Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 62(44): e202311739, 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37723129

ABSTRACT

Rechargeable lithium-oxygen (Li-O2 ) batteries with high theoretical energy density are considered as promising candidates for portable electronic devices and electric vehicles, whereas their commercial application is hindered due to poor cyclic stability caused by the sluggish kinetics and cathode passivation. Herein, the intrinsic stress originated from the growth and decomposition of the discharge product (lithium peroxide, Li2 O2 ) is employed as a microscopic pressure resource to induce the built-in electric field, further improving the reaction kinetics and interfacial Lithium ion (Li+ ) transport during cycling. Piezopotential caused by the intrinsic stress-strain of solid Li2 O2 is capable of providing the driving force for the separation and transport of carriers, enhancing the Li+ transfer, and thus improving the redox reaction kinetics of Li-O2 batteries. Combined with a variety of in situ characterizations, the catalytic mechanism of barium titanate (BTO), a typical piezoelectric material, was systematically investigated, and the effect of stress-strain transformation on the electrochemical reaction kinetics and Li+ interface transport for the Li-O2 batteries is clearly established. The findings provide deep insight into the surface coupling strategy between intrinsic stress and electric fields to regulate the electrochemical reaction kinetics behavior and enhance the interfacial Li+ transport for battery system.

2.
ACS Nano ; 16(8): 12364-12376, 2022 Aug 23.
Article in English | MEDLINE | ID: mdl-35914235

ABSTRACT

At present, photoassisted Li-air batteries are considered to be an effective approach to overcome the sluggish reaction kinetics of the Li-air batteries. And, the organic liquid electrolyte is generally adopted by the current conventional photoassisted Li-air batteries. However, the superior catalytic activity of photoassisted cathode would in turn fasten the degradation of the organic liquid electrolyte, leading to limited battery cycling life. Herein, we tame the above limitation of the traditional liquid electrolyte system for Li-CO2 batteries by constructing a photoassisted all-solid-state Li-CO2 battery with an integrated bilayer Au@TiO2/Li1.5Al0.5Ge1.5(PO4)3 (LAGP)/LAGP (ATLL) framework, which can essentially improve battery stability. Taking advantage of photoelectric and photothermal effects, the Au@TiO2/LAGP layer enables the acceleration of the slow kinetics of the carbon dioxide reduction reaction and evolution reaction processes. The LAGP layer could resolve the problem of liquid electrolyte decomposition under illumination. The integrated double-layer LAGP framework endows the direct transportation of heat and Li+ in the entire system. The photoassisted all-solid-state Li-CO2 battery achieves an ultralow polarization of 0.25 V with illumination, as well as a high round-trip efficiency of 92.4%. Even at an extremely low temperature of -73 °C, the battery can still deliver a small polarization of 0.6 V by converting solar energy into heat to achieve self-heating. This study is not limited to the Li-air batteries but can also be applied to other battery systems, constituting a significant step toward the practical application of all-solid-state photoassisted Li-air batteries.

3.
Adv Mater ; 34(10): e2107826, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35266208

ABSTRACT

Photoassisted electrochemical reaction is regarded as an effective approach to reduce the overpotential of lithium-oxygen (Li-O2 ) batteries. However, the achievement of both broadband absorption and long term battery cycling stability are still a formidable challenge. Herein, an oxygen vacancy-mediated fast kinetics for a photoassisted Li-O2 system is developed with a silver/bismuth molybdate (Ag/Bi2 MoO6 ) hybrid cathode. The cathode can offer both double advantages for light absorption covering UV to visible region and excellent electrochemical activity for O2 . Upon discharging, the photoexcited electrons from Ag nanoplate based on the localized surface plasmon resonance (LSPR) are injected into the oxygen vacancy in Bi2 MoO6 . The fast oxygen reaction kinetics generate the amorphous Li2 O2 , and the discharge plateau is improved to 3.05 V. Upon charging, the photoexcited holes are capable to decompose amorphous Li2 O2 promptly, yielding a very low charge plateau of 3.25 V. A first cycle round-trip efficiency is 93.8% and retention of 70% over 500 h, which is the longest cycle life ever reported in photoassisted Li-O2 batteries. This work offers a general and reliable strategy for boosting the electrochemical kinetics by tailoring the crystalline of Li2 O2 with wide-band light.

4.
Nat Commun ; 11(1): 2191, 2020 May 04.
Article in English | MEDLINE | ID: mdl-32366827

ABSTRACT

Lithium-oxygen batteries with ultrahigh energy density have received considerable attention as of the future energy storage technologies. The development of effective electrocatalysts and a corresponding working mechanism during cycling are critically important for lithium-oxygen batteries. Here, a single cobalt atom electrocatalyst is synthesized for lithium-oxygen batteries by a polymer encapsulation strategy. The isolated moieties of single atom catalysts can effectively regulate the distribution of active sites to form micrometre-sized flower-like lithium peroxide and promote the decomposition of lithium peroxide by a one-electron pathway. The battery with single cobalt atoms can operate with high round-trip efficiency (86.2%) and long-term stability (218 days), which is superior to a commercial 5 wt% platinum/carbon catalyst. We reveal that the synergy between a single atom and the support endows the catalyst with excellent stability and durability. The promising results provide insights into the design of highly efficient catalysts for lithium-oxygen batteries and greatly expand the scope of future investigation.

5.
ACS Nano ; 14(3): 3281-3289, 2020 Mar 24.
Article in English | MEDLINE | ID: mdl-32119516

ABSTRACT

A number of inherent and thorny obstacles still stand in the way of the practical application of Li-O2 batteries, which require development of an advanced lithium anode and O2 cathode. Herein, the strategy of a symmetrical Li-O2 battery is presented. Specifically, Cu nanoneedle arrays with a nanoengineered Au coating are grown directly on a Cu foam substrate (Au/Cu@FCu), which can act as both the anode backbone and the cathode in a Li-O2 battery. The excellent conductivity, high porosity, large specific surface, and superior lithiophilicity as well as high catalytic activity of the Au/Cu@FCu electrodes can simultaneously regulate the deposition behavior of the lithium metal in the anode and catalyze the formation/decomposition of Li2O2 in the cathode. As a result, the Li uniformly deposited on the Au/Cu@FCu anode without Li dendrites, showing a high Coulombic efficiency over 96% and a long and stable cycle lifetime over 970 h. At the same time, the Au/Cu@FCu cathode demonstrates extremely low overpotentials (0.64 V) and a much higher specific capacity of 27 270 mAh g-1 compared to the Li-O2 batteries with a carbon-free cathode reported to date. Moreover, the "ebb and flow" phenomenon of the anode and cathode morphology is also observed in the Li-O2 battery.

6.
Nanoscale ; 11(24): 11513-11520, 2019 Jun 20.
Article in English | MEDLINE | ID: mdl-31038505

ABSTRACT

The design of a nanoporous cathode for Li-O2 batteries that can achieve high chemical stability and superior electrochemical performance remains a formidable challenge. A novel approach for the fabrication of nanoengineered PdNi alloys directly coated onto Ni nonwoven fabric (PdNi/NiNF) obtained through electrospinning has been proposed. On the basis of the contributions of the porous structure, the prepared metal-based cathodes can exhibit high chemical and mechanical stabilities, high catalytic activity, and high conductivity. In this design, the major side reactions were excluded when compared with popularly used carbon cathodes, and excellent cycling stability (266 cycles) could be achieved. The proposed cathode exhibited a high discharge capacity of 15 700 mA h g-1 at 500 mA g-1, which was 5 times higher than those reported for carbon-free cathodes.

SELECTION OF CITATIONS
SEARCH DETAIL
...