Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 618
Filter
1.
Sci Rep ; 14(1): 22715, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39349542

ABSTRACT

Racial and ethnic disparities persist in cancer survival rates across the United States, despite overall improvements. This comprehensive analysis examines trends in 5-year relative survival rates from 2002-2006 to 2015-2019 for major cancer types, elucidating differences among racial/ethnic groups to guide equitable healthcare strategies. Data from the SEER Program spanning 2000-2020 were analyzed, focusing on breast, colorectal, prostate, lung, pancreatic cancers, non-Hodgkin lymphoma, acute leukemia, and multiple myeloma. Age-standardized relative survival rates were calculated to assess racial (White, Black, American Indian/Alaska Native, Asian/Pacific Islander) and ethnic (Hispanic, Non-Hispanic) disparities, utilizing period analysis for recent estimates and excluding cases identified solely through autopsy or death certificates. While significant survival improvements were observed for most cancers, notable disparities persisted. Non-Hispanic Blacks exhibited the largest gain in breast cancer survival, with an increase of 5.2% points (from 77.6 to 82.8%); however, the survival rate remained lower than that of Non-Hispanic Whites (92.1%). Colorectal cancer survival declined overall (64.7-64.1%), marked by a 6.2% point drop for Non-Hispanic American Indian/Alaska Natives (66.3-60.1%). Prostate cancer survival declined across all races, with Non-Hispanic American Indian/Alaska Natives showing a decrease of 7.7% points (from 96.9 to 89.2%). Lung cancer, acute leukemia, and multiple myeloma showed notable increases across groups. Substantial racial/ethnic disparities in cancer survival underscore the notable need for tailored strategies ensuring equitable access to advanced treatments, particularly addressing significant trends in colorectal and pancreatic cancers among specific minority groups. Careful interpretation of statistical significance is warranted given the large dataset.


Subject(s)
Neoplasms , SEER Program , Humans , Neoplasms/mortality , Neoplasms/ethnology , United States/epidemiology , Male , Female , Survival Rate , Ethnicity/statistics & numerical data , Racial Groups/statistics & numerical data , Health Status Disparities , Middle Aged , Aged , Healthcare Disparities/ethnology , Healthcare Disparities/trends
2.
J Craniofac Surg ; 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39345146

ABSTRACT

Multiple primary cavernous hemangiomas of the skull are exceedingly rare, with surgery often being the treatment of choice. The complexity of radiologic diagnosis means that the identification of these hemangiomas still largely depends on pathologic analysis. This article outlines the diagnostic and therapeutic journey of a 52-year-old female patient afflicted with multiple primary cavernous hemangiomas of the skull. Although the occurrence of multiple cavernous hemangiomas in this patient may seem fortuitous, the authors aim to contribute to understanding the pathogenesis of such conditions through this case report.

3.
Cancer Res ; 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39250301

ABSTRACT

Tumor stroma plays a critical role in fostering tumor progression and metastasis. Cancer-associated fibroblasts (CAFs) are a major component of the tumor stroma. Identifying the key molecular determinants for the pro-tumor properties of CAFs could enable the development of more effective treatment strategies. Herein, through analyses of single-cell sequencing data, we identified a population of CAFs expressing high levels of sulfatase 1 (SULF1), which was associated with poor prognosis in colorectal cancer (CRC) patients. CRC models using mice with conditional SULF1 knockout in fibroblasts revealed the tumor-supportive function of SULF1+ CAFs. Mechanistically, SULF1+ CAFs enhanced the release of vascular endothelial growth factor A (VEGFA) from heparan sulfate proteoglycan (HSPG). The increased bioavailability of VEGFA initiated the deposition of extracellular matrix (ECM) and enhanced angiogenesis. In addition, intestinal microbiota-produced butyrate suppressed SULF1 expression in CAFs through its HDAC inhibitory activity. The insufficient butyrate production in CRC patients increased the abundance of SULF1+ CAFs, thereby promoting tumor progression. Importantly, tumor growth inhibition by HDAC inhibition was dependent on SULF1 expression in CAFs, and CRC patients with more SULF1+ CAFs were more responsive to treatment with the HDAC inhibitor chidamide. Collectively, these findings unveil the critical role of SULF1+ CAFs in CRC and provide a strategy to stratify CRC patients for HDAC inhibitor treatment.

4.
Adv Healthc Mater ; : e2402219, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39254274

ABSTRACT

Major depressive disorder (MDD) is a prevalent mental disorder that significantly impacts social and psychological function, but no effective medication is currently available. Circular RNAs (circRNAs) have been reported to participate in the pathogenesis of MDD which are envisioned as promising therapeutic targets. However, nonviral-based delivery strategies targeting circRNA against MDD are not thoroughly investigated. Here, it is identified that circATF7IP is significantly upregulated in plasma samples and positively correlated with 24-Hamilton Depression Scale (HAMD-24) scores of MDD patients. Synergistic amine lipid nanoparticles (SALNPs) are designed to deliver siRNA targeting circATF7IP (si-circATF7IP) into the hippocampus brain region by intranasal administration. Intranasal delivery of SALNP-si-circATF7IP successfully alleviated the depressive-like behaviors in the LPS-induced mouse depression model via decreasing CD11b+CD45dim microglia population and pro-inflammatory cytokine productions (TNF-α and IL-6). These results indicate that the level of circATF7IP positively correlates with MDD pathogenesis, and SALNP delivery of si-circATF7IP via intranasal administration is an effective strategy to ameliorate LPS-induced depressive-like behaviors.

5.
Cell Biol Toxicol ; 40(1): 75, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39269517

ABSTRACT

BACKGROUND: Aplastic anemia (AA) is an immune-mediated syndrome characterized by bone marrow failure. Therefore, comprehending the cellular profile and cell interactions in affected patients is crucial. METHODS: Human peripheral blood mononuclear cells (PBMCs) were collected from both healthy donors (HDs) and AA patients, and analyzed using multicolor flow cytometry. Utilizing the FlowSOM and t-SNE dimensionality reduction technique, we systematically explored and visualized the major immune cell alterations in AA. This analysis provided a foundation to further investigate the subtypes of cells exhibiting significant changes. RESULTS: Compared to HDs, peripheral blood from patients with AA exhibits a marked reduction in CD56Dim natural killer (NK) cells, which also show diminished functionality. Conversely, an increase in NK-like CD56+ monocytes, which possess compromised functionality. Along with a significant reduction in myeloid-derived suppressor cells (MDSCs), which show recovery post-treatment. Additionally, MDSCs serve as effective clinical markers for distinguishing between acquired aplastic anemia (AAA) and congenital aplastic anemia (CAA). Our comprehensive analysis of correlations among distinct immune cell types revealed significant associations between NKBri cells and CD8+ T cell subsets, as well as between NKDim cells and CD4+ T cells, these results highlight the intricate interactions and correlations within the immune cell network in AA. CONCLUSION: Our study systematically elucidates the pronounced immune dysregulation in patients with AA. The detailed mapping of the immune landscape not only provides crucial insights for basic research but also holds promise for enhancing the accuracy of diagnoses and the effectiveness of timely therapeutic interventions in clinical practice. Consequently, this could potentially reduce the high mortality rate associated with AA.


Subject(s)
Anemia, Aplastic , Killer Cells, Natural , Humans , Anemia, Aplastic/immunology , Killer Cells, Natural/immunology , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Adult , Female , Flow Cytometry/methods , Myeloid-Derived Suppressor Cells/immunology , Male , Middle Aged , Young Adult , Aged
6.
iScience ; 27(9): 110664, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39224517

ABSTRACT

The building sector is integral to climate change mitigation in China as well as the globe. By considering the impact of green innovation, we explore the long-term trend of carbon emissions in China's building sector until 2060, encompassing its entire life cycle. Results show that CO2 emissions of China's building sector will peak at 6.98-7.69 Bt in 2035 and maintain at 1.11 Bt in 2060 under the business-as-usual (BAU) scenario. The "3060 dual carbon goal" will only be achieved under the technological breakthrough (TB) scenario. These findings show that existing or relatively lax policies are insufficient to achieve the "3060" goal for the building sector. China should actively pursue green technological innovation throughout the building sector's life cycle, with a focus on accelerating the green and low-carbon production of key products, such as steel and cement, at the building material production stage.

7.
Biomed Pharmacother ; 178: 117222, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39088968

ABSTRACT

BACKGROUND: Ocular neovascular diseases, which contribute significantly to vision loss, lack effective preventive treatments. Recent studies have highlighted the significant involvement of immune cells in neovascular retinopathy. Myeloid-derived suppressor cells (MDSCs) promote the development of neovascularization, but it is unknown whether they participate in pathological neovascularization and whether they are expected to be a therapeutic target. METHOD: We investigated the role of MDSCs in promoting pathological angiogenesis using an oxygen-induced retinopathy (OIR) model, employing flow cytometry, immunofluorescence, and smart-seq analysis. Then, we evaluated the proportion of MDSCs in patient blood samples using flow cytometry. Additionally, we assessed the effect of MDSC depletion using an anti-Gr-1 monoclonal antibody on retinal vasculopathy and alterations in retinal microglia. RESULTS: In the OIR model, an elevated ratio of MDSCs was observed in both blood and retinal tissue during phase II (Neovascularization). The depletion of MDSCs resulted in reduced retinal neovascularization and vaso-obliteration, along with a decrease in microglia within the neovascularization area. Furthermore, analysis of gene transcripts associated with MDSCs indicated activation of vascular endothelial growth factor (VEGF) regulation and inflammation. Importantly, infants with ROP exhibited a higher proportion of MDSCs in their blood samples. CONCLUSION: Our results suggested that excessive MDSCs represent an unrecognized feature of ocular neovascular diseases and be responsible for the retinal vascular inflammation and angiogenesis, providing opportunities for new therapeutic approaches to ocular neovascular disease.


Subject(s)
Myeloid-Derived Suppressor Cells , Retinal Neovascularization , Humans , Myeloid-Derived Suppressor Cells/metabolism , Retinal Neovascularization/pathology , Retinal Neovascularization/metabolism , Animals , Neovascularization, Pathologic/pathology , Vascular Endothelial Growth Factor A/metabolism , Mice , Retinopathy of Prematurity/pathology , Retinopathy of Prematurity/metabolism , Mice, Inbred C57BL , Disease Models, Animal , Microglia/pathology , Microglia/metabolism , Infant , Oxygen/blood
8.
Eur J Cancer ; 209: 114260, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39111208

ABSTRACT

BACKGROUND: Immune checkpoint inhibitors (ICIs) have improved the prognosis of patients with non-small cell lung cancer but rarely been explored in pulmonary sarcomatoid carcinoma (PSC). This multicenter study aimed to evaluate the effectiveness of ICIs for PSC and its underlying mechanism. METHODS: Advanced PSC who received ICIs between August 2018 and May 2022 from 11 centers in China were included. Clinical characteristics and treatment information were collected. Whole-exome sequencing (WES) and whole transcriptome sequencing were conducted on pre-treatment samples to explore the mechanism. RESULTS: 113 patients with PSC were enrolled, the median PFS for patients receiving ICIs therapy was 8.77 months (95 % confidence interval, 4.21 to 13.32). Combining ICIs with anti-angiogenic agents significantly increased PFS (p = 0.04). Liver metastasis and combination therapy with anti-angiogenic agents were independent risk factors for PFS (Hazard Ratio [HR] = 3.652, p = 0.019 and HR = 0.435, p = 0.017, respectively). WES showed that PSC presented with a TMB of 6.3 mutations per million base pairs. High expression of TNFα signaling and glycolysis related gene showed a better prognosis. CONCLUSIONS: ICIs showed promising benefits for advanced PSC, and the addition of anti-angiogenic therapy might be a more effective treatment strategy for this disease.


Subject(s)
Immune Checkpoint Inhibitors , Lung Neoplasms , Humans , Immune Checkpoint Inhibitors/therapeutic use , Male , Middle Aged , Female , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Aged , Adult , Angiogenesis Inhibitors/therapeutic use , Exome Sequencing , Prognosis , Biomarkers, Tumor/genetics , Mutation
9.
J CME ; 13(1): 2390264, 2024.
Article in English | MEDLINE | ID: mdl-39157702

ABSTRACT

The purpose of this study was to compare student performance and question discrimination of multiple-choice questions (MCQs) that followed a standard format (SF) versus those that do not follow a SF, termed here as non-standard format (NSF). Medical physiology exam results of approximately 500 first-year medical students collected over a five-year period (2020-2024) were used. Classical test theory item analysis indices, e.g. discrimination (D), point-biserial correlation (rpbis), distractor analysis for non-functional distractors (NFDs), and difficulty (p) were determined and compared across MCQ format types. The results presented here are the mean ± standard error of the mean (SEM). The analysis showed that D (0.278 ± 0.008 vs 0.228 ± 0.006) and rpbis (0.291 ± .006 vs 0.273 ± .006) were significantly higher for NSF questions compared to SF questions, indicating NSF questions provided more discriminatory power. In addition, the percentage of NFDs was lower for the NSF items compared to the SF ones (58.3 ± 0.019% vs 70.2 ± 0.015%). Also, the NSF questions proved to be more difficult relative to the SF questions (p = 0.741 ± 0.007 for NSF; p = 0.809 ± 0.006 for SF). Thus, the NSF questions discriminated better, had fewer NFDs, and were more difficult than SF questions. These data suggest that using the selected non-standard item writing questions can enhance the ability to discriminate higher performers from lower performers on MCQs as well as provide more rigour for exams.

10.
Phytomedicine ; 133: 155885, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39096544

ABSTRACT

BACKGROUND: Endothelial dysfunction (ED), characterized by markedly reduced nitric oxide (NO) bioavailability, vasoconstriction, and a shift toward a proinflammatory and prothrombotic state, is an important contributor to hypertension, atherosclerosis, and other cardiovascular diseases. Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) is widely involved in cardiovascular development. Przewaquinone A (PA), a lipophilic diterpene quinone extracted from Salvia przewalskii Maxim, inhibits vascular contraction. PURPOSE: Herein, the goal was to explore the protective effect of PA on ED in vivo and in vitro, as well as the underlying mechanisms. METHODS: A human umbilical vein endothelial cell (HUVEC) model of ED induced by angiotensin II (AngII) was used for in vitro observations. Levels of AMPK, endothelial nitric oxide synthase (eNOS), vascular cell adhesion molecule-1 (VCAM-1), nitric oxide (NO), and endothelin-1 (ET-1) were detected by western blotting and ELISA. A mouse model of hypertension was established by continuous infusion of AngII (1000 ng/kg/min) for 4 weeks using osmotic pumps. Following PA and/or valsartan administration, NO and ET-1 levels were measured. The levels of AMPK signaling-related proteins in the thoracic aorta were evaluated by immunohistochemistry. Systolic blood pressure (SBP), diastolic blood pressure (DBP), and mean arterial pressure (MAP) were measured using the tail cuff method. Isolated aortic vascular tone measurements were used to evaluate the vasodilatory function in mice. Molecular docking, molecular dynamics, and surface plasmon resonance imaging (SPRi) were used to confirm AMPK and PA interactions. RESULTS: PA inhibited AngII-induced vasoconstriction and vascular adhesion as well as activated AMPK signaling in a dose-dependent manner. Moreover, PA markedly suppressed blood pressure, activated vasodilation in mice following AngII stimulation, and promoted the activation of AMPK signaling. Furthermore, molecular simulations and SPRi revealed that PA directly targeted AMPK. AMPK inhibition partly abolished the protective effects of PA against endothelial dysfunction. CONCLUSION: PA activates AMPK and ameliorates endothelial dysfunction during hypertension.


Subject(s)
AMP-Activated Protein Kinases , Angiotensin II , Endothelium, Vascular , Human Umbilical Vein Endothelial Cells , Hypertension , Mice, Inbred C57BL , Nitric Oxide Synthase Type III , Nitric Oxide , Angiotensin II/pharmacology , Animals , Humans , AMP-Activated Protein Kinases/metabolism , Human Umbilical Vein Endothelial Cells/drug effects , Male , Nitric Oxide Synthase Type III/metabolism , Hypertension/drug therapy , Endothelium, Vascular/drug effects , Nitric Oxide/metabolism , Mice , Salvia/chemistry , Endothelin-1/metabolism , Vascular Cell Adhesion Molecule-1/metabolism , Quinones/pharmacology , Molecular Docking Simulation , Blood Pressure/drug effects , Disease Models, Animal
11.
Phytochemistry ; 227: 114230, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39102929

ABSTRACT

Siraitia grosvenorii Swingle is one of the first approved medicine food homology species in China, and it has been used as a natural sweetener in the food industry and as a traditional medicine to relieve cough and reduce phlegm. However, many S. grosvenorii roots are discarded yearly, which results in a great waste of resources. Twelve undescribed norcucurbitacin-type triterpenoid glycosides, siraitiaosides A-L (1-12), and six known analogs (13-18) were isolated from the roots of S. grosvenorii. The structures of isolated norcucurbitacin glycosides were elucidated by comprehensive data analyses, including HRESIMS, UV, IR, NMR, ECD calculations, and X-ray crystallography analysis. Siraitiaosides A-E (1-5) featured an unusual 19,29-norcucurbitacin framework while siraitiaosides F-L (6-12) featured a rare 29-norcucurbitacin framework. Notably, compound 4 displayed moderate anti-acetylcholinesterase (AChE) activity with an IC50 of 21.0 µM, meanwhile, compounds 16 and 18 exhibited pronounced cytotoxic activities against MCF-7, CNE-1, and HeLa cancer cell lines with IC50 values of 2.1-15.2 µM. In silico studies showed that compound 4 bound closely to AChE with a binding energy of -5.04 kcal/mol, and compound 18 could tightly bind to PI3K, AKT1, ERK2, and MMP9 proteins that related to autophagy, apoptosis, migration/invasion, and growth/proliferation. In summary, the roots of Siraitia grosvenorii have potential medicinal values due to the multiple bioactive components.


Subject(s)
Cell Proliferation , Cucurbitaceae , Glycosides , Plant Roots , Plant Roots/chemistry , Humans , Glycosides/chemistry , Glycosides/pharmacology , Glycosides/isolation & purification , Molecular Structure , Cell Proliferation/drug effects , Cucurbitaceae/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Drug Screening Assays, Antitumor , Structure-Activity Relationship , Apoptosis/drug effects , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/isolation & purification , Dose-Response Relationship, Drug , Acetylcholinesterase/metabolism , Acetylcholinesterase/drug effects , Molecular Conformation
12.
Ther Adv Med Oncol ; 16: 17588359241266188, 2024.
Article in English | MEDLINE | ID: mdl-39108839

ABSTRACT

Background: Tumor necrosis (TN) is a common feature in lung squamous cell carcinoma (LSCC), which could provide useful predictive and prognostic information. Objectives: This study aimed to investigate the effect of pretreatment pulmonary TN (PTN) on the prognosis of first-line anti-programmed cell death 1 (PD-1)/PD ligand 1 (PD-L1) inhibitor in advanced LSCC. Design: We conducted a retrospective study to analyze the association between the presence of PTN and clinical outcomes in advanced LSCC patients treated with anti-PD-1/PD-L1 inhibitors. Methods: Data from 240 eligible patients were collected from 27 hospitals across China between 2016 and 2020. The presence of PTN was assessed using contrast-enhanced chest computed tomography (CT) imaging at baseline. We utilized the Cox proportional-hazards regression model to analyze the association between PTN and clinical outcomes. In addition, to account for potential confounding factors and ensure comparability between groups, we employed propensity score-matching (PSM) analysis. Results: In the overall patient cohort, the presence of PTN was 39.6%. The median follow-up duration was 20.3 months. The positive PTN group exhibited a notably inferior median progression-free survival (PFS; 6.5 months vs 8.6 months, p = 0.012) compared to the negative PTN group. Within the Cox proportional-hazards regression model, PTN emerged as an independent predictor of unfavorable PFS (hazard ratio (HR) = 1.354, 95% confidence interval (CI): 1.002-1.830, p = 0.049). After PSM, the median PFS for the positive PTN group (6.5 months vs 8.0 months, p = 0.027) remained worse than that of the negative PTN group. Multivariate analyses also further underscored that the presence of PTN independently posed a risk for shorter PFS (HR = 1.494, 95% CI: 1.056-2.112, p = 0.023). However, no statistically significant difference in overall survival was observed between the two groups. Conclusion: Our study suggests that the presence of PTN on baseline contrast-enhanced chest CT is a potential negative prognostic imaging biomarker for the outcome of anti-PD-1/PD-L1 inhibitor therapy in advanced LSCC. Further studies are warranted to validate these findings and explore the underlying mechanisms.


Predicting anti-PD-1/PD-L1 inhibitor treatment outcomes: pulmonary tumor necrosis in lung squamous cell carcinoma Our study focused on lung squamous cell carcinoma (LSCC) patients receiving first-line anti-PD-1/PD-L1 therapy. We explored the impact of a feature called pretreatment pulmonary tumor necrosis (PTN) on their prognosis. PTN was identified in 39.6% of patients using baseline chest CT scans. Results revealed that patients with PTN had a shorter time without disease progression (median PFS of 6.5 months compared to 8.6 months) and a higher risk of unfavorable outcomes. This suggests that PTN may serve as a negative prognostic imaging marker for anti-PD-1/PD-L1 therapy in advanced LSCC. Further research is needed to confirm and understand these findings better.

13.
Nat Commun ; 15(1): 6650, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39103370

ABSTRACT

The oxygen reduction reaction (ORR) catalyzed by efficient and economical catalysts is critical for sustainable energy devices. Although the newly-emerging atomically dispersed platinum catalysts are highly attractive for maximizing atomic utilization, their catalytic selectivity and durability are severely limited by the inflexible valence transformation between Pt and supports. Here, we present a structure by anchoring Pt atoms onto valence-adjustable CuOx/Cu hybrid nanoparticle supports (Pt1-CuOx/Cu), in which the high-valence Cu (+2) in CuOx combined with zero-valent Cu (0) serves as a wide-range valence electron reservoir (0‒2e) to dynamically adjust the Pt 5d valence states during the ORR. In situ spectroscopic characterizations demonstrate that the dynamic evolution of the Pt 5d valence electron configurations could optimize the adsorption strength of *OOH intermediate and further accelerate the dissociation of O = O bonds for the four-electron ORR. As a result, the Pt1-CuOx/Cu catalysts deliver superior ORR performance with a significantly enhanced four-electron selectivity of over 97% and long-term durability.

14.
Int J Biol Sci ; 20(9): 3426-3441, 2024.
Article in English | MEDLINE | ID: mdl-38993572

ABSTRACT

Background: Thyroid cancer (TC) is a common endocrine cancer with a favourable prognosis. However, poor patient prognosis due to TC dedifferentiation is becoming an urgent challenge. Recently, methyltransferase-like 3 (METTL3)-mediated N6 -methyladenosine (m6A) modification has been demonstrated to play an important role in the occurrence and progression of various cancers and a tumour suppressor role in TC. However, the mechanism of METTL3 in TC remains unclear. Methods: The correlation between METTL3 and prognosis in TC patients was evaluated by immunohistochemistry. Mettl3fl/flBrafV600ETPO-cre TC mouse models and RNA-seq were used to investigate the underlying molecular mechanism, which was further validated by in vitro experiments. The target gene of METTL3 was identified, and the complete m6A modification process was described. The phenomenon of low expression of METTL3 in TC was explained by identifying miRNAs that regulate METTL3. Results: We observed that METTL3 expression was negatively associated with tumour progression and poor prognosis in TC. Mechanistically, silencing METTL3 promoted the progression and dedifferentiation of papillary thyroid carcinoma (PTC) both in vivo and in vitro. Moreover, overexpressing METTL3 promoted the sensitivity of PTC and anaplastic thyroid cancer (ATC) cells to chemotherapeutic drugs and iodine-131 (131I) administration. Overall, the METTL3/PAX8/YTHDC1 axis has been revealed to play a pivotal role in repressing tumour occurrence, and is antagonized by miR-493-5p.


Subject(s)
Cell Differentiation , Methyltransferases , PAX8 Transcription Factor , Thyroid Neoplasms , Animals , Female , Humans , Male , Mice , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Methyltransferases/metabolism , Methyltransferases/genetics , MicroRNAs/metabolism , MicroRNAs/genetics , PAX8 Transcription Factor/metabolism , PAX8 Transcription Factor/genetics , Prognosis , Thyroid Cancer, Papillary/metabolism , Thyroid Cancer, Papillary/genetics , Thyroid Cancer, Papillary/pathology , Thyroid Neoplasms/metabolism , Thyroid Neoplasms/pathology , Thyroid Neoplasms/genetics
15.
Int J Chron Obstruct Pulmon Dis ; 19: 1491-1513, 2024.
Article in English | MEDLINE | ID: mdl-38957709

ABSTRACT

Background: Chronic obstructive pulmonary disease (COPD) stands as a predominant cause of global morbidity and mortality. This study aims to elucidate the relationship between pyroptosis-related genes (PRGs) and COPD diagnosis in the context of immune infiltration, ultimately proposing a PRG-based diagnostic model for predicting COPD outcomes. Methods: Clinical data and PRGs of COPD patients were sourced from the GEO database. The "ConsensusClusterPlus" package was employed to generate molecular subtypes derived from PRGs that were identified through differential expression analysis and LASSO Cox analysis. A diagnostic signature including eight genes (CASP4, CASP5, ELANE, GPX4, NLRP1, GSDME, NOD1and IL18) was also constructed. Immune cell infiltration calculated by the ESTIMATE score, Stroma scores and Immune scores were also compared on the basis of pyroptosis-related molecular subtypes and the risk signature. We finally used qRT - PCR to detect the expression levels of eight genes in COPD patient and normal. Results: The diagnostic model, anchored on eight PRGs, underwent validation with an independent experimental cohort. The area under the receiver operating characteristic (ROC) curves (AUC) for the diagnostic model showcased values of 0.809, 0.765, and 0.956 for the GSE76925, GSE8545, and GSE5058 datasets, respectively. Distinct expression patterns and clinical attributes of PRGs were observed between the comparative groups, with functional analysis underscoring a disparity in immune-related functions between them. Conclusion: In this study, we developed a potential as diagnostic biomarkers for COPD and have a significant role in modulating the immune response. Such insights pave the way for novel diagnostic and therapeutic strategies for COPD.


Subject(s)
Databases, Genetic , Predictive Value of Tests , Pulmonary Disease, Chronic Obstructive , Pyroptosis , Humans , Pulmonary Disease, Chronic Obstructive/genetics , Pulmonary Disease, Chronic Obstructive/diagnosis , Pulmonary Disease, Chronic Obstructive/immunology , Pyroptosis/genetics , Gene Expression Profiling , Lung/immunology , Male , Female , Middle Aged , Genetic Markers , Case-Control Studies , Transcriptome , Aged , Reproducibility of Results , Genetic Predisposition to Disease , Prognosis
16.
J Leukoc Biol ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38973235

ABSTRACT

Secondary hemophagocytic lymphohistiocytosis (sHLH) is a hyperinflammatory syndrome characterized by immune disorders. It is imperative to elucidate the immunophenotypic panorama and the interactions among these cells in patients. Human peripheral blood mononuclear cells were collected from healthy donors and sHLH patients and tested using multicolor flow cytometry. We used FlowSOM to explore and visualize the immunophenotypic characteristics of sHLH. By demonstrating the phenotypes of immune cells, we discovered that sHLH patients had significantly higher levels of CD56+ monocytes, higher levels of myeloid-derived suppressor cells, low-density neutrophil-to-T cell ratio, and higher heterogeneous T cell activation than healthy donors. However, natural killer cell cytotoxicity and function were impaired. We then assessed the correlations among 30 immune cell types and evaluated metabolic analysis. Our findings demonstrated polymorphonuclear myeloid-derived suppressor cells, CD56+ monocytes, and neutrophil-to-T cell ratio were elevated abnormally in sHLH patients, which may indicate an association with immune overactivation and inflammatory response. We are expected to confirm that they are involved in the occurrence of the disease through further in-depth research.

17.
JCI Insight ; 9(15)2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39012714

ABSTRACT

Antifibrotic therapy with nintedanib is the clinical mainstay in the treatment of progressive fibrosing interstitial lung disease (ILD). High-dimensional medical image analysis, known as radiomics, provides quantitative insights into organ-scale pathophysiology, generating digital disease fingerprints. Here, we performed an integrative analysis of radiomic and proteomic profiles (radioproteomics) to assess whether changes in radiomic signatures can stratify the degree of antifibrotic response to nintedanib in (experimental) fibrosing ILD. Unsupervised clustering of delta radiomic profiles revealed 2 distinct imaging phenotypes in mice treated with nintedanib, contrary to conventional densitometry readouts, which showed a more uniform response. Integrative analysis of delta radiomics and proteomics demonstrated that these phenotypes reflected different treatment response states, as further evidenced on transcriptional and cellular levels. Importantly, radioproteomics signatures paralleled disease- and drug-related biological pathway activity with high specificity, including extracellular matrix (ECM) remodeling, cell cycle activity, wound healing, and metabolic activity. Evaluation of the preclinical molecular response-defining features, particularly those linked to ECM remodeling, in a cohort of nintedanib-treated fibrosing patients with ILD, accurately stratified patients based on their extent of lung function decline. In conclusion, delta radiomics has great potential to serve as a noninvasive and readily accessible surrogate of molecular response phenotypes in fibrosing ILD. This could pave the way for personalized treatment strategies and improved patient outcomes.


Subject(s)
Indoles , Proteomics , Pulmonary Fibrosis , Animals , Indoles/therapeutic use , Indoles/pharmacology , Mice , Humans , Proteomics/methods , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/diagnostic imaging , Pulmonary Fibrosis/pathology , Antifibrotic Agents/pharmacology , Antifibrotic Agents/therapeutic use , Disease Models, Animal , Female , Male , Lung/diagnostic imaging , Lung/pathology , Lung/metabolism , Lung/drug effects , Lung Diseases, Interstitial/drug therapy , Lung Diseases, Interstitial/diagnostic imaging , Lung Diseases, Interstitial/metabolism , Extracellular Matrix/metabolism
18.
Front Microbiol ; 15: 1410504, 2024.
Article in English | MEDLINE | ID: mdl-38912347

ABSTRACT

The potentially lethal zoonotic disease alveolar echinococcosis (AE) is caused by the metacestode larval stages of the tapeworm Echinococcus multilocularis. Metacestode growth and proliferation occurs within the inner organs of mammalian hosts, which is associated with complex molecular parasite-host interactions. The host has developed various ways to resist a parasitic infection, and the production of reactive oxygen species (ROS) is one of the most important strategies. Here, we found that scavenging of ROS reduced metacestode larval growth and germinative cell proliferation in in vivo models. Furthermore, using in vitro-cultured metacestode vesicles, we found that increased ROS levels enhanced metacestode growth and germinative cell proliferation, which was achieved by positively activating the ROS-EmERK-EmHIF1α axis. These results indicate that, beside its capacity to damage the parasite, ROS also play critical roles in metacestode growth and germinative cell proliferation. This study suggests that the effects of ROS on parasite may be bidirectional during AE infection, reflecting the parasite's adaptation to the oxidative stress microenvironment.

19.
Sci Total Environ ; 944: 173797, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-38862037

ABSTRACT

Cost limitations often lead to the adoption of lower precision grids for soil sampling in large-scale areas, potentially causing deviations in the observed trace metal (TM) concentrations from their true values. Therefore, in this study, an enhanced Health Risk Assessment (HRA) model was developed by combining Monte Carlo simulation (MCS) and Empirical Bayesian kriging (EBK), aiming to improve the accuracy of health risk assessment under low-precision sampling conditions. The results showed that the increased sampling scale led to an overestimation of the non-carcinogenic risk for children, resulting in potential risks (the maximum Hazard index value was 1.08 and 1.64 at the 500 and 1000 m sampling scales, respectively). EBK model was suitable for predicting soil TM concentrations at large sampling scale, and the predicted concentrations were closer to the actual value. Furthermore, we found that the improved HRA model by combining EBK and MCS effectively reduced the possibility of over- or under-estimation of risk levels due to the increasing sampling size, and enhanced the accuracy and robustness of risk assessment. This study provides an important methodology support for health risk assessment of soil TMs under data limitation.

20.
Genes (Basel) ; 15(6)2024 May 23.
Article in English | MEDLINE | ID: mdl-38927602

ABSTRACT

The low survival rate of transplanted plantlets, which has limited the utility of tissue-culture-based methods for the rapid propagation of tree peonies, is due to plantlet dormancy after rooting. We previously determined that the auxin response factor PsARF may be a key regulator of tree peony dormancy. To clarify the mechanism mediating tree peony plantlet dormancy, PsARF genes were systematically identified and analyzed. Additionally, PsARF16a was transiently expressed in the leaves of tree peony plantlets to examine its regulatory effects on a downstream gene network. Nineteen PsARF genes were identified and divided into four classes. All PsARF genes encoded proteins with conserved B3 and ARF domains. The number of motifs, exons, and introns varied between PsARF genes in different classes. The overexpression of PsARF16a altered the expression of NCED, ZEP, PYL, GA2ox1, GID1, and other key genes in abscisic acid (ABA) and gibberellin (GA) signal transduction pathways, thereby promoting ABA synthesis and decreasing GA synthesis. Significant changes to the expression of some key genes contributing to starch and sugar metabolism (e.g., AMY2A, BAM3, BGLU, STP, and SUS2) may be associated with the gradual conversion of sugar into starch. This study provides important insights into PsARF functions in tree peonies.


Subject(s)
Gene Expression Regulation, Plant , Paeonia , Plant Dormancy , Plant Proteins , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Dormancy/genetics , Paeonia/genetics , Paeonia/growth & development , Paeonia/metabolism , Abscisic Acid/metabolism , Gibberellins/metabolism , Plant Growth Regulators/genetics , Plant Growth Regulators/metabolism , Trees/genetics , Trees/growth & development , Transcription Factors/genetics , Transcription Factors/metabolism , Signal Transduction/genetics
SELECTION OF CITATIONS
SEARCH DETAIL