Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 2450, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38503743

ABSTRACT

Single-atom magnetism switching is a key technique towards the ultimate data storage density of computer hard disks and has been conceptually realized by leveraging the spin bistability of a magnetic atom under a scanning tunnelling microscope. However, it has rarely been applied to solid-state transistors, an advancement that would be highly desirable for enabling various applications. Here, we demonstrate realization of the electrically controlled Zeeman effect in Dy@C84 single-molecule transistors, thus revealing a transition in the magnetic moment from 3.8 µ B to 5.1 µ B for the ground-state GN at an electric field strength of 3 - 10 MV/cm. The consequent magnetoresistance significantly increases from 600% to 1100% at the resonant tunneling point. Density functional theory calculations further corroborate our realization of nonvolatile switching of single-atom magnetism, and the switching stability emanates from an energy barrier of 92 meV for atomic relaxation. These results highlight the potential of using endohedral metallofullerenes for high-temperature, high-stability, high-speed, and compact single-atom magnetic data storage.

2.
J Phys Chem Lett ; 14(32): 7149-7156, 2023 Aug 17.
Article in English | MEDLINE | ID: mdl-37540032

ABSTRACT

Superlattice potentials imposed on graphene can alter its Dirac states, enabling the realization of various quantum phases. We report the experimental observation of a replica Dirac cone at the Brillouin zone center induced by a superlattice in heavily doped graphene with Gd intercalation using angle-resolved photoemission spectroscopy (ARPES). The replica Dirac cone arises from the (√3× âˆš3)R30° superlattice formed by the intervalley coupling of two nonequivalent valleys (e.g., the Kekulé-like distortion phase), accompanied by a bandgap opening. According to the findings, the replica Dirac band in Gd-intercalated graphene disappears beyond a critical temperature of 30 K and can be suppressed by potassium adsorption. The modulation of the replica Dirac band is primarily attributable to the residual frozen gas, which can act as a source of intervalley scattering at temperatures below 30 K. Our results highlight the persistence of the hidden Kekulé-like phase within the heavily doped graphene, enriching our current understanding of its replica Dirac Fermions.

3.
J Phys Chem Lett ; 13(40): 9396-9403, 2022 Oct 13.
Article in English | MEDLINE | ID: mdl-36190902

ABSTRACT

The quantum interference patterns induced by impurities in graphene can form the (√3 × âˆš3)R30° superlattice with intervalley scattering. This superlattice can lead to the folded Dirac cone at the center of Brillouin zone by coupling two non-equivalent valleys. Using angle-resolved photoemission spectroscopy (ARPES), we report the observation of suppression of the folded Dirac cone in mono- and bilayer graphene upon potassium doping. The intervalley coupling with chiral symmetry broken can persist upon a light potassium-doped level but be ruined at the heavily doped level. Meanwhile, the folded Dirac cone can be suppressed by the renormalization of the Dirac band with potassium doping. Our results demonstrate that the suppression of the intervalley scattering pattern by potassium doping could pave the way toward the realization of novel chiraltronic devices in superlattice graphene.

4.
Nat Commun ; 13(1): 249, 2022 Jan 11.
Article in English | MEDLINE | ID: mdl-35017483

ABSTRACT

Topological photonics was initially inspired by the quantum-optical analogy between the Schrödinger equation for an electron wavefunction and the paraxial equation for a light beam. Here, we reveal an unexpected phenomenon in topological pumping observed in arrays of nonparaxial optical waveguides where the quantum-optical analogy becomes invalid. We predict theoretically and demonstrate experimentally an asymmetric topological pumping when the injected field transfers from one side of the waveguide array to the other side whereas the reverse process is unexpectedly forbidden. Our finding could open an avenue for exploring topological photonics that enables nontrivial topological phenomena and designs in photonics driven by nonparaxiality.

5.
Nano Lett ; 21(19): 8258-8265, 2021 Oct 13.
Article in English | MEDLINE | ID: mdl-34570496

ABSTRACT

The scattering process induced by impurities in graphene plays a key role in transport properties. Especially, the disorder impurities can drive the ordered state with a hexagonal superlattice on graphene by electron-mediated interaction at a transition temperature. Using angle-resolved photoemission spectroscopy (ARPES), we reveal that the epitaxial monolayer and bilayer graphene with various impurities display global elastic intervalley scattering and quantum interference below the critical temperature (34 K), which leads to a set of new folded Dirac cones at the Brillouin-zone center by mixing two inequivalent Dirac cones. The Dirac electrons generated from intervalley scattering without chirality can be due to the breaking of the sublattice symmetry. In addition, the temperature-dependent ARPES measurements indicate the thermal damping of quantum interference patterns from Dirac electron scattering on impurities. Our results demonstrate that the electron scattering and interference induced by impurities can completely modulate the Dirac bands of graphene.

6.
Nano Lett ; 20(1): 709-714, 2020 Jan 08.
Article in English | MEDLINE | ID: mdl-31838853

ABSTRACT

Magnetic topological insulator, a platform for realizing quantum anomalous Hall effect, axion state, and other novel quantum transport phenomena, has attracted a lot of interest. Recently, it is proposed that MnBi2Te4 is an intrinsic magnetic topological insulator, which may overcome the disadvantages in the magnetic doped topological insulator, such as disorder. Here we report on the gate-reserved anomalous Hall effect (AHE) in the MnBi2Te4 thin film. By tuning the Fermi level using the top/bottom gate, the AHE loop gradually decreases to zero and the sign is reversed. The positive AHE exhibits distinct coercive fields compared with the negative AHE. It reaches a maximum inside the gap of the Dirac cone, and its amplitude exhibits a linear scaling with the longitudinal conductance. The positive AHE is attributed to the competition of the intrinsic Berry curvature and the extrinsic skew scattering. Its gate-controlled switching contributes a scheme for the topological spin field-effect transistors.

7.
Phys Rev Lett ; 123(19): 195503, 2019 Nov 08.
Article in English | MEDLINE | ID: mdl-31765180

ABSTRACT

Topological insulators (TIs), featured by a symmetry-protected gapless surface Dirac cone(s) in their complete energy band gaps, have been extended from condensed-matter physics to classical bosonic systems in the last decade. However, acoustic TIs in three dimensions remain elusive because of a lack of a spin or polarization degree of freedom for longitudinal airborne sound. Here, we experimentally demonstrate a feasible way to hybridize an acoustic TI in three dimensions based on band inversion through a three-dimensional (3D) hybrid Dirac point (HDP). Such a 3D HDP, with linear dispersion in the layer plane while quadratic out of the layer, is distinct from a general point with linear dispersion in all directions. Interestingly, a single nearly gapless conical-like dispersion for acoustic surface states can be achieved at both zigzag and armchair interfaces, supporting robust sound transport. Our findings can serve as a tabletop platform for exploring unique acoustic applications based on the two-dimensional topological interfaces.

8.
Phys Rev Lett ; 122(17): 173901, 2019 May 03.
Article in English | MEDLINE | ID: mdl-31107095

ABSTRACT

Recent progress on Floquet topological phases has shed new light on time-dependant quantum systems, among which one-dimensional (1D) Floquet systems have been under extensive theoretical research. However, an unambiguous experimental observation of these 1D Floquet topological phases is still lacking. Here, by periodically bending an ultrathin metallic array of coupled corrugated waveguides, a photonic Floquet simulator was well designed and successfully fabricated to mimic the periodically driven Su-Schrieffer-Heeger model. Intriguingly, under moderate driven frequencies, we report the first observation of the anomalous Floquet topological π mode, propagating along the array's boundary. The different evolutionary behaviors between static and nonstatic topological end modes have been clearly demonstrated by the microwave near-field experiment. Furthermore, the experiment in the fast-driving regime also reveals the universal high-frequency behavior in driven systems. Our photonic simulator can serve as a versatile testing ground for various phenomena related to time-dependant 1D quantum phases, such as Thouless pumping and dynamical localization.

9.
Nat Commun ; 9(1): 4555, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30385775

ABSTRACT

Topological valley states at the domain wall between two artificial crystals with opposite valley Chern numbers offer a feasible way to realize robust wave transport since only broken spatial symmetry is required. In addition to the valley, spin and crystal dimension are two other important degrees of freedom, particularly in realizing spin-related topological phenomena. Here we experimentally demonstrate that it is possible to construct two-dimensional acoustic topological pseudospin-valley coupled saddle surface states, designed from glide symmetry in a three-dimensional system. By taking advantage of such two-dimensional surface states, a full set of acoustic pseudospins can be realized, exhibiting pseudospin-valley dependent transport. Furthermore, due to the hyperbolic character of the dispersion of saddle surface states, multi-directional anisotropic controllable robust sound transport with little backscattering is observed. Our findings may open research frontiers for acoustic pseudospins and provide a satisfactory platform for exploring unique acoustic topological properties in three-dimensional structures.

10.
Nat Commun ; 9(1): 4071, 2018 10 04.
Article in English | MEDLINE | ID: mdl-30287820

ABSTRACT

The two-dimensional topological insulators host a full gap in the bulk band, induced by spin-orbit coupling (SOC) effect, together with the topologically protected gapless edge states. However, it is usually challenging to suppress the bulk conductance and thus to realize the quantum spin Hall (QSH) effect. In this study, we find a mechanism to effectively suppress the bulk conductance. By using the quasiparticle interference technique with scanning tunneling spectroscopy, we demonstrate that the QSH candidate single-layer 1T'-WTe2 has a semimetal bulk band structure with no full SOC-induced gap. Surprisingly, in this two-dimensional system, we find the electron-electron interactions open a Coulomb gap which is always pinned at the Fermi energy (EF). The opening of the Coulomb gap can efficiently diminish the bulk state at the EF and supports the observation of the quantized conduction of topological edge states.

11.
ACS Nano ; 12(2): 1537-1543, 2018 02 27.
Article in English | MEDLINE | ID: mdl-29294273

ABSTRACT

We report the study of a triaxial vector magnetoresistance (MR) in nonmagnetic (Bi1-xInx)2Se3 nanodevices at the composition of x = 0.08. We show a dumbbell-shaped in-plane negative MR up to room temperature as well as a large out-of-plane positive MR. MR at three directions is about in a -3%:-1%:225% ratio at 2 K. Through both the thickness and composition-dependent magnetotransport measurements, we show that the in-plane negative MR is due to the topological phase transition enhanced intersurface coupling near the topological critical point. Our devices suggest the great potential for room-temperature spintronic applications in, for example, vector magnetic sensors.

12.
J Phys Condens Matter ; 29(3): 035601, 2017 Jan 25.
Article in English | MEDLINE | ID: mdl-27845928

ABSTRACT

We propose using ultracold atoms trapped in a one-dimensional periodically driven optical lattice to realize the Harper-Kitaev model, where the on-site energies are periodically kicked. Such a system provides a natural platform to study both Chern insulators and Majorana fermions. Based on calculating the quasienergy spectra, we find that both Floquet Majorana modes and Hall chiral edge modes could appear at the sample boundary in the gaps between the quasienergy bands. We also study the competition of topological superconductor and Chern insulator states in the model. We calculate the [Formula: see text] index and Floquet Chern number to characterize the above two different topological states, including the topological phase transitions in the kicked Harper-Kitaev model with the increase in the strength of the kick.

SELECTION OF CITATIONS
SEARCH DETAIL