Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Appl Environ Microbiol ; 88(18): e0140322, 2022 09 22.
Article in English | MEDLINE | ID: mdl-36094177

ABSTRACT

Type IV pili (Tfp) are known to mediate several biological activities, including surface-dependent twitching motility. Although a pil gene cluster for Tfp biosynthesis is found in all sequenced Streptococcus sanguinis strains, Tfp-mediated twitching motility is less commonly detected. Upon examining 81 clinical strains, 39 strains generated twitching zones on blood agar plates (BAP), while 27 strains displayed twitching on Todd-Hewitt (TH) agar. Although BAP appears to be more suitable for the development of twitching zones, 5 strains exhibited twitching motility only on TH agar, indicating that twitching motility is not only strain specific but also sensitive to growth media. Furthermore, different twitching phenotypes were observed in strains expressing comparable levels of pilT, encoding the retraction ATPase, suggesting that the twitching phenotype on agar plates is regulated by multiple factors. By using a PilT-null and a pilin protein-null derivative (CHW02) of twitching-active S. sanguinis CGMH010, we found that Tfp retraction was essential for biofilm stability. Further, biofilm growth was amplified in CHW02 in the absence of shearing force, indicating that S. sanguinis may utilize other ligands for biofilm formation in the absence of Tfp. Similar to SK36, Tfp from CGMH010 were required for colonization of host cells, but PilT only marginally affected adherence and only in the twitching-active strain. Taken together, the results suggest that Tfp participates in host cell adherence and that Tfp retraction facilitates biofilm stability. IMPORTANCE Although the gene clusters encoding Tfp are commonly present in Streptococcus sanguinis, not all strains express surface-dependent twitching motility on agar surfaces. Regardless of whether the Tfp could drive motility, Tfp can serve as a ligand for the colonization of host cells. Though many S. sanguinis strains lack twitching activity, motility can enhance biofilm stability in a twitching-active strain; thus, perhaps motility provides little or no advantage to the survival of bacteria within dental plaque. Rather, Tfp retraction could provide additional advantages for the bacteria to establish infections outside the oral cavity.


Subject(s)
Fimbriae Proteins , Streptococcus sanguis , Adenosine Triphosphatases/metabolism , Agar/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biofilms , Fimbriae Proteins/genetics , Fimbriae, Bacterial/genetics , Fimbriae, Bacterial/metabolism , Ligands , Prevalence , Streptococcus sanguis/genetics , Streptococcus sanguis/metabolism
2.
Int J Mol Sci ; 23(14)2022 Jul 18.
Article in English | MEDLINE | ID: mdl-35887256

ABSTRACT

CodY is a dominant regulator in low G + C, Gram-positive Firmicutes that governs the regulation of various metabolic pathways and cellular processes. By using various bioinformatics analyses and DNA affinity precipitation assay (DAPA), this study confirmed the presence of CodY orthologues and corresponding regulons in Gram-negative Synergistetes. A novel palindromic sequence consisting of AT-rich arms separated by a spacer region of variable length and sequence was identified in the promoters of the putative codY-containing operons in Synergistetes. The consensus sequence from genera Synergistes and Cloacibacillus (5'-AATTTTCTTAAAATTTCSCTTGATATTTACAATTTT) contained three AT-rich regions, resulting in two palindromic sequences; one of which is identical to Firmicutes CodY box (5'-AATTTTCWGAAAATT). The function of the consensus sequence was tested by using a recombinant CodY protein (His-CodYDSM) of Cloacibacillus evryensis DSM19522 in DAPA. Mutations in the central AT-rich sequence reduced significantly the binding of His-CodYDSM, whereas mutations in the 5' or 3' end AT-rich sequence slightly reduced the binding, indicating that CodYDSM could recognize both palindromic sequences. The proposed binding sequences were found in the promoters of multiple genes involved in amino acids biosynthesis, metabolism, regulation, and stress responses in Synergistetes. Thus, a CodY-like protein from Synergistetes may function similarly to Firmicutes CodY.


Subject(s)
Gene Expression Regulation, Bacterial , Regulon , Bacterial Proteins/metabolism , Promoter Regions, Genetic , Regulon/genetics , Repressor Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL