Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 503
Filter
1.
BMC Chem ; 18(1): 97, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38715128

ABSTRACT

Modification of marketed drugs is an important way to develop drugs because its safety and clinical applicability. Oxygen-nitrogen heterocycles are a class of important active substances discovered in the process of new drug development. Dolutegravir, an HIV drug with a nitrogen-oxygen heterocycle structure, has the potential ability to inhibit cell survival. In order to find and explore novel anti-tumor drugs, new dolutegravir derivatives bearing different 1,2,3-triazole moieties were prepared via click reactions. In vitro biological experiments performed in several lung cancer cell lines suggested that these novel compounds displayed potent anti-tumor ability. Especially, the compound 9e with a substituent of 2-methyl-3-nitrophenyl and the compound 9p with a substituent of 3-trifluoromethylphenyl were effective against PC-9 cell line with IC50 values of 3.83 and 3.17 µM, respectively. Moreover, compounds 9e and 9p were effective against H460 and A549 cells. Further studies suggested that compounds 9e and 9p could induce cancer cell apoptosis in PC-9 and H460, inhibit cancer cell proliferation, change the cell cycle, and increase the level of reactive oxygen species (ROS) which further induce tumor cell apoptosis. In addition, compounds 9e and 9p increased LC3 protein expression which was the key regulator in autophagy signaling pathway in PC-9 cells. Compound 9e also showed low toxicity against normal cells, and could be regarded as an interesting lead compound for further structure optimization.

2.
Discov Oncol ; 15(1): 149, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720108

ABSTRACT

PURPOSE: The research endeavors to explore the implications of CD47 in cancer immunotherapy effectiveness. Specifically, there is a gap in comprehending the influence of CD47 on the tumor immune microenvironment, particularly in relation to CD8 + T cells. Our study aims to elucidate the prognostic and immunological relevance of CD47 to enhance insights into its prospective utilities in immunotherapeutic interventions. METHODS: Differential gene expression analysis, prognosis assessment, immunological infiltration evaluation, pathway enrichment analysis, and correlation investigation were performed utilizing a combination of R packages, computational algorithms, diverse datasets, and patient cohorts. Validation of the concept was achieved through the utilization of single-cell sequencing technology. RESULTS: CD47 demonstrated ubiquitous expression across various cancer types and was notably associated with unfavorable prognostic outcomes in pan-cancer assessments. Immunological investigations unveiled a robust correlation between CD47 expression and T-cell infiltration rather than T-cell exclusion across multiple cancer types. Specifically, the CD47-high group exhibited a poorer prognosis for the cytotoxic CD8 + T cell Top group compared to the CD47-low group, suggesting a potential impairment of CD8 + T cell functionality by CD47. The exploration of mechanism identified enrichment of CD47-associated differentially expressed genes in the CD8 + T cell exhausted pathway in multiple cancer contexts. Further analyses focusing on the CD8 TCR Downstream Pathway and gene correlation patterns underscored the significant involvement of TNFRSF9 in mediating these effects. CONCLUSION: A robust association exists between CD47 and the exhaustion of CD8 + T cells, potentially enabling immune evasion by cancer cells and thereby contributing to adverse prognostic outcomes. Consequently, genes such as CD47 and those linked to T-cell exhaustion, notably TNFRSF9, present as promising dual antigenic targets, providing critical insights into the field of immunotherapy.

3.
Cogn Emot ; : 1-18, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38738622

ABSTRACT

The brain processes underlying the distinction between emotion-label words (e.g. happy, sad) and emotion-laden words (e.g. successful, failed) remain inconclusive in bilingualism research. The present study aims to directly compare the processing of these two types of emotion words in both the first language (L1) and second language (L2) by recording event-related potentials (ERP) from late Chinese-English bilinguals during a lexical decision task. The results revealed that in the early word processing stages, the N170 emotion effect emerged only for L1 negative emotion-laden words and L2 negative emotion-label words. In addition, larger early posterior negativity (EPN) was elicited by emotion-laden words than emotion-label words in both L1 and L2. In the later processing stages, the N400 emotion effect was evident for L1 emotion words, excluding positive emotion-laden words, while it was absent in L2. Notably, L1 emotion words elicited enhanced N400 and attenuated late positive complex (LPC) compared to those in L2. Taken together, these findings confirmed the engagement of emotion, and highlighted the modulation of emotion word type and valence on word processing in both early and late processing stages. Different neural mechanisms between L1 and L2 in processing written emotion words were elucidated.

4.
J Hazard Mater ; 472: 134461, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38696959

ABSTRACT

Previous studies have indicated that tire wear particles (TWPs) leachate exposure induced serious eye injury in fish through inhibiting the thyroid peroxidase (TPO) enzyme activity. However, the main TPO inhibitors in the leachate were still unknown. In this study, we identified 2-Mercaptobenzothiazole (MBT) as the potential TPO inhibitor in the TWPs leachate through references search, model prediction based on Danish QSAR and ToxCast database, molecular docking, and in vivo assay. We further explored the toxic mechanism of MBT under environmentally relevant concentrations. The decreased eye size of zebrafish larvae was mainly caused by the decreased lens diameter and cell density in the inner nuclear layer (INL) and outer nuclear layer (ONL) of the retina. Transcriptomics analysis demonstrated that the eye phototransduction function was significantly suppressed by inhibiting the photoreceptor cell proliferation process after MBT exposure. The altered opsin gene expression and decreased opsin protein levels were induced by weakening thyroid hormone signaling after MBT treatment. These results were comparable to those obtained from a known TPO inhibitor, methimazole. This study has identified MBT as the primary TPO inhibitor responsible for inducing eye impairment in zebrafish larvae exposed to TWPs leachate. It is crucial for reducing the toxicity of TWPs leachate in fish.

5.
Adv Sci (Weinh) ; : e2306294, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38757379

ABSTRACT

Autism spectrum disorder (ASD) is a neurodevelopmental disorder, characterized by social communication disability and stereotypic behavior. This study aims to investigate the impact of prenatal exposure to 1-nitropyrene (1-NP), a key component of motor vehicle exhaust, on autism-like behaviors in a mouse model. Three-chamber test finds that prenatal 1-NP exposure causes autism-like behaviors during the weaning period. Patch clamp shows that inhibitory synaptic transmission is reduced in medial prefrontal cortex of 1-NP-exposed weaning pups. Immunofluorescence finds that prenatal 1-NP exposure reduces the number of prefrontal glutamate decarboxylase 67 (GAD67) positive interneurons in fetuses and weaning pups. Moreover, prenatal 1-NP exposure retards tangential migration of GAD67-positive interneurons and downregulates interneuron migration-related genes, such as Nrg1, Erbb4, and Sema3F, in fetal forebrain. Mechanistically, prenatal 1-NP exposure reduces hydroxymethylation of interneuron migration-related genes through inhibiting ten-eleven translocation (TET) activity in fetal forebrain. Supplement with alpha-ketoglutarate (α-KG), a cofactor of TET enzyme, reverses 1-NP-induced hypohydroxymethylation at specific sites of interneuron migration-related genes. Moreover, α-KG supplement alleviates 1-NP-induced migration retardation of interneurons in fetal forebrain. Finally, maternal α-KG supplement improves 1-NP-induced autism-like behaviors in weaning offspring. In conclusion, prenatal 1-NP exposure causes autism-like behavior partially by altering DNA hydroxymethylation of interneuron migration-related genes in developing brain.

6.
Antioxidants (Basel) ; 13(4)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38671860

ABSTRACT

Polyphenol-rich grape pomace (GP) represents a valuable processing by-product with considerable potential as sustainable livestock feed. This study aimed to investigate the effects of different levels of GP on the growth performance and nitrogen utilization efficiency, antioxidant activity, and rumen and rectum microbiota of Angus bulls. Thirty Angus bulls were allocated three dietary treatments according to a completely randomized design: 0% (G0), 10% (G10), and 20% (G20) corn silage dry matter replaced with dried GP dry matter. The results showed that the average daily gain (ADG) of the G0 group and G10 group was higher than that of the G20 group (p < 0.05); urinary nitrogen levels decreased linearly with the addition of GP (linear, p < 0.05). In terms of antioxidants, the levels of catalase (CAT) in the G10 group were higher than in the G0 and G20 groups (p < 0.05), and the total antioxidative capacity (T-AOC) was significantly higher than that in the G20 group (p < 0.05). In addition, in the analysis of a microbial network diagram, the G10 group had better microbial community complexity and stability. Overall, these findings offer valuable insights into the potential benefits of incorporating GP into the diet of ruminants.

7.
Molecules ; 29(8)2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38675599

ABSTRACT

We introduced a terminal alkyne into the core structure of dolutegravir, resulting in the synthesis of 34 novel dolutegravir-1,2,3-triazole compounds through click chemistry. These compounds exhibited remarkable inhibitory activities against two hepatocellular carcinoma cell lines, Huh7 and HepG2. Notably, compounds 5e and 5p demonstrated exceptional efficacy, particularly against Huh7 cells, with IC50 values of 2.64 and 5.42 µM. Additionally, both compounds induced apoptosis in Huh7 cells, suppressed tumor cell clone formation, and elevated reactive oxygen species (ROS) levels, further promoting tumor cell apoptosis. Furthermore, compounds 5e and 5p activated the LC3 signaling pathway, inducing autophagy, and triggered the γ-H2AX signaling pathway, resulting in DNA damage in tumor cells. Compound 5e exhibited low toxicity, highlighting its potential as a promising anti-tumor drug.


Subject(s)
Antineoplastic Agents , Apoptosis , Autophagy , DNA Damage , Heterocyclic Compounds, 3-Ring , Liver Neoplasms , Oxazines , Piperazines , Pyridones , Reactive Oxygen Species , Humans , Pyridones/pharmacology , Pyridones/chemistry , Autophagy/drug effects , DNA Damage/drug effects , Liver Neoplasms/drug therapy , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Piperazines/pharmacology , Piperazines/chemistry , Oxazines/pharmacology , Oxazines/chemistry , Heterocyclic Compounds, 3-Ring/pharmacology , Heterocyclic Compounds, 3-Ring/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Line, Tumor , Reactive Oxygen Species/metabolism , Hep G2 Cells , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Signal Transduction/drug effects , Cell Proliferation/drug effects , Drug Discovery
8.
Food Chem ; 449: 139231, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38579654

ABSTRACT

Pyrethroids are widely used insecticides worldwide, while their on-site and rapid detection still faces technological challenges. Herein, an innovative detection mechanism was designed for deltamethrin, a typical kind of type II pyrethroids, based on a dual-emitting fluoroprobe consisting of NH2-SiQDs and Eu3+. Deltamethrin can rapidly hydrolyze into 3-phenoxybenzaldehyde (3-PBD) and react specifically with fluoroprobe, causing fluorescence quenching of SiQDs while maintaining the fluorescent stability of Eu3+. Building upon the above fluorescence-responsive principle, SiQDs@Eu3+ provided satisfactorily dual-emitting signals, realizing the highly-selective and sensitive detection of deltamethrin. Correlation between the surface structure of SiQDs and their absorption spectra was in-depth unraveled by TD-DFT calculation and FT-IR analysis. As for the analytical performance, the recovery and LOD of deltamethrin in lettuce, provided by SiQDs@Eu3+, were comparable or even superior over conventional chromatographic analysis. Meanwhile, an innovative smartphone-based optical device was developed, which greatly decreased errors caused by the previously reported smartphone-based fluorescence detection.


Subject(s)
Food Contamination , Insecticides , Nitriles , Pyrethrins , Smartphone , Pyrethrins/chemistry , Pyrethrins/analysis , Nitriles/chemistry , Insecticides/chemistry , Insecticides/analysis , Food Contamination/analysis , Lactuca/chemistry , Spectrometry, Fluorescence , Fluorescence , Fluorescent Dyes/chemistry , Limit of Detection
9.
Signal Transduct Target Ther ; 9(1): 95, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38653979

ABSTRACT

Bietti crystalline corneoretinal dystrophy is an inherited retinal disease caused by mutations in CYP4V2, which results in blindness in the working-age population, and there is currently no available treatment. Here, we report the results of the first-in-human clinical trial (NCT04722107) of gene therapy for Bietti crystalline corneoretinal dystrophy, including 12 participants who were followed up for 180-365 days. This open-label, single-arm exploratory trial aimed to assess the safety and efficacy of a recombinant adeno-associated-virus-serotype-2/8 vector encoding the human CYP4V2 protein (rAAV2/8-hCYP4V2). Participants received a single unilateral subretinal injection of 7.5 × 1010 vector genomes of rAAV2/8-hCYP4V2. Overall, 73 treatment-emergent adverse events were reported, with the majority (98.6%) being of mild or moderate intensity and considered to be procedure- or corticosteroid-related; no treatment-related serious adverse events or local/systemic immune toxicities were observed. Compared with that measured at baseline, 77.8% of the treated eyes showed improvement in best-corrected visual acuity (BCVA) on day 180, with a mean ± standard deviation increase of 9.0 ± 10.8 letters in the 9 eyes analyzed (p = 0.021). By day 365, 80% of the treated eyes showed an increase in BCVA, with a mean increase of 11.0 ± 10.6 letters in the 5 eyes assessed (p = 0.125). Importantly, the patients' improvement observed using multifocal electroretinogram, microperimetry, and Visual Function Questionnaire-25 further supported the beneficial effects of the treatment. We conclude that the favorable safety profile and visual improvements identified in this trial encourage the continued development of rAAV2/8-hCYP4V2 (named ZVS101e).


Subject(s)
Corneal Dystrophies, Hereditary , Cytochrome P450 Family 4 , Dependovirus , Genetic Therapy , Retinal Diseases , Humans , Male , Female , Middle Aged , Adult , Corneal Dystrophies, Hereditary/genetics , Corneal Dystrophies, Hereditary/therapy , Corneal Dystrophies, Hereditary/pathology , Dependovirus/genetics , Cytochrome P450 Family 4/genetics , Genetic Vectors/genetics , Visual Acuity
10.
Sci Total Environ ; 931: 172781, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38685433

ABSTRACT

Lead (Pb) is one of the most common heavy metal pollutants that possesses multi-organ toxicity. For decades, great efforts have been devoted to investigate the damage of Pb to kidney, liver, bone, blood cells and the central nervous system (CNS). For the common, dietary exposure is the main avenue of Pb, but our knowledge of Pb toxicity in gastrointestinal tract (GIT) remains quite insufficient. Importantly, emerging evidence has documented that gastrointestinal disorders affect other distal organs like brain and liver though gut-brain axis or gut-liver axis, respectively. This review focuses on the recent understanding of intestinal toxicity of Pb exposure, including structural and functional damages. We also review the influence and mechanism of intestinal toxicity on other distal organs, mainly concentrated on brain and liver. At last, we summarize the bioactive substances that reported to alleviate Pb toxicity, providing potential dietary intervention strategies to prevent or attenuate Pb toxicity.


Subject(s)
Environmental Pollutants , Lead , Lead/toxicity , Humans , Environmental Pollutants/toxicity , Intestines/drug effects , Liver/drug effects , Animals , Brain/drug effects
11.
Sci Total Environ ; 929: 172580, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38657822

ABSTRACT

The prevalence of microplastics (MPs), especially aged particles, interacting with contaminants like triclosan (TCS), raises concerns about their toxicological effects on aquatic life. This study focused on the impact of aged polyamide (APA) MPs and TCS on zebrafish lipid metabolism. APA MPs, with rougher surfaces and lower hydrophobicity, exhibited reduced TCS adsorption than unaged polyamide (PA) MPs. Co-exposure to PA/APA MPs and TCS resulted in higher TCS accumulation in zebrafish larvae, notably more with PA than APA. Larvae exposed to PA + TCS exhibited greater oxidative stress, disrupted lipid metabolism, and altered insulin pathway genes than those exposed to TCS. However, these negative effects were lessened in the APA + TCS group. Through miRNA-seq and miR-217 microinjection, it was revealed that PA + TCS co-exposure upregulated miR-217, linked to lipid metabolic disorders in zebrafish. Moreover, molecular docking showed stable interactions formed between PA, TCS, and the insulin signaling protein Pik3r2. This study demonstrated that PA and TCS co-exposure significantly inhibited the insulin signaling in zebrafish, triggering lipid metabolism dysregulation mediated by miR-217 upregulation, while APA and TCS co-exposure alleviated these disruptions. This research underscored the ecological and toxicological risks of aged MPs and pollutants in aquatic environments, providing crucial insights into the wider implications of MPs pollution.


Subject(s)
Lipid Metabolism , MicroRNAs , Microplastics , Triclosan , Water Pollutants, Chemical , Zebrafish , Animals , Larva/drug effects , Lipid Metabolism/drug effects , Microplastics/toxicity , MicroRNAs/metabolism , MicroRNAs/genetics , Triclosan/toxicity , Water Pollutants, Chemical/toxicity
12.
Food Chem X ; 22: 101258, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38444557

ABSTRACT

The retrogradation behaviors of five damaged wheat starches (DS) after milling 0, 30, 60, 90, and 120 min with different water contents (33, 50, 60 %) were evaluated. Milling treatment increased DS content and developed an agglomeration of small particles. After 7 days of storage, the recrystallinity and long-range ordered structure of starch pastes were increased with the contents of DS and water. This process led to a lower setback viscosity and poor leaching of amylose. LF-NMR indicated a conversion from tightly bound water and free water to weakly bound water. During storage, DS12 with 60 % water content had the highest retrogradation tendency where the retrogradation enthalpy increased by 1.5 J/g and 2.2 J/g compared with DS0 with 60 % and DS12 with 33 % water content. DS with higher water content promoted the water mobility and made the starch molecular chains migrated conveniently. These changes facilitated the recrystallinity process during retrogradation period.

13.
Food Chem ; 446: 138829, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38442681

ABSTRACT

The influence of starch granule surface proteins (SGSPs) and starch granule-associated proteins (SGAPs) on bread retrogradation was investigated in a reconstituted dough system. The removal of both SGSPs and SGAPs resulted in poor bread qualities, decreasing specific volume and crumb porosity, leading to more baking loss and compact crumb structure. Particularly, removing SGSPs was effective in promoting the bread retrogradation. After 7 days of storage, the hardness of bread without SGSPs showed an increase of 353.34 g than the bread without SGAPs. Proton population and relaxation times exhibited that the absence of SGSPs significantly decreased the content of bound water from 11.51 % to 7.03 %, indicating lower water-holding capacity due to the loosen gelling structure. Compared to the control group, bread without SGSPs accelerated the starch recrystallinity by a reduction in soluble starch content, thereby increasing the retrogradation enthalpy and relative crystallinity through promoting the molecular reassociation in starch.


Subject(s)
Bread , Water , Starch/chemistry , Thermodynamics , Hardness
14.
J Hazard Mater ; 469: 134045, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38492388

ABSTRACT

Tetracycline hydrochloride (TCH), a prevalent antibiotic in aquaculture for treating bacterial infections, poses challenges for on-site detection. This study employed the reversed-phase microemulsion method to synthesize a uniform nano metal-organic framework (MOF) material, europium-benzene-p-dicarboxylic acid (Eu-BDC), doped with Tb3+ to form a dual-emission fluorescence probe. By leveraging the combined a-photoinduced electron-transfer (a-PET) and inner filter effect (IFE) mechanisms, high-sensitivity TCH detection in Carassius auratus and Ruditapes philippinarum was achieved. The detection range for TCH is 0.380-75 µM, with a low limit of detection (LOD) at 0.115 µM. Upon TCH binding, Eu-BDC fluorescence rapidly decreased, while Tb3+ fluorescence remained constant, establishing a ratiometric fluorescence change. Investigation into the TCH quenching mechanism on Eu-BDC was conducted using time-dependent density functional theory (TD-DFT) calculations and fluorescence quenching kinetic equations, suggesting a mixed quenching mechanism. Furthermore, a novel photoelectric conversion fluorescence detection device (FL-2) was developed and evaluated in conjunction with high-performance liquid chromatography-diode-array detection (HPLC-DAD). This is the first dedicated fluorescence device for TCH detection, showcasing superior photoelectric conversion performance and stability that reduces experimental errors associated with smartphone photography methods, presenting a promising avenue for on-site rapid TCH detection.


Subject(s)
Metal-Organic Frameworks , Tetracycline , Animals , Spectrometry, Fluorescence/methods , Anti-Bacterial Agents , Europium , Fluorescent Dyes , Fresh Water
15.
Theriogenology ; 220: 84-95, 2024 May.
Article in English | MEDLINE | ID: mdl-38490113

ABSTRACT

Understanding the mechanisms for oocyte maturation and optimizing the protocols for in vitro maturation (IVM) are greatly important for improving developmental potential of IVM oocytes. The miRNAs expressed in cumulus cells (CCs) play important roles in oocyte maturation and may be used as markers for selection of competent oocytes/embryos. Although a recent study from our group identified several new CCs-expressed miRNAs that regulate cumulus expansion (CE) and CC apoptosis (CCA) in mouse oocytes, validation of these findings and further investigation of mechanisms of action in other model species was essential before wider applications. By using both in vitro and in vivo pig oocyte models with significant differences in CE, CCA and developmental potential, the present study validated that miR-149 and miR-31 improved CE and developmental potential while suppressing CCA of pig oocytes. We demonstrated that miR-149 and miR-31 targeted SMAD family member 6 (SMAD6) and transforming growth factor ß2 (TGFB2), respectively, in the transforming growth factor-ß (TGF-ß) signaling. Furthermore, both miR-149 and miR-31 increased CE and decreased CCA via activating SMAD family member 2 (SMAD2) and increasing the expression of SMAD2 and SMAD family member 4. In conclusion, the present results show that miR-149 and miR-31 improved CE and developmental potential while suppressing CCA of pig oocytes by activating the TGF-ß signaling, suggesting that they might be used as markers for pig oocyte quality.


Subject(s)
Cumulus Cells , In Vitro Oocyte Maturation Techniques , MicroRNAs , Oocytes , Animals , Female , Cumulus Cells/physiology , In Vitro Oocyte Maturation Techniques/veterinary , In Vitro Oocyte Maturation Techniques/methods , MicroRNAs/genetics , MicroRNAs/metabolism , Oocytes/physiology , Swine , Transforming Growth Factor beta/pharmacology , Transforming Growth Factor beta/metabolism
16.
Adv Healthc Mater ; : e2304000, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38502033

ABSTRACT

Metal ions have attracted a lot of interest in antitumor therapy due to their unique mechanism of action. However, multiple death mechanisms associate with metal ions to synergistic antitumors have few studies mainly due to the serious challenges in designing and building metal-associated multimodal treatment platforms. Hence, a series of glutathione-activatable CaCu-based metal-organic-frameworks loaded with doxorubicin and ovalbumin are successfully designed and synthesized with an "all in one" strategy, which is modified by galactosamine-linked hyaluronic acid to prepare multimodal treatment platform (SCC/DOX@OVA-HG) for targeted delivery and synergistic antitumor therapy. SCC/DOX@OVA-HG can be rapidly degraded by the overexpressed glutathione and then releases the "cargoes" in the tumor microenvironment. The released Cu+ efficiently catalyzes H2O2 to produce highly toxic ROS for CDT, and the up-regulation of calcium ion concentration in tumor cells induced by the released Ca2+ enables calcium overload therapy, which synergically enhances the metal-related death pattern. Meanwhile, OVA combined with Ca2+/Cu2+ further activates macrophages into an M1-like phenotype to accelerate tumor cell death through immunotherapy. Besides, the released DOX can also insert into the DNA double helix for chemotherapy. Consequently, the developed SCC/DOX@OVA-HG reveals significantly improved antitumor efficacy through a multimodal synergistic therapy of chemotherapy, chemodynamic therapy, calcium overload, and immunotherapy.

17.
Environ Res ; 251(Pt 2): 118752, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38513750

ABSTRACT

Human beings are routinely exposed to chronic and low dose of Bisphenols (BPs) due to their widely pervasiveness in the environment. BPs hold similar chemical structures to 17ß-estradiol (E2) and thyroid hormone, thus posing threats to human health by rendering the endocrine system dysfunctional. Among BPs, Bisphenol-A (BPA) is the best-known and extensively studied endocrine disrupting compound (EDC). BPA possesses multisystem toxicity, including reproductive toxicity, neurotoxicity, hepatoxicity and nephrotoxicity. Particularly, the central nervous system (CNS), especially the developing one, is vulnerable to BPA exposure. This review describes our current knowledge of BPA toxicity and the related molecular mechanisms, with an emphasis on the role of Wnt signaling in the related processes. We also discuss the role of oxidative stress, endocrine signaling and epigenetics in the regulation of Wnt signaling by BPA exposure. In summary, dysfunction of Wnt signaling plays a key role in BPA toxicity and thus can be a potential target to alleviate EDCs induced damage to organisms.

18.
Aquat Toxicol ; 269: 106884, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38458066

ABSTRACT

Triclosan (TCS), recognized as an endocrine disruptor, has raised significant concerns due to its widespread use and potential health risks. To explore the impact of TCS on lipid metabolism, both larval and adult zebrafish were subjected to acute and chronic exposure to TCS. Through analyzes of biochemical and physiological markers, as well as Oil Red O (ORO) and hematoxylin and eosin (H&E) staining, our investigation revealed that TCS exposure induced hepatic and intestinal lipid accumulation in larval and adult zebrafish, leading to structural damage and inflammatory responses in these tissues. The strong affinity of TCS with PPARγ and subsequent pathway activation indicate that PPARγ pathway plays a crucial role in TCS-induced lipid buildup. Furthermore, we observed a decrease in m6A-RNA methylation levels in the TCS-treated group, which attributed to the increased activity of the demethylase FTO and concurrent suppression of the methyltransferase METTL3 gene expression by TCS. The alteration in methylation dynamics is identified as a potential underlying mechanism behind TCS-induced lipid accumulation. To address this concern, we explored the impact of folic acid-a methyl donor for m6A-RNA methylation-on lipid accumulation in zebrafish. Remarkably, folic acid administration partially alleviated lipid accumulation by restoring m6A-RNA methylation. This restoration, in turn, contributed to a reduction in inflammatory damage observed in both the liver and intestines. Additionally, folic acid partially mitigates the up-regulation of PPARγ and related genes induced by TCS. These findings carry substantial implications for understanding the adverse effects of environmental pollutants such as TCS. They also emphasize the promising potential of folic acid as a therapeutic intervention to alleviate disturbances in lipid metabolism induced by environmental pollutants.


Subject(s)
Adenine/analogs & derivatives , Triclosan , Water Pollutants, Chemical , Animals , Triclosan/toxicity , Triclosan/metabolism , Zebrafish/metabolism , RNA Methylation , PPAR gamma/genetics , PPAR gamma/metabolism , Water Pollutants, Chemical/toxicity , Liver , Lipids , Intestines , Folic Acid/metabolism , Folic Acid/pharmacology
19.
ChemistryOpen ; : e202300284, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38315083

ABSTRACT

Structural modification based on existing drugs, which ensures the safety of marketed drugs, is an essential approach in developing new drugs. In this study, we modified the structure of cabotegravir by introducing the front alkyne on the core structure through chemical reaction, resulting in the synthesis of 9 compounds resembling 1,2,3-triazoles. The potential of these new cabotegravir derivatives as tumor suppressors in gastrointestinal tumors was investigated. Based on the MTT experiment, most compounds showed a reduction in the viability of KYSE30 and HCT116 cells. Notably, derivatives 5b and 5h exhibited the most significant inhibitory effects. To further explore the effects of derivatives 5b and 5h on gastrointestinal tumors, KYSE30 cells were chosen as a representative cell line. Both derivatives can effectively curtail the migration and invasion capabilities of KYSE30 cells and induce apoptosis in a dose-dependent manner. We further demonstrated these derivatives induce cell apoptosis in KYSE30 cells by inhibiting the expression of Stat3 protein and Smad2/3 protein. Based on the above results, we suggest they show promise in developing drugs for esophageal squamous cell carcinoma.

20.
Chemosphere ; 352: 141395, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38342143

ABSTRACT

Triclosan (TCS), a prevalent contaminant in aquatic ecosystems, has been identified as a potential threat to both aquatic biota and human health. Despite its widespread presence, research into the immunotoxic effects of TCS on aquatic organisms is limited, and the underlying mechanisms driving these effects remain largely unexplored. Herein, we investigated the developmental and immune toxicities of environmentally relevant concentrations of TCS in zebrafish, characterized by morphological anomalies, histopathological impairments, and fluctuations in cytological differentiation and biomarkers following both acute (from 6 to 72/120 hpf) and chronic exposure periods (from 30 to 100 dpf). Specifically, acute exposure to TCS resulted in a significant increase in innate immune cells, contrasted by a marked decrease in T cells. Furthermore, we observed that TCS exposure elicited oxidative stress and a reduction in global m6A levels, alongside abnormal expressions within the m6A modification enzyme system in zebrafish larvae. Molecular docking studies suggested that mettl3 might be a target molecule for TCS interaction. Intriguingly, the knock-down of mettl3 mirrored the effects of TCS exposure, adversely impacting the growth and development of zebrafish, as well as the differentiation of innate immune cells. These results provide insights into the molecular basis of TCS-induced immunotoxicity through m6A-RNA epigenetic modification and aid in assessing its ecological risks, informing strategies for disease prevention linked to environmental contaminants.


Subject(s)
Triclosan , Water Pollutants, Chemical , Animals , Humans , Triclosan/toxicity , Triclosan/metabolism , Zebrafish/metabolism , Down-Regulation , RNA Methylation , Ecosystem , Molecular Docking Simulation , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...