Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 235
Filter
1.
Clin Transl Med ; 14(5): e1675, 2024 May.
Article in English | MEDLINE | ID: mdl-38689424

ABSTRACT

INTRODUCTION: Intrahepatic cholangiocarcinoma (ICC) is characterized by a dismal prognosis with limited therapeutic alternatives. To explore phosphatase and tension homolog (PTEN) as a biomarker for proteasome inhibition in ICC, we conducted a phase II trial to assess the second-line efficacy of bortezomib in PTEN-deficient advanced ICC patients. METHODS: A total of 130 patients with advanced ICC in our centre were screened by PTEN immunohistochemical staining between 1 July 2017, and 31 December 2021, and 16 patients were ultimately enrolled and treated with single-agent bortezomib 1.3 mg/m2 on days 1, 4, 8 and 11 of a 21-day cycle. The primary endpoint was the objective response rate (ORR) according to Response Evaluation Criteria in Solid Tumors v1.1. RESULTS: The median follow-up was 6.55 months (95% confidence interval [CI]: 0.7-19.9 months). Among the 16 enrolled patients, the ORR was 18.75% (3/16) and the disease control rate was 43.75% (7/16). The median progress-free survival was 2.95 months (95% CI: 2.1-5.1 months) and the median overall survival (mOS) was 7.2 months (95% CI: 0.7-21.6 months) in the intent-to-treat-patients. Treatment-related adverse events of any grade were reported in 16 patients, with thrombopenia being the most common toxicity. Patients with PTEN staining scores of 0 were more likely to benefit from bortezomib than those with staining scores > 0. CONCLUSIONS: Bortezomib yielded an encouraging objective response and a favourable OS as a second-line agent in PTEN-deficient ICC patients. Our findings suggest bortezomib as a promising therapeutic option for patients with PTEN-deficient ICC. HIGHLIGHTS: There is a limited strategy for the second-line option of intrahepatic cholangiocarcinoma (ICC). This investigator-initiated phase 2 study evaluated bortezomib in ICC patients with phosphatase and tension homology deficiency. The overall response rate was 18.75% and the overall survival was 7.2 months in the intent-to-treat cohort. These results justify further developing bortezomib in ICC patients with PTEN deficiency.


Subject(s)
Bile Duct Neoplasms , Bortezomib , Cholangiocarcinoma , PTEN Phosphohydrolase , Humans , Cholangiocarcinoma/drug therapy , Cholangiocarcinoma/genetics , Bortezomib/therapeutic use , Bortezomib/pharmacology , Male , Female , Middle Aged , Aged , Prospective Studies , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/metabolism , Bile Duct Neoplasms/drug therapy , Bile Duct Neoplasms/genetics , Adult , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology
2.
Nanomaterials (Basel) ; 14(10)2024 May 20.
Article in English | MEDLINE | ID: mdl-38786852

ABSTRACT

In this study, a Ti3C2 MXene@g-C3N4 composite powder (TM-CN) was prepared by the ultrasonic self-assembly method and then loaded onto a carbon nanofiber membrane by the self-assembly properties of MXene for the treatment of organic pollutants in wastewater. The characterization of the TM-CN and the C-TM-CN was conducted via X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectrometer (FTIR) to ascertain the successful modification. The organic dye degradation experiments demonstrated that introducing an appropriate amount of Ti3C2 MXene resulted in the complete degradation of RhB within 60 min, three times the photocatalytic efficiency of a pure g-C3N4. The C-TM-CN exhibited the stable and outstanding photocatalytic degradation of the RhB solution over a wide range of pH values, indicating the characteristics of the photodegradation of organic pollutants in a wide range of aqueous environments. Furthermore, the results of the cyclic degradation experiments demonstrated that the C-TM-CN composite film maintained a degradation efficiency of over 85% after five cycles, thereby confirming a notable improvement in its cyclic stability. Consequently, the C-TM-CN composite film exhibits excellent photocatalytic performance and is readily recyclable, making it an auspicious eco-friendly material in water environment remediation.

3.
Zhongguo Zhong Yao Za Zhi ; 49(4): 912-923, 2024 Feb.
Article in Chinese | MEDLINE | ID: mdl-38621898

ABSTRACT

With the promotion of chemical fertilizer and pesticide reduction and green production of traditional Chinese medicines, microbial fertilizers have become a hot way to achieve the zero-growth of chemical fertilizers and pesticides, improve the yield and qua-lity of medicinal plants, maintain soil health, and promote the sustainable development of the planting industry of Chinese herbal medicines. Soil conditions and microenvironments are crucial to the growth, development, and quality formation of medicinal plants. Microbial fertilizers, as environmentally friendly fertilizers acting on the soil, can improve soil quality by replenishing organic matter and promoting the metabolism of beneficial microorganisms to improve the yield and quality of medicinal plants. In this regard, understanding the mechanism of microbial fertilizer in regulating the quality formation of medicinal plants is crucial for the development of herbal eco-agriculture. This study introduces the processes of microbial fertilizers in improving soil properties, participating in soil nutrient cycling, enhancing the resistance of medicinal plants, and promoting the accumulation of medicinal components to summarize the mechanisms and roles of bacterial fertilizers in regulating the quality formation of medicinal plants. Furthermore, this paper introduces the application of bacterial fertilizers in medicinal plants and makes an outlook on their development, with a view to providing a scientific basis for using microbial fertilizers to improve the quality of Chinese herbal medicines, improve the soil environment, promote the sustainable development of eco-agriculture of traditional Chinese medicine, and popularize the application of microbial fertilizers.


Subject(s)
Pesticides , Plants, Medicinal , Fertilizers , Agriculture , Soil/chemistry , Bacteria/genetics , Plant Extracts , Soil Microbiology
4.
Cancer Lett ; 586: 216690, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38307410

ABSTRACT

The high mutation rate of CTNNB1 (37 %) and Wnt-ß-catenin signal-associated genes (54 %) has been notified in hepatocellular carcinoma (HCC). The activation of Wnt-ß-catenin signal pathway was reported to be associated with an immune "desert" phenotype, but the underlying mechanism remains unclear. Here we mainly employed orthotopic HCC models to explore on it. Mass cytometry depicted the immune contexture of orthotopic HCC syngeneic grafts, unveiling that the exogenous expression of ß-catenin significantly increased the percentage of myeloid-derived suppressor cells (MDSCs) and decreased the percentage of CD8+ T-cells. Flow cytometry and immunohistochemistry further confirmed the findings. The protein microarray analysis, Western blot and PCR identified PF4 as its downstream regulating cytokine. Intratumorally injection of cytokine PF4 enhanced the accumulation of MDSCs. Knockout of PF4 abolished the effect of ß-catenin on recruiting MDSCs. Chromatin immunoprecipitation and luciferase reporter assay demonstrated that ß-catenin increases the mRNA level of PF4 via binding to PF4's promoter region. In vitro chemotaxis assay and in vivo administration of specific inhibitors identified CXCR3 on MDSCs as receptor for recruiting PF4. Lastly, the significant correlations across ß-catenin, PF4 and MDSCs and CD8+ T-cells infiltration were verified in HCC clinical samples. Our results unveiled HCC tumor cell intrinsic hyperactivation of ß-catenin can recruit MDSC through PF4-CXCR3, which contributes to the formation of immune "desert" phenotype. Our study provided new insights into the development of immunotherapeutic strategy of HCC with CTNNB1 mutation. SIGNIFICANCE: This study identifies PF4-CXCR3-MDSCs as a downstream mechanism underlying CTNNB1 mutation associated immune "desert" phenotype.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Myeloid-Derived Suppressor Cells , Humans , beta Catenin/metabolism , Carcinoma, Hepatocellular/pathology , CD8-Positive T-Lymphocytes/metabolism , Cell Line, Tumor , Cytokines/metabolism , Liver Neoplasms/pathology , Myeloid-Derived Suppressor Cells/metabolism , Receptors, CXCR3/metabolism , Wnt Signaling Pathway/genetics
5.
EBioMedicine ; 100: 104962, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38184937

ABSTRACT

BACKGROUND: Liver cirrhosis (LC) is the highest risk factor for hepatocellular carcinoma (HCC) development worldwide. The efficacy of the guideline-recommended surveillance methods for patients with LC remains unpromising. METHODS: A total of 4367 LCs not previously known to have HCC and 510 HCCs from 16 hospitals across 11 provinces of China were recruited in this multi-center, large-scale, cross-sectional study. Participants were divided into Stage Ⅰ cohort (510 HCCs and 2074 LCs) and Stage Ⅱ cohort (2293 LCs) according to their enrollment time and underwent Tri-phasic CT/enhanced MRI, US, AFP, and cell-free DNA (cfDNA). A screening model called PreCar Score was established based on five features of cfDNA using Stage Ⅰ cohort. Surveillance performance of PreCar Score alone or in combination with US/AFP was evaluated in Stage Ⅱ cohort. FINDINGS: PreCar Score showed a significantly higher sensitivity for the detection of early/very early HCC (Barcelona stage A/0) in contrast to US (sensitivity of 51.32% [95% CI: 39.66%-62.84%] at 95.53% [95% CI: 94.62%-96.38%] specificity for PreCar Score; sensitivity of 23.68% [95% CI: 14.99%-35.07%] at 99.37% [95% CI: 98.91%-99.64%] specificity for US) (P < 0.01, Fisher's exact test). PreCar Score plus US further achieved a higher sensitivity of 60.53% at 95.08% specificity for early/very early HCC screening. INTERPRETATION: Our study developed and validated a cfDNA-based screening tool (PreCar Score) for HCC in cohorts at high risk. The combination of PreCar Score and US can serve as a promising and practical strategy for routine HCC care. FUNDING: A full list of funding bodies that contributed to this study can be found in Acknowledgments section.


Subject(s)
Carcinoma, Hepatocellular , Cell-Free Nucleic Acids , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/diagnosis , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/epidemiology , Liver Neoplasms/diagnosis , Liver Neoplasms/genetics , Liver Neoplasms/epidemiology , alpha-Fetoproteins , Cross-Sectional Studies , Early Detection of Cancer/methods , Ultrasonography/methods , Liver Cirrhosis/diagnosis , Liver Cirrhosis/complications , Biomarkers, Tumor
6.
Zhongguo Zhong Yao Za Zhi ; 48(22): 6021-6029, 2023 Nov.
Article in Chinese | MEDLINE | ID: mdl-38114208

ABSTRACT

Dao-di herbs are the treasure of Chinese materia medica and one of the characteristic research objects of traditional Chinese medicine(TCM). Probing into the microevolution of Dao-di herbs can help to reveal their biological essence and quality formation mechanisms. The progress in molecular biology and omics provides the possibility to elucidate the phylogenetic and quality forming characteristics of Dao-di herbs at the molecular level. In particular, genomics serves as a powerful tool to decipher the genetic origins of Dao-di herbs, and molecular markers have been widely used in the research on the genetic diversity and population structure of Dao-di herbs. Focusing on the excellent traits and quality of Dao-di herbs, this paper reviews the studies about the microevolution process of quality formation mechanisms of Dao-di herbs with the application of molecular markers and omics, aiming to underpin the protection and utilization of TCM resources.


Subject(s)
Drugs, Chinese Herbal , Plants, Medicinal , Phylogeny , Plants, Medicinal/chemistry , Medicine, Chinese Traditional , Phenotype
7.
Zhongguo Zhong Yao Za Zhi ; 48(18): 4942-4949, 2023 Sep.
Article in Chinese | MEDLINE | ID: mdl-37802835

ABSTRACT

Root rot is a microbial disease that is difficult to control and can result in serious losses in the planting of most Chinese medicinal materials. As high as 87.6% of roots or rhizomes of Chinese medicinal materials are susceptible to root rot, which seriously affects the cultivation development of Chinese medicinal materials. Trichoderma fungi, possessing biological control functions, can induce plants to improve their resistance to microbial diseases, promote plant growth, and effectively reduce the losses caused by various microbial diseases on cultivation. At present, Trichoderma is rarely used in the cultivation of Chinese medicinal materials, so it has great application potential for the prevention and control of root rot diseases in farmed Chinese medicinal materials. Based on the above situation, after comparison and discussion, it is believed that compared with chemical control and physical control, biological control of root rot diseases of Chinese medicinal materials is more efficient and meets the development needs of Chinese medicinal materials ecological planting in China. This paper reviewed the progress in the research and application of Trichoderma in the control of root rot diseases in the root and rhizome of farmed Chinese medicinal materials in the past 10 years and found that most of the current research on the biological control of root rot diseases in Chinese medicinal materials was mostly limited to the verification of the inhibitory effect of Trichoderma strains on the growth of the pathogenic microbes. Studies on the induction effect of Trichoderma on Chinese medicinal materials are not in depth. Studies on the responding mechanisms of most Chinese medicinal materials to Trichoderma are highly absent. Moreover, there are few reports on field experiments, which indicates that there is a long way to go before Trichoderma is widely applied in the farming practice of Chinese medicinal materials. To sum up, this paper aimed to link the present and the future and advocated further relevant research and more experiments on the application of Trichoderma in the farming of Chinese medicinal materials.


Subject(s)
Trichoderma , Agriculture , Farms , Plant Diseases/prevention & control , Plant Diseases/microbiology , Rhizome
8.
Membranes (Basel) ; 13(8)2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37623764

ABSTRACT

Medical product contamination has become a threatening issue against human health, which is the main reason why protective nonwoven fabrics have gained considerable attention. In the present, there is a soaring number of studies on establishing protection systems with nonwoven composites via needle punch. Meanwhile, the disadvantages of composites, such as poor mechanical performance and texture, impose restrictions. Hence, in this study, an eco-friendly method composed of needling, hot pressing, and lamination is applied to produce water-resistant, windproof, and antimicrobial Tencel/low-melting-point polyester-thermoplastic polyurethane/Triclosan (Tencel/LMPET-TPU/TCL) laminated membranes. Field-emission scanning electron microscope (SEM) images and FTIR show needle-punched Tencel/LMPET membranes successfully coated with TPU/TCL laminated membranes, thereby extensively improving nonwoven membranes in terms of water-resistant, windproof, and antimicrobial attributes. Parameters including needle punch depth, content of LMPET fibers, and concentration of TCL are changed during the production. Specifically, Tencel/LMPET-TPU/TCL-0.1 laminated nonwovens acquire good water resistance (100 kPa), outstanding windproof performance (<0.1 cm3/cm2/s), and good antimicrobial ability against Escherichia coli and Staphylococcus aureus. Made with a green production process that is pollution-free, the proposed products are windproof, water resistant, and antimicrobial, which ensures promising uses in the medical and protective textile fields.

9.
Cells ; 12(13)2023 06 26.
Article in English | MEDLINE | ID: mdl-37443757

ABSTRACT

We assessed interactions between the astrocytic volume-regulated anion channel (VRAC) and aquaporin 4 (AQP4) in the supraoptic nucleus (SON). Acute SON slices and cultures of hypothalamic astrocytes prepared from rats received hyposmotic challenge (HOC) with/without VRAC or AQP4 blockers. In acute slices, HOC caused an early decrease with a late rebound in the neuronal firing rate of vasopressin neurons, which required activity of astrocytic AQP4 and VRAC. HOC also caused a persistent decrease in the excitatory postsynaptic current frequency, supported by VRAC and AQP4 activity in early HOC; late HOC required only VRAC activity. These events were associated with the dynamics of glial fibrillary acidic protein (GFAP) filaments, the late retraction of which was mediated by VRAC activity; this activity also mediated an HOC-evoked early increase in AQP4 expression and late subside in GFAP-AQP4 colocalization. AQP4 activity supported an early HOC-evoked increase in VRAC levels and its colocalization with GFAP. In cultured astrocytes, late HOC augmented VRAC currents, the activation of which depended on AQP4 pre-HOC/HOC activity. HOC caused an early increase in VRAC expression followed by a late rebound, requiring AQP4 and VRAC, or only AQP4 activity, respectively. Astrocytic swelling in early HOC depended on AQP4 activity, and so did the early extension of GFAP filaments. VRAC and AQP4 activity supported late regulatory volume decrease, the retraction of GFAP filaments, and subside in GFAP-VRAC colocalization. Taken together, astrocytic morphological plasticity relies on the coordinated activities of VRAC and AQP4, which are mutually regulated in the astrocytic mediation of HOC-evoked modulation of vasopressin neuronal activity.


Subject(s)
Aquaporin 4 , Supraoptic Nucleus , Rats , Animals , Aquaporin 4/metabolism , Supraoptic Nucleus/metabolism , Astrocytes/metabolism , Vasopressins/pharmacology , Vasopressins/metabolism , Anions/metabolism , Neurons/metabolism
10.
Animals (Basel) ; 13(13)2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37443851

ABSTRACT

Trachinotus ovatus is a major economically important cultured marine fish in the South China Sea. However, extreme weather and increased culture density result in uncontrollable problems, such as increases in water temperature and a decline in dissolved oxygen (DO), hindering the high-quality development of aquaculture. In this study, liver transcriptional profiles of T. ovatus were investigated under acute high-temperature stress (31 °C and 34 °C) and normal water temperature (27 °C) using RNA sequencing (RNA-Seq) technology. Differential expression analysis and STEM analysis showed that 1347 differentially expressed genes (DEGs) and four significant profiles (profiles 0, 3, 4, and 7) were screened, respectively. Of these DEGs, some genes involved in heat shock protein (HSPs), hypoxic adaptation, and glycolysis were up-regulated, while some genes involved in the ubiquitin-proteasome system (UPS) and fatty acid metabolism were down-regulated. Our results suggest that protein dynamic balance and function, hypoxia adaptation, and energy metabolism transformation are crucial in response to acute high-temperature stress. Our findings contribute to understanding the molecular response mechanism of T. ovatus under acute heat stress, which may provide some reference for studying the molecular mechanisms of other fish in response to heat stress.

11.
Sci Transl Med ; 15(704): eadd7464, 2023 07 12.
Article in English | MEDLINE | ID: mdl-37437018

ABSTRACT

Gemcitabine is a nucleoside analog that has been successfully used in the treatment of multiple cancers. However, intrinsic or acquired resistance reduces the chemotherapeutic potential of gemcitabine. Here, we revealed a previously unappreciated mechanism by which phosphatase and tensin homolog (PTEN), one of the most frequently mutated genes in human cancers, dominates the decision-making process that is central to the regulation of gemcitabine efficacy in cholangiocarcinoma (CCA). By investigating a gemcitabine-treated CCA cohort, we found that PTEN deficiency was correlated with the improved efficacy of gemcitabine-based chemotherapy. Using cell-based drug sensitivity assays, cell line-derived xenograft, and patient-derived xenograft models, we further confirmed that PTEN deficiency or genetic-engineering down-regulation of PTEN facilitated gemcitabine efficacy both in vitro and in vivo. Mechanistically, PTEN directly binds to and dephosphorylates the C terminus of the catalytic subunit of protein phosphatase 2A (PP2Ac) to increase its enzymatic activity, which further dephosphorylates deoxycytidine kinase (DCK) at Ser74 to diminish gemcitabine efficacy. Therefore, PTEN deficiency and high phosphorylation of DCK predict a better response to gemcitabine-based chemotherapy in CCA. We speculate that the combination of PP2A inhibitor and gemcitabine in PTEN-positive tumors could avoid the resistance of gemcitabine, which would benefit a large population of patients with cancer receiving gemcitabine or other nucleoside analogs.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Humans , Phosphorylation , Gemcitabine , Nucleosides , Bile Ducts, Intrahepatic , PTEN Phosphohydrolase
12.
Zhongguo Zhong Yao Za Zhi ; 48(11): 2896-2903, 2023 Jun.
Article in Chinese | MEDLINE | ID: mdl-37381971

ABSTRACT

A rich diversity of wild medicinal plant resources is distributed in China, but the breeding of new plant varieties of Chinese medicinal plants started late and the breeding level is relatively weak. Chinese medicinal plant resources are the foundation for new varieties breeding, and the plant variety rights(PVP) are of great significance for the protection and development of germplasm resources. However, most Chinese medicinal plants do not have a distinctness, uniformity, and stability(DUS) testing guideline. The Ministry of Agriculture and Rural Affairs has put 191 plant species(genera) on protection lists, of which only 30 are medicinal species(genera). At the same time, only 29 of 293 species(genera) plants in the Protection List of New Plant Varieties of the People's Republic of China(Forest and Grass) belong to Chinese medicinal plants. The number of PVP applications and authorization of Chinese medicinal plants is rare, and the composition of variety is unreasonable. Up to now, 29 species(genera) of DUS test guidelines for Chinese medicinal plants have been developed. Some basic problems in the breeding of new varieties of Chinese medicinal plants have appeared, such as the small number of new varieties and insufficient utilization of Chinese medicinal plant resources. This paper reviewed the current situation of breeding of new varieties of Chinese medicinal plants and the research progress of DUS test guidelines in China and discussed the application of biotechnology in the field of Chinese medicinal plant breeding and the existing problems in DUS testing. This paper guides the further application of DUS to protect and utilize the germplasm resources of Chinese medicinal plants.


Subject(s)
Plants, Medicinal , Agriculture , Biotechnology , Plant Breeding , Plants, Medicinal/genetics
13.
Zhongguo Zhen Jiu ; 43(5): 537-44, 2023 May 12.
Article in Chinese | MEDLINE | ID: mdl-37161807

ABSTRACT

OBJECTIVE: To explore the effect of "Zhibian" (BL 54)-to-"Shuidao" (ST 28) needle insertion on the ovarian function in the rats with primary ovarian insufficiency (POI) and the potential effect mechanism based on the Fas/FADD/Caspase-8 of death receptor pathway. METHODS: Forty-eight female SD rats were randomly divided into a blank group, a model group, a medication group and an acupuncture group, with 12 rats in each group. Except in the blank group, the rats in the other groups were intraperitoneally injected with cyclophosphamide to establish the POI model. In the acupuncture group, after successful modeling, the intervention was given with "Zhibian" (BL 54)-to- "Shuidao" (ST 28) needle insertion, once daily, 30 min in each intervention; and the duration of intervention was 4 weeks. In the medication group, estradiol valerate tablets were administered intragastrically, 0.09 mg•kg-1•d-1, for 4 weeks. The general situation and the estrous cycle of the rats were compared among groups. Using ELISA, the levels of follicle-stimulating hormone (FSH), luteinizing hormone (LH) and estradiol (E2) in the serum were detected. HE staining was adopted to observe the morphological changes of ovarian tissue of rats. The protein expression of Fas, FADD and Caspase-8 in ovarian tissue was detected with immunohistochemistry and Western blot. RESULTS: After modeling, except the rats of the blank group, the rats of the other groups had dry fur, lost hair, low spirits, reduced food intake, increased urination and loose stool. After intervention, the stool became regular gradually in the acupuncture group and the medication group. The percentage of estrous cycle disturbance was increased in the rats of the model group when compared with the blank group (P<0.01); in comparison with the model group, the percentages of estrous cycle disturbance were reduced in the acupuncture group and the medication group after intervention (P<0.01). When compared with the blank group, the body mass and E2 content in the serum were lower (P<0.01), the levels of FSH and LH in the serum and the protein expression levels of Fas, FADD and Caspase-8 were increased (P<0.01) in the model group. Compared with the model group, the body mass and E2 contents in the serum were higher (P<0.01), the levels of FSH and LH in the serum and the protein expression levels of Fas, FADD and Caspase-8 were reduced (P<0.01) in the acupuncture group and the medication group. CONCLUSION: "Zhibian" (BL 54)-to-"Shuidao" (ST 28) needle insertion can effectively improve the ovarian function of POI rats, and its effect mechanism may be related to regulating the serum sex hormone levels, reducing the expression of Fas, FADD and Caspase-8 in ovarian tissue and retarding apoptosis of ovarian cells.


Subject(s)
Signal Transduction , Female , Animals , Rats , Needles , Receptors, Death Domain/metabolism
14.
Zhongguo Zhong Yao Za Zhi ; 48(5): 1186-1193, 2023 Mar.
Article in Chinese | MEDLINE | ID: mdl-37005802

ABSTRACT

Chinese medicinal resources are the cornerstone of the sustainable development of traditional Chinese medicine industry. However, due to the fecundity of species, over-exploitation, and limitations of artificial cultivation, some medicinal plants are depleted and even endangered. Tissue culture, a breakthrough technology in the breeding of traditional Chinese medicinal materials, is not limited by time and space, and can allow the production on an annual basis, which plays an important role in the protection of Chinese medicinal resources. The present study reviewed the applications of tissue culture of medicinal plants in the field of Chinese medicinal resources, including rapid propagation of medicinal plant seedlings, breeding of novel high-yield and high-quality cultivars, construction of a genetic transformation system, and production of secondary metabolites. Meanwhile, the current challenges and suggestions for the future development of this field were also proposed.


Subject(s)
Plants, Medicinal , Sustainable Development , Plants, Medicinal/genetics , Plant Breeding , Medicine, Chinese Traditional , Technology
15.
Brief Bioinform ; 24(2)2023 03 19.
Article in English | MEDLINE | ID: mdl-36882021

ABSTRACT

Immune checkpoint inhibitor (ICI) treatment has created the opportunity of improved outcome for patients with hepatocellular carcinoma (HCC). However, only a minority of HCC patients benefit from ICI treatment owing to poor treatment efficacy and safety concerns. There are few predictive factors that precisely stratify HCC responders to immunotherapy. In this study, we developed a tumour microenvironment risk (TMErisk) model to divide HCC patients into different immune subtypes and evaluated their prognosis. Our results indicated that virally mediated HCC patients who had more common tumour protein P53 (TP53) alterations with lower TMErisk scores were appropriate for ICI treatment. HCC patients with alcoholic hepatitis who more commonly harboured catenin beta 1 (CTNNB1) alterations with higher TMErisk scores could benefit from treatment with multi-tyrosine kinase inhibitors. The developed TMErisk model represents the first attempt to anticipate tumour tolerance of ICIs in the TME through the degree of immune infiltration in HCCs.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/drug therapy , Immune Checkpoint Inhibitors/therapeutic use , Tumor Microenvironment , Liver Neoplasms/drug therapy , Immunotherapy
16.
Zhen Ci Yan Jiu ; 48(3): 259-66, 2023 Mar 25.
Article in Chinese | MEDLINE | ID: mdl-36951078

ABSTRACT

OBJECTIVE: To observe the effect of penetrative needling of "Zhibian" (BL54) through "Shuidao" (ST28) on the expressions of death receptor pathway-related protein tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and its receptors, as death receptor 4 (DR4), death receptor 5 (DR5), decoy receptor 1 (DcR1) and decoy receptor 2 (DcR2) in premature ovarian insufficiency (POI) rats, so as to explore its mechanisms underlying improvement of POI. METHODS: Forty female SD rats were randomly divided into blank control, model, penetrative needling and medication (estradiol valerate) groups, with 10 rats in each group. The POI model was established by intraperitoneal injection of cyclophosphamide (D1: 50 mg·kg-1·d-1, D2 to D15: 8 mg·kg-1·d-1, for a total of 15 d). After successful modeling, the rats in the penetrative needling group received penetrative needling of BL54 through ST28, with the needle retained for 30 min, once a day for a total of 4 weeks. Rats of the medication group received gavage of estradiol valerate (0.09 mg·kg-1·d-1) once daily for 4 weeks. After the intervention, the content of serum follicles of stimulation hormone (FSH),lateinizing hormone (LH),estradiol (E2) and vascular endothelial growth factor (VEGF) were assayed using enzyme-linked immunosorbent assay, and histopathological changes of ovarian tissue and the number of follicles were observed under light microscope after H.E. staining. The expression levels of TRAIL, DR4, DR5, DcR1, DcR2, and Fas-associated death domain (FADD) in ovarian tissues were detected using quantitative real-time PCR, and the immunoactivity of ovarian TRAIL, DR4 and DR5 detected using immunohistochemistry. The body weight and the damp weight of ovary were measured for calculating the ovarian coefficient. RESULTS: Compared with the blank control group, the E2 and VEGF contents, ovarian coefficient, and the number of the primary, secondary and sinus follicles were significantly decreased (P<0.01) in the model group, whereas FSH and LH contents, the atretic follicle number, TRAIL, DR4 and DR5 immunoactivity, and the expression levels of TRAIL, DR4, DR5 and FADD mRNAs considerably increased in the model group (P<0.01). In comparison with the model group, the decrease of the VEGF content, ovarian coefficient, and the number of the primary, secondary and sinus follicles, and the increase of the atretic follicle number, TRAIL, DR4 and DR5 immunoactivity, and expression levels of TRAIL, DR4, DR5 and FADD mRNAs were reversed in both penetrative needling and medication groups (P<0.01, P<0.05). The number of primary follicles was significantly more in the medication group than in the penetrative needling group (P<0.01). CONCLUSION: Penetrative needling of BL54 and ST28 can improve ovarian weight and promote follicular development in POI rats, which may be associated with its function in down-regulating the expression of pro-apoptotic proteins TRAIL, DR4, DR5 and FADD of the death receptor pathway to inhibit apoptosis of ovarian granulosa cells.


Subject(s)
Primary Ovarian Insufficiency , Vascular Endothelial Growth Factor A , Humans , Rats , Female , Animals , Vascular Endothelial Growth Factor A/genetics , Rats, Sprague-Dawley , Ligands , Apoptosis , Primary Ovarian Insufficiency/genetics , Primary Ovarian Insufficiency/therapy , Tumor Necrosis Factor-alpha , Estradiol , Receptors, Death Domain , Follicle Stimulating Hormone
17.
Biochim Biophys Acta Rev Cancer ; 1878(3): 188870, 2023 05.
Article in English | MEDLINE | ID: mdl-36842766

ABSTRACT

Given the liver's remarkable and unique regenerative capacity, researchers have long focused on liver progenitor cells (LPCs) and liver cancer stem cells (LCSCs). LPCs can differentiate into both hepatocytes and cholangiocytes. However, the mechanism underlying cell conversion and its distinct contribution to liver homeostasis and tumorigenesis remain unclear. In this review, we discuss the complicated conversions involving LPCs and LCSCs. As the critical intermediate state in malignant transformation, LPCs play double-edged sword roles. LPCs are not only involved in hepatic wound-healing responses by supplementing liver cells and bile duct cells in the damaged liver but may transform into LCSCs under dysregulation of key signaling pathways, resulting in refractory malignant liver tumors. Because LPC lineages are temporally and spatially dynamic, we discuss crucial LPC subgroups and summarize regulatory factors correlating with the trajectories of LPCs and LCSCs in the liver tumor microenvironment. This review elaborates on the double-edged sword roles of LPCs to help understand the liver's regenerative potential and tumor heterogeneity. Understanding the sources and transformations of LPCs is essential in determining how to exploit their regenerative capacity in the future.


Subject(s)
Hepatocytes , Liver Neoplasms , Humans , Cell Differentiation , Hepatocytes/pathology , Hepatocytes/physiology , Liver Neoplasms/pathology , Neoplastic Stem Cells/pathology , Cell Transformation, Neoplastic , Tumor Microenvironment
18.
J Hematol Oncol ; 16(1): 1, 2023 01 05.
Article in English | MEDLINE | ID: mdl-36600307

ABSTRACT

BACKGROUND: Hepatocellular carcinoma (HCC) generally arises from a background of liver cirrhosis (LC). Patients with cirrhosis and suspected HCC are recommended to undergo serum biomarker tests and imaging diagnostic evaluation. However, the performance of routine diagnostic methods in detecting early HCC remains unpromising. METHODS: Here, we conducted a large-scale, multicenter study of 1675 participants including 490 healthy controls, 577 LC patients, and 608 HCC patients from nine clinical centers across nine provinces of China, profiled gene mutation signatures of cell-free DNA (cfDNA) using Circulating Single-Molecule Amplification and Resequencing Technology (cSMART) through detecting 931 mutation sites across 21 genes. RESULTS: An integrated diagnostic model called "Combined method" was developed by combining three mutation sites and three serum biomarkers. Combined method outperformed AFP in the diagnosis of HCC, especially early HCC, with sensitivities of 81.25% for all stages and 66.67% for early HCC, respectively. Importantly, the integrated model exhibited high accuracy in differentiating AFP-negative, AFP-L3-negative, and PIVKA-II-negative HCCs from LCs.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , alpha-Fetoproteins , Biomarkers, Tumor/genetics , Carcinoma, Hepatocellular/diagnosis , Carcinoma, Hepatocellular/genetics , Liver Cirrhosis/diagnosis , Liver Neoplasms/diagnosis , Liver Neoplasms/genetics
19.
Acta Pharmacol Sin ; 44(7): 1429-1441, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36697978

ABSTRACT

Aristolochic acid I (AAI) is a well established nephrotoxin and human carcinogen. Cytosolic NAD(P)H quinone oxidoreductase 1 (NQO1) plays an important role in the nitro reduction of aristolochic acids, leading to production of aristoloactam and AA-DNA adduct. Application of a potent NQO1 inhibitor dicoumarol is limited by its life-threatening side effect as an anticoagulant and the subsequent hemorrhagic complications. As traditional medicines containing AAI remain available in the market, novel NQO1 inhibitors are urgently needed to attenuate the toxicity of AAI exposure. In this study, we employed comprehensive 2D NQO1 biochromatography to screen candidate compounds that could bind with NQO1 protein. Four compounds, i.e., skullcapflavone II (SFII), oroxylin A, wogonin and tectochrysin were screened out from Scutellaria baicalensis. Among them, SFII was the most promising NQO1 inhibitor with a binding affinity (KD = 4.198 µmol/L) and inhibitory activity (IC50 = 2.87 µmol/L). In human normal liver cell line (L02) and human renal proximal tubular epithelial cell line (HK-2), SFII significantly alleviated AAI-induced DNA damage and apoptosis. In adult mice, oral administration of SFII dose-dependently ameliorated AAI-induced renal fibrosis and dysfunction. In infant mice, oral administration of SFII suppressed AAI-induced hepatocellular carcinoma initiation. Moreover, administration of SFII did not affect the coagulation function in short term in adult mice. In conclusion, SFII has been identified as a novel NQO1 inhibitor that might impede the risk of AAI to kidney and liver without obvious side effect.


Subject(s)
Aristolochic Acids , Mice , Humans , Animals , Aristolochic Acids/toxicity , NAD(P)H Dehydrogenase (Quinone)/metabolism , Kidney/pathology , Liver/metabolism
20.
Gastroenterology ; 164(3): 424-438, 2023 03.
Article in English | MEDLINE | ID: mdl-36436593

ABSTRACT

BACKGROUND & AIMS: In eukaryotes, the ubiquitin-proteasome system and the autophagy-lysosome pathway are essential for maintaining cellular proteostasis and associated with cancer progression. Our previous studies have demonstrated that phosphatase and tensin homolog (PTEN), one of the most frequently mutated genes in human cancers, limits proteasome abundance and determines chemosensitivity to proteasome inhibitors in cholangiocarcinoma (CCA). However, whether PTEN regulates the lysosome pathway remains unclear. METHODS: We tested the effects of PTEN on lysosome biogenesis and exosome secretion using loss- and gain-of-function strategies in CCA cell lines. Using in vitro dephosphorylation assays, we explored the regulatory mechanism between PTEN and the key regulator of lysosome biogenesis, transcription factor EB (TFEB). Using the migration assays, invasion assays, and trans-splenic liver metastasis mouse models, we evaluated the function of PTEN deficiency, TFEB-mediated lysosome biogenesis, and exosome secretion on tumor metastasis. Moreover, we investigated the clinical significance of PTEN expression and exosome secretion by retrospective analysis. RESULTS: PTEN facilitated lysosome biogenesis and acidification through its protein phosphatase activity to dephosphorylate TFEB at Ser211. Notably, PTEN deficiency increased exosome secretion by reducing lysosome-mediated degradation of multi-vesicular bodies, which further facilitated the proliferation and invasion of CCA. TFEB agonist curcumin analog C1 restrained the metastatic phenotype caused by PTEN deficiency in mouse models, and we highlighted the correlation between PTEN deficiency and exosome secretion in clinical cohorts. CONCLUSIONS: In CCA, PTEN deficiency impairs lysosome biogenesis to facilitate exosome secretion and cancer metastasis in a TFEB phosphorylation-dependent manner.


Subject(s)
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors , Cholangiocarcinoma , Exosomes , PTEN Phosphohydrolase , Animals , Humans , Mice , Autophagy , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Cholangiocarcinoma/metabolism , Disease Models, Animal , Exosomes/metabolism , Lysosomes/physiology , Proteasome Endopeptidase Complex , PTEN Phosphohydrolase/metabolism , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...