Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters











Publication year range
1.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Article in English | MEDLINE | ID: mdl-33436409

ABSTRACT

Long noncoding RNAs (lncRNAs) play diverse roles in biological processes, but their expression profiles and functions in cervical carcinogenesis remain unknown. By RNA-sequencing (RNA-seq) analyses of 18 clinical specimens and selective validation by RT-qPCR analyses of 72 clinical samples, we provide evidence that, relative to normal cervical tissues, 194 lncRNAs are differentially regulated in high-risk (HR)-HPV infection along with cervical lesion progression. One such lncRNA, lnc-FANCI-2, is extensively characterized because it is expressed from a genomic locus adjacent to the FANCI gene encoding an important DNA repair factor. Both genes are up-regulated in HPV lesions and in in vitro model systems of HR-HPV18 infection. We observe a moderate reciprocal regulation of lnc-FANCI-2 and FANCI in cervical cancer CaSki cells. In these cells, lnc-FANCI-2 is transcribed from two alternative promoters, alternatively spliced, and polyadenylated at one of two alternative poly(A) sites. About 10 copies of lnc-FANCI-2 per cell are detected preferentially in the cytoplasm. Mechanistically, HR-HPVs, but not low-risk (LR)-HPV oncogenes induce lnc-FANCI-2 in primary and immortalized human keratinocytes. The induction is mediated primarily by E7, and to a lesser extent by E6, mostly independent of p53/E6AP and pRb/E2F. We show that YY1 interacts with an E7 CR3 core motif and transactivates the promoter of lnc-FANCI-2 by binding to two critical YY1-binding motifs. Moreover, HPV18 increases YY1 expression by reducing miR-29a, which targets the 3' untranslated region of YY1 mRNA. These data have provided insights into the mechanisms of how HR-HPV infections contribute to cervical carcinogenesis.


Subject(s)
Fanconi Anemia Complementation Group Proteins/genetics , Human papillomavirus 16/genetics , MicroRNAs/genetics , Papillomavirus Infections/genetics , RNA, Long Noncoding/genetics , Uterine Cervical Neoplasms/genetics , YY1 Transcription Factor/genetics , Alternative Splicing , Base Sequence , Carcinogenesis/genetics , Carcinogenesis/metabolism , Carcinogenesis/pathology , Cell Line, Tumor , Cervix Uteri/metabolism , Cervix Uteri/pathology , Cervix Uteri/virology , E2F Transcription Factors/genetics , E2F Transcription Factors/metabolism , Fanconi Anemia Complementation Group Proteins/metabolism , Female , Gene Expression Regulation , Host-Pathogen Interactions/genetics , Human papillomavirus 16/metabolism , Human papillomavirus 16/pathogenicity , Human papillomavirus 18/genetics , Human papillomavirus 18/metabolism , Human papillomavirus 18/pathogenicity , Humans , Keratinocytes/metabolism , Keratinocytes/pathology , Keratinocytes/virology , MicroRNAs/metabolism , Papillomavirus E7 Proteins/genetics , Papillomavirus E7 Proteins/metabolism , Papillomavirus Infections/metabolism , Papillomavirus Infections/pathology , Papillomavirus Infections/virology , Promoter Regions, Genetic , RNA, Long Noncoding/metabolism , Retinoblastoma Protein/genetics , Retinoblastoma Protein/metabolism , Signal Transduction , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Uterine Cervical Neoplasms/metabolism , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/virology , YY1 Transcription Factor/metabolism
3.
mBio ; 10(1)2019 01 29.
Article in English | MEDLINE | ID: mdl-30696738

ABSTRACT

RNA-binding proteins (RBPs) control mRNA processing, stability, transport, editing, and translation. We recently conducted transcriptome analyses comparing normal (i.e., healthy) cervical tissue samples with human papillomavirus (HPV)-positive cervical cancer tissue samples and identified 614 differentially expressed protein-coding transcripts which are enriched in cancer-related pathways and consist of 95 known RBPs. We verified the altered expression of 26 genes with a cohort of 72 cervical samples, including 24 normal cervical samples, 25 cervical intraepithelial neoplasia grade 2 (CIN2) and CIN3 samples, and 23 cervical cancer tissue samples. LY6K (lymphocyte antigen 6 complex locus K), FAM83A (family member with sequence similarity 83), CELSR3, ASF1B, IQGAP3, SEMA3F, CLDN10, MSX1, CXCL5, ASRGL1, ELAVL2, GRB7, KHSRP, NOVA1, PTBP1, and RNASEH2A were identified as novel candidate genes associated with cervical lesion progression and carcinogenesis. HPV16 or HPV18 infection was found to alter the expression of 8 RBP genes (CDKN2A, ELAVL2, GRB7, HSPB1, KHSRP, NOVA1, PTBP1, and RNASEH2A) in human vaginal and foreskin keratinocytes. Both viral E6 and E7 decreased NOVA1 expression, but only E7 increased the expression of RNASEH2A in an E2F1-dependent manner. Proliferating cell nuclear antigen (PCNA) directs RNASEH2 activity with respect to DNA replication by removing the RNA primers to promote Okazaki fragment maturation, and two factors are closely associated with neoplasia progression. Therefore, we predict that the induction of expression of RNASEH2A via viral E7 and E2F1 may promote DNA replication and cancer cell proliferation.IMPORTANCE High-risk HPV infections lead to development of cervical cancer. This study identified the differential expression of 16 novel genes (LY6K, FAM83A, CELSR3, ASF1B, IQGAP3, SEMA3F, CLDN10, MSX1, CXCL5, ASRGL1, ELAVL2, GRB7, KHSRP, NOVA1, PTBP1, and RNASEH2A) in HPV-infected cervical tissue samples and keratinocytes. Eight of these genes (CDKN2A, ELAVL2, GRB7, HSPB1, KHSRP, NOVA1, PTBP1, and RNASEH2A) encode RNA-binding proteins. Further studies indicated that both HPV16 and HPV18 infections lead to the aberrant expression of selected RBP-encoding genes. We found that viral E6 and E7 decrease NOVA1 expression but that E7 increases RNASEH2A expression via E2F1. The altered expression of these genes may be utilized as biomarkers for high-risk (HR)-HPV carcinogenesis and progression.


Subject(s)
E2F1 Transcription Factor/metabolism , Host-Pathogen Interactions , Human papillomavirus 16/physiology , Human papillomavirus 18/physiology , Papillomavirus E7 Proteins/metabolism , Ribonuclease H/metabolism , Uterine Cervical Neoplasms/pathology , Cells, Cultured , Female , Gene Expression Profiling , Gene Expression Regulation , Humans , Keratinocytes/pathology , Keratinocytes/virology , Papillomavirus Infections/pathology , Papillomavirus Infections/virology
6.
Vaccine ; 34(27): 3171-3177, 2016 06 08.
Article in English | MEDLINE | ID: mdl-27113165

ABSTRACT

The prevalent human papillomaviruses (HPVs) infect human epithelial tissues. Infections by the mucosotropic HPV genotypes cause hyperproliferative ano-genital lesions. Persistent infections by high-risk (HR) HPVs such as HPV-16, HPV-18 and related types can progress to high grade intraepithelial neoplasias and cancers. Prophylactic HPV vaccines are based on DNA-free virus-like particles (VLPs) composed of the major capsid protein L1 of HPV-16, -18, -6 and -11 (Gardasil) or HPV-16 and -18 (Cervarix). Sera from vaccinated animals effectively prevent HPV pseudovirions to infect cell lines and mouse cervical epithelia. Both vaccines have proven to be highly protective in people. HPV pseudovirions are assembled in HEK293TT cells from matched L1 and L2 capsid proteins to encapsidate a reporter gene. Pseudovirions and genuine virions have structural differences and they infect cell lines or primary human keratinocytes (PHKs) with different efficiencies. In this study, we show that sera and isolated IgG from women immunized with Gardasil prevent authentic HPV-18 virions from infecting PHKs, whereas non-immune sera and purified IgG thereof are uniformly ineffective. Using early passage PHKs, neutralization is achieved only if immune sera are added within 2-4h of infection. We attribute the timing effect to a conformational change in HPV virions, thought to occur upon initial binding to heparan sulfate proteoglycans (HSPG) on the cell surface. This interpretation is consistent with the inability of immune IgG bound to or taken up by PHKs to neutralize the virus. Interestingly, the window of neutralization increases to 12-16h in slow growing, late passage PHKs, suggestive of altered cell surface molecules. In vivo, this window might be further lengthened by the time required to activate the normally quiescent basal cells to become susceptible to infection. Our observations help explain the high efficacy of HPV vaccines.


Subject(s)
Antibodies, Viral/immunology , Human Papillomavirus Recombinant Vaccine Quadrivalent, Types 6, 11, 16, 18/therapeutic use , Immune Sera/immunology , Keratinocytes/virology , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Cells, Cultured , Female , Heparan Sulfate Proteoglycans/metabolism , Human papillomavirus 18 , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Neutralization Tests , Papillomavirus Infections/prevention & control
7.
Methods Mol Biol ; 1249: 93-109, 2015.
Article in English | MEDLINE | ID: mdl-25348300

ABSTRACT

The productive program of the human papillomaviruses takes place in terminally differentiating squamous epithelia. In this chapter, we provide the protocols for robust production of HPV-18 in organotypic cultures of early passages of primary human keratinocytes. A critical step is the generation of genomic HPV plasmids in vivo by using Cre-loxP-mediated excisional recombination from a vector plasmid. We discuss the rationale for this approach. This system produces high yields of infectious virus and facilitates genetic analyses of HPV protein functions and their regulation in the context of recapitulated host tissue environment.


Subject(s)
Cell Culture Techniques/methods , Human papillomavirus 18/growth & development , Keratinocytes/virology , Animals , Attachment Sites, Microbiological/genetics , Capsid Proteins/metabolism , Cell Separation , Cells, Cultured , DNA, Viral/genetics , DNA, Viral/isolation & purification , Genome, Viral , Humans , Mice , Plasmids/metabolism , Real-Time Polymerase Chain Reaction , Transfection , Virion/metabolism
8.
Diabetes ; 63(9): 2949-61, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24722250

ABSTRACT

Brown adipose tissue oxidizes chemical energy for heat generation and energy expenditure. Promoting brown-like transformation in white adipose tissue (WAT) is a promising strategy for combating obesity. Here, we find that targeted deletion of KH-type splicing regulatory protein (KSRP), an RNA-binding protein that regulates gene expression at multiple levels, causes a reduction in body adiposity. The expression of brown fat-selective genes is increased in subcutaneous/inguinal WAT (iWAT) of Ksrp(-/-) mice because of the elevated expression of PR domain containing 16 and peroxisome proliferator-activated receptor gamma coactivator 1α, which are key regulators promoting the brown fat gene program. The expression of microRNA (miR)-150 in iWAT is decreased due to impaired primary miR-150 processing in the absence of KSRP. We show that miR-150 directly targets and represses Prdm16 and Ppargc1a, and that forced expression of miR-150 attenuates the elevated expression of brown fat genes caused by KSRP deletion. This study reveals the in vivo function of KSRP in controlling brown-like transformation of iWAT through post-transcriptional regulation of miR-150 expression.


Subject(s)
Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , MicroRNAs/biosynthesis , Trans-Activators/deficiency , Adiposity/genetics , Animals , DNA-Binding Proteins/biosynthesis , Diet, High-Fat , Down-Regulation , Gene Expression Regulation , Male , Mice , MicroRNAs/genetics , Obesity/genetics , Obesity/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , RNA-Binding Proteins/physiology , Trans-Activators/physiology , Transcription Factors/biosynthesis , Up-Regulation
9.
Proc Natl Acad Sci U S A ; 111(11): 4262-7, 2014 Mar 18.
Article in English | MEDLINE | ID: mdl-24591631

ABSTRACT

Cellular and viral microRNAs (miRNAs) are the transcriptional products of RNA polymerase II and are regulated by transcriptional factors for their differential expression. The altered expression of miRNAs in many cancer types has been explored as a marker for possible diagnosis and therapy. We report in this study that oncogenic human papillomaviruses (HPVs) induce aberrant expression of many cellular miRNAs and that HPV18 infection produces no detectable viral miRNA. Thirteen abundant host miRNAs were specifically regulated by HPV16 and HPV18 in organotypic raft cultures of foreskin and vaginal keratinocytes as determined by miRNA array in combination with small RNA sequencing. The increase of miR-16, miR-25, miR-92a, and miR-378 and the decrease of miR-22, miR-27a, miR-29a, and miR-100 could be attributed to viral oncoprotein E6, E7, or both, all of which are known to target many cellular transcription factors. The examination of 158 cervical specimens, including 38 normal, 52 cervical intraepithelial neoplasia (CIN), and 68 cervical cancer (CC) tissues, for the expression of these eight miRNAs showed a remarkable increase of miR-25, miR-92a, and miR-378 with lesion progression but no obvious change of miR-22, miR-29a, and miR-100 among the HPV-infected tissues. Further analyses indicate that an expression ratio ≥1.5 of miR-25/92a group over miR-22/29a group could serve as a cutoff value to distinguish normal cervix from CIN and from CIN to CC.


Subject(s)
Biomarkers/metabolism , Human papillomavirus 16 , Human papillomavirus 18 , MicroRNAs/metabolism , Oncogenic Viruses/genetics , Papillomavirus Infections/genetics , Uterine Cervical Neoplasms/virology , Base Sequence , Blotting, Northern , DNA Primers/genetics , Female , Humans , MicroRNAs/genetics , Molecular Sequence Data , Oligonucleotides, Antisense/genetics , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, RNA , Uterine Cervical Neoplasms/genetics
10.
Proc Natl Acad Sci U S A ; 110(19): 7542-9, 2013 May 07.
Article in English | MEDLINE | ID: mdl-23572574

ABSTRACT

Human papillomaviruses (HPVs) amplify in differentiated strata of a squamous epithelium. The HPV E7 protein destabilizes the p130/retinoblastoma susceptibility protein family of tumor suppressors and reactivates S-phase reentry, thereby facilitating viral DNA amplification. The high-risk HPV E6 protein destabilizes the p53 tumor suppressor and many other host proteins. However, the critical E6 targets relevant to viral DNA amplification have not been identified, because functionally significant E6 mutants are not stably maintained in transfected cells. Using Cre-loxP recombination, which efficiently generates HPV genomic plasmids in transfected primary human keratinocytes, we have recapitulated a highly productive infection of HPV-18 in organotypic epithelial cultures. By using this system, we now report the characterization of four HPV-18 E6 mutations. An E6 null mutant accumulated high levels of p53 and amplified very poorly. p53 siRNA or ectopic WT E6 partially restored amplification, whereas three missense E6 mutations that did not effectively destabilize p53 complemented the null mutant poorly. Unexpectedly, in cis, two of the missense mutants amplified, albeit to a lower extent than the WT and only in cells with undetectable p53. These observations and others implicate p53 and additional host proteins in regulating viral DNA amplification and also suggest an inhibitory effect of E6 overexpression. We show that high levels of viral DNA amplification are critical for late protein expression and report several previously undescribed viral RNAs, including bicistronic transcripts predicted to encode E5 and L2 or an alternative form of E1^E4 and L1.


Subject(s)
DNA, Viral/metabolism , DNA-Binding Proteins/genetics , Genes, p53 , Human papillomavirus 18/genetics , Mutation , Oncogene Proteins, Viral/genetics , Cells, Cultured , Genes, Tumor Suppressor , Genetic Complementation Test , Genome, Viral , Humans , Integrases/metabolism , Keratinocytes/cytology , Mutation, Missense , Phenotype , Plasmids/metabolism , RNA, Small Interfering/metabolism , Tumor Suppressor Protein p53/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL