a distinct deterministic process (|ßNTI| > 2), which ultimately resulted in a core microbiome function of heavy metal resistance and nutrient cycling. AMF increased available N and P, extracellular enzyme activity (LaC, LiP, and CAT), organic matter content (TOC, EOC, and GRSP), and Eh of the rhizosphere soil, significantly correlating with decreased Cd migration (p < 0.05). Furthermore, AMF significantly affected root metabolism by upregulating 739 metabolites, with flavonoids being the main factor causing microbiome variation. The structural equation model and variance partial analysis revealed that the superposition of the root metabolites, microbial, and soil exhibited the maximum explanation rate for Cd migration reduction (42.4%), and the microbial model had the highest single explanation rate (15.5%). Thus, the AMF in the rhizosphere microenvironment can regulate metabolite-soil-microbial interactions, reducing Cd migration. In summary, the study provides a new scientific explanation for how AMF improves plant Cd tolerance and offers a sustainable solution that could benefit both the environment and human health.

9.
Nat Commun ; 13(1): 6004, 2022 10 12.
Article in English | MEDLINE | ID: mdl-36224181

ABSTRACT

Aberrant activation of EGFR due to overexpression or mutation is associated with poor prognosis in many types of tumors. Here we show that blocking the sorting system that directs EGFR to plasma membrane is a potent strategy to treat EGFR-dependent tumors. We find that EGFR palmitoylation by DHHC13 is critical for its plasma membrane localization and identify ARF6 as a key factor in this process. N-myristoylated ARF6 recognizes palmitoylated EGFR via lipid-lipid interaction, recruits the exocyst complex to promote EGFR budding from Golgi, and facilitates EGFR transporting to plasma membrane in a GTP-bound form. To evaluate the therapeutic potential of this sorting system, we design a cell-permeable peptide, N-myristoylated GKVL-TAT, and find it effectively disrupts plasma membrane localization of EGFR and significantly inhibits progression of EGFR-dependent tumors. Our findings shed lights on the underlying mechanism of how palmitoylation directs protein sorting and provide an potential strategy to manage EGFR-dependent tumors.


Subject(s)
ADP-Ribosylation Factors , Neoplasms , ADP-Ribosylation Factors/metabolism , Cell Membrane/metabolism , ErbB Receptors/metabolism , Guanosine Triphosphate/metabolism , Humans , Lipids , Neoplasms/metabolism , Protein Transport
10.
J Hazard Mater ; 435: 129077, 2022 08 05.
Article in English | MEDLINE | ID: mdl-35650732

ABSTRACT

Cadmium (Cd) pollution in croplands is a global environmental problem. Measures to improve the tolerance of sensitive crops and reduce pollutant absorption and accumulation are needed in contaminated agricultural areas, and inoculation with rhizosphere microorganisms to regulate plant resistance and heavy metal transport can provide an effective solution. A pot experiment was conducted to analyse the impact of arbuscular mycorrhizal fungi (AMF) on alfalfa oxidase activity, heavy metal resistance genes and transport proteins, metabolism, and other biochemical regulation mechanisms that lead to complexation, compartmentalisation, efflux, enrichment, and antioxidant detoxification pathways. The AMF reduced shoot and protoplasm Cd inflow, and promoted organic compound production (e.g., by upregulating HM-Res4 for 1.2 times), to complex with Cd, reducing its biological toxicity. The AMF increased the ROS scavenging efficiency and osmotic regulatory substance content of the alfalfa plants, reduced oxidative stress (ROS dereased), and maintained homeostasis. It also alleviated Cd inhibition of photosynthetic electron transport, tricarboxylic acid circulation, and nitrogen assimilation. These AMF effects improved leaf and root biomass by 43.87% and 59.71% and facilitated recovery of a conservative root economic strategy. It is speculated that AMF induces the resistance signal switch by regulating the negative feedback regulation mode of indole acetic acid upward transport and methyl jasmonate downward transmission in plants.


Subject(s)
Metals, Heavy , Mycorrhizae , Soil Pollutants , Cadmium/metabolism , Medicago sativa/metabolism , Metals, Heavy/metabolism , Mycorrhizae/metabolism , Reactive Oxygen Species/metabolism , Soil Pollutants/metabolism
11.
Adv Mater ; 34(33): e2202695, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35747910

ABSTRACT

It is still very urgent and challenging to simultaneously develop high-rate and long-cycle oxide cathodes for sodium-ion batteries (SIBs) because of the sluggish kinetics and complex multiphase evolution during cycling. Here, the concept of accurately manipulating structural evolution and formulating high-performance heterostructured biphasic layered oxide cathodes by local chemistry and orbital hybridization modulation is reported. The P2-structure stoichiometric composition of the cathode material shows a layered P2- and O3-type heterostructure that is explicitly evidenced by various macroscale and atomic-scale techniques. Surprisingly, the heterostructured cathode displays excellent rate performance, remarkable cycling stability (capacity retention of 82.16% after 600 cycles at 2 C), and outstanding compatibility with hard carbon anode because of the integrated advantages of intergrowth structure and local environment regulation. Meanwhile, the formation process from precursors during calcination and the highly reversible dynamic structural evolution during the Na+ intercalation/deintercalation process are clearly articulated by a series of in situ characterization techniques. Also, the intrinsic structural properties and corresponding electrochemical behavior are further elucidated by the density of states and electron localization function of density functional theory calculations. Overall, this strategy, which finely tunes the local chemistry and orbitals hybridization for high-performance SIBs, will open up a new field for other materials.

12.
Ecotoxicol Environ Saf ; 237: 113557, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35483149

ABSTRACT

Mounting evidence has confirmed the existence of plant-soil feedback, a reflection of plant-soil interaction. However, analysis of ecological feedback pathways remains a challenge. In this study, single and mixed plant communities in different soil ecosystems were screened using strict control systems in global ecosystems to identify the positive or negative feedback effects in indicator plants. Furthermore, the plant components and biomass were identified in each pathway. The significantly changed components indicated pathway factors. As negative feedback increased, the InRR (Response Ratio) of soil organic matter, soil total N, microbial alpha diversity and the symbiotic fungi proportion were significantly up-regulated (P < 0.05). In contrast, the stoichiometric ratio (C: N), water content, and the pathogenic bacteria proportion were downregulated (P < 0.05). However, the positive feedback showed the opposite trend. Importantly, N limit as a transform node between positive and negative plant-soil feedback predicted by Akaike information criterion (AIC > 0.8). Therefore, it has become an important evaluation standard for the inter-species relationship and ecological environment changes under the background of global N deposition. Finally, the feedback values of each sampling site were recalculated over the next 20 years, 50 years, and 100 years based on the global temperature rise and changing rainfall patterns. We also found that global warming and extreme rainfall may change the distribution of interspecies relationships on a global scale, with global warming having the greatest recognisable effect and decreasing the negative feedback layout by 21.7% (P < 0.05). Therefore, this work promotes the cognition of relationship of soil environment, microbial abundance and function, plant diversity and plant- soil feedback model. Meanwhile, it is of great significance to protect species diversity and restore environmental degradation.


Subject(s)
Mycorrhizae , Soil , Biodiversity , Ecosystem , Feedback , Mycorrhizae/metabolism , Nitrogen/analysis , Plants/metabolism , Soil Microbiology , Temperature
13.
Sci Signal ; 15(721): eabi9983, 2022 02 15.
Article in English | MEDLINE | ID: mdl-35167340

ABSTRACT

To perform their antiviral and antitumor functions, T cells must integrate signals both from the T cell receptor (TCR), which instruct the cell to remain quiescent or become activated, and from cytokines that guide cellular proliferation and differentiation. In mature CD8+ T cells, Themis has been implicated in integrating TCR and cytokine signals. We investigated whether Themis plays a direct role in cytokine signaling in mature T cells. Themis was required for IL-2- and IL-15-driven CD8+ T cell proliferation both in mice and in vitro. Mechanistically, we found that Themis promoted the activation of the transcription factor Stat and mechanistic target of rapamycin signaling downstream of cytokine receptors. Metabolomics and stable isotope tracing analyses revealed that Themis deficiency reduced glycolysis and serine and nucleotide biosynthesis, demonstrating a receptor-proximal requirement for Themis in triggering the metabolic changes that enable T cell proliferation. The cellular, metabolic, and biochemical defects caused by Themis deficiency were corrected in mice lacking both Themis and the phosphatase Shp1, suggesting that Themis mediates IL-2 and IL-15 receptor-proximal signaling by restraining the activity of Shp1. Together, these results not only shed light on the mechanisms of cytokine signaling but also provide new clues on manipulating T cells for clinical applications.


Subject(s)
CD8-Positive T-Lymphocytes , Interleukin-2 , Animals , CD8-Positive T-Lymphocytes/metabolism , Cell Differentiation , Intercellular Signaling Peptides and Proteins , Interleukin-15/genetics , Interleukin-2/genetics , Mice , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/metabolism
14.
Nanoscale ; 14(3): 1008-1013, 2022 Jan 20.
Article in English | MEDLINE | ID: mdl-34989750

ABSTRACT

Aqueous zinc-ion batteries (ZIBs) are widely recognized for their excellent safety and high theoretical capacity but are hindered by the scarcity of cathode materials with high-rate performance and stability. Herein, a dual conducting network corbelled hydrated vanadium pentoxide that involves structural water as a pillar to enlarge the layer spacing of vanadium pentoxide and ensure cycling stability was reported. Along with the proton co-insertion, the hydrated vanadium pentoxide delivers nearly theoretical specific capacities of 524.6 mA h g-1 at 0.3 A g-1 and 258.7 mA h g-1 at 10 A g-1, which was largely due to non-faradaic contribution, and retains 196.8 mA h g-1 at 4.8 A g-1 after 1100 cycles. Notably, a high energy density of 409.3 W h kg-1 at 0.3 A g-1 and a power density of 6666.4 W kg-1 at 10 A g-1 have also been achieved. The design strategy offers a potential path to develop high-rate ZIBs.

15.
J Proteome Res ; 21(2): 507-518, 2022 02 04.
Article in English | MEDLINE | ID: mdl-34969243

ABSTRACT

Targeted analysis of data-independent acquisition (DIA) data needs a spectral library, which is generated by data-dependent acquisition (DDA) experiments or directly from DIA data. A comparison of the DDA library and DIA library in analyzing DIA data has been reported. However, the effects of different spectral libraries on the analysis of diaPASEF data have not been investigated. Here, we generate different spectral libraries with varying proteome coverage to analyze parallel accumulation-serial fragmentation (diaPASEF) data. Besides, we also employ the library-free strategy. The library, constructed by extensive fractionation DDA experiments, produces the highest numbers of precursors and proteins but with a high percentage of missing values. The library-free strategy identifies 10-20% fewer proteins than the library-based method but with a high degree of data completeness. A further study shows that the library-free strategy, although it identifies fewer proteins than the library-based method, leads to similar biological conclusions as the library-based method.


Subject(s)
Proteome , Proteomics , Peptide Library , Proteomics/methods
16.
Zhongguo Gu Shang ; 34(10): 920-4, 2021 Oct 25.
Article in Chinese | MEDLINE | ID: mdl-34726019

ABSTRACT

OBJECTIVE: To compare the effects of tension band combined with patellar cerclage and memory alloy patellar concentrator fixation in the treatment of comminuted fracture of the lower pole of patella. METHODS: From July 2015 to July 2019, 60 patients with distal patellar fracture were treated and were divided into two groups according to different operation methods. In group A, 30 patients were fixed with memory alloy patellar concentrator (NiTi PC), 17 males and 13 females, aged 20 to 71 (39.4±9.9) years, including 19 cases of falling injury, 9 cases of traffic injury and 2 cases of sports injury. The time from injury to operation was 10 to 75 (33.1±7.8) hours; 30 cases in group B were fixed with tension band andcerclage, 15 males and 15 females, aged 21 to 76 (38.6±10.2) years, including 17 cases of falling injury, 12 cases of traffic injury and 1 case of smashing injury. The time from injury to operation was 10 to 91 (34.5±9.1) hours. The curative effects of two groups were observed and compared. RESULTS: All 60 patients were followed up for 9 to 30 months. There was no significant difference in intraoperative bleeding, operation time, follow-up time and fracture healing time between the two groups. Six months after operation, according to the Bostman function score of knee joint:30 cases in group A, the total score was 28.6±4.7, of which 26 cases were excellent and 4 cases were good. The total score of 30 cases in group B was 25.5±4.4, of which 20 cases were excellent, 8 cases were good and 2 cases were poor. There were significant differences in Bostman total score and curative effect evaluation between two groups (P<0.05). The score of group A was significantly better than that of group B. In group B, 1 case had Kirschner wire withdrawal, 2 cases had joint stiffness and 3 cases had internal fixation irritation. CONCLUSION: Memory alloy patellar concentrator is strong and reliable in the treatment of inferior patellar fracture. It can take early rehabilitation exercise after operation, with good recovery of joint function and range of motion and less complications.


Subject(s)
Fractures, Bone , Fractures, Comminuted , Adult , Aged , Bone Wires , Case-Control Studies , Female , Fracture Fixation, Internal , Fractures, Bone/surgery , Fractures, Comminuted/surgery , Humans , Male , Middle Aged , Patella/surgery , Treatment Outcome , Young Adult
17.
Cell Rep ; 36(1): 109314, 2021 07 06.
Article in English | MEDLINE | ID: mdl-34233190

ABSTRACT

MED20 is a non-essential subunit of the transcriptional coactivator Mediator complex, but its physiological function remains largely unknown. Here, we identify MED20 as a substrate of the anti-obesity CRL4-WDTC1 E3 ubiquitin ligase complex through affinity purification and candidate screening. Overexpression of WDTC1 leads to degradation of MED20, whereas depletion of WDTC1 or CUL4A/B causes accumulation of MED20. Depleting MED20 inhibits adipogenesis, and a non-degradable MED20 mutant restores adipogenesis in WDTC1-overexpressing cells. Furthermore, knockout of Med20 in preadipocytes abolishes development of brown adipose tissues. Removing one allele of Med20 in preadipocytes protects mice from diet-induced obesity and reverses weight gain in Cul4a- or Cul4b-depleted mice. Chromatin immunoprecipitation sequencing (ChIP-seq) analysis reveals that MED20 organizes the early adipogenic complex by bridging C/EBPß and RNA polymerase II to promote transcription of the central adipogenic factor, PPARγ. Our findings have thus uncovered a critical role of MED20 in promoting adipogenesis, development of adipose tissue and diet-induced obesity.


Subject(s)
Adipogenesis , Adipose Tissue, Brown , Diet , Obesity , Protein Subunits , Animals , Humans , Mice , 3T3-L1 Cells , Adipocytes/metabolism , Adipose Tissue, Brown/metabolism , Alleles , Base Sequence , CCAAT-Enhancer-Binding Protein-beta/metabolism , Enhancer Elements, Genetic/genetics , HEK293 Cells , Mice, Inbred C57BL , Obesity/metabolism , Obesity/pathology , PPAR gamma/genetics , PPAR gamma/metabolism , Protein Subunits/metabolism , Proteins/metabolism , Proteolysis , Receptors, Interleukin-17/metabolism , RNA Polymerase II/metabolism , Substrate Specificity , Transcription, Genetic
18.
Cell Rep ; 35(12): 109281, 2021 06 22.
Article in English | MEDLINE | ID: mdl-34161765

ABSTRACT

Obesity has become a global pandemic. Identification of key factors in adipogenesis helps to tackle obesity and related metabolic diseases. Here, we show that DDB1 binds the histone reader BRWD3 to promote adipogenesis and diet-induced obesity. Although typically recognized as a component of the CUL4-RING E3 ubiquitin ligase complex, DDB1 stimulates adipogenesis independently of CUL4. A DDB1 mutant that does not bind CUL4A or CUL4B fully restores adipogenesis in DDB1-deficient cells. Ddb1+/- mice show delayed postnatal development of white adipose tissues and are protected from diet-induced obesity. Mechanistically, by interacting with BRWD3, DDB1 is recruited to acetylated histones in the proximal promoters of ELK1 downstream immediate early response genes and facilitates the release of paused RNA polymerase II, thereby activating the transcriptional cascade in adipogenesis. Our findings have uncovered a CUL4-independent function of DDB1 in promoting the transcriptional cascade of adipogenesis, development of adipose tissues, and onset of obesity.


Subject(s)
Adipogenesis , DNA-Binding Proteins , Histones , Obesity , Transcription Factors , Transcription, Genetic , Animals , Humans , Mice , 3T3-L1 Cells , Adipogenesis/genetics , Base Sequence , Diet, High-Fat , DNA-Binding Proteins/deficiency , DNA-Binding Proteins/metabolism , Genes, Immediate-Early , Histones/metabolism , Mice, Inbred C57BL , Obesity/genetics , Promoter Regions, Genetic/genetics , Protein Binding/genetics , RNA Polymerase II/metabolism , Transcription Factors/metabolism
19.
J Hazard Mater ; 403: 123651, 2021 02 05.
Article in English | MEDLINE | ID: mdl-32818834

ABSTRACT

Soilless culture experiments with tobacco were conducted to explore how the signal molecule H2S (0.3, 0.6, 0.9, and 1.2 µM) alleviated the toxicity of Cd2+ (50 mg/L). The results suggested that photosynthesis was enhanced as H2S improved the tobacco ΦPSII, ETR, Photo, Cond, and Tr, and that by increasing the NPQ, it consumed considerable amount of energy to enhance plant resistances during Cd2+ exposure. Furthermore, H2S increased the gene transcription of NtSOD3, NtPOD1, and CAT1, to enhance antioxidant enzyme activity, which reduces the generation of the reactive oxygen protective membrane integrity. Additionally, H2S increased the gene expression of the tobacco PC genes, Pr2 and Pr8 promoted the formation of the Cd2+ complexes and transportation to the vacuole, resulting in improved Cd-ATPase gene expression, away from organelles, to alleviate the Cd2+ poison. Furthermore, H2S regulated the relative absorption of K+ and Ca2+, which antagonized the Cd2+, and reduced its transportation to the aboveground plant material. Finally, the expression level of CaM increased with the application of H2S, and was highly correlated with the fitted results of a variety of resistance indicators, thereby indicating that H2S regulatory resistance mechanisms might be associated with Ca2+ signal transduction.


Subject(s)
Hydrogen Sulfide , Antioxidants , Cadmium/toxicity , Hydrogen Sulfide/toxicity , Signal Transduction , Nicotiana
20.
Nat Commun ; 11(1): 4765, 2020 09 21.
Article in English | MEDLINE | ID: mdl-32958780

ABSTRACT

Fatty acids (FAs) are essential nutrients, but how they are transported into cells remains unclear. Here, we show that FAs trigger caveolae-dependent CD36 internalization, which in turn delivers FAs into adipocytes. During the process, binding of FAs to CD36 activates its downstream kinase LYN, which phosphorylates DHHC5, the palmitoyl acyltransferase of CD36, at Tyr91 and inactivates it. CD36 then gets depalmitoylated by APT1 and recruits another tyrosine kinase SYK to phosphorylate JNK and VAVs to initiate endocytic uptake of FAs. Blocking CD36 internalization by inhibiting APT1, LYN or SYK abolishes CD36-dependent FA uptake. Restricting CD36 at either palmitoylated or depalmitoylated state eliminates its FA uptake activity, indicating an essential role of dynamic palmitoylation of CD36. Furthermore, blocking endocytosis by targeting LYN or SYK inhibits CD36-dependent lipid droplet growth in adipocytes and high-fat-diet induced weight gain in mice. Our study has uncovered a dynamic palmitoylation-regulated endocytic pathway to take up FAs.


Subject(s)
CD36 Antigens/metabolism , Endocytosis/physiology , Fatty Acids/metabolism , Lipoylation , 3T3-L1 Cells , Acyltransferases/metabolism , Adipocytes/metabolism , Animals , CD36 Antigens/deficiency , CD36 Antigens/genetics , Caveolae/metabolism , Cells, Cultured , Diet, High-Fat/adverse effects , Humans , Lipid Droplets/metabolism , Male , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Mutation , Obesity/drug therapy , Phosphorylation , Signal Transduction , Syk Kinase/antagonists & inhibitors , Syk Kinase/metabolism , Weight Gain/drug effects , src-Family Kinases/antagonists & inhibitors , src-Family Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...