Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38617205

ABSTRACT

Precise connectivity between specific neurons is essential for the formation of the complex neural circuitry necessary for executing intricate motor behaviors and higher cognitive functions. While trans -interactions between synaptic membrane proteins have emerged as crucial elements in orchestrating the assembly of these neural circuits, the synaptic surface proteins involved in neuronal wiring remain largely unknown. Here, using unbiased single-cell transcriptomic and mouse genetic approaches, we uncover that the neurexin family of genes enables olfactory sensory neuron (OSNs) axons to form appropriate synaptic connections with their mitral and tufted (M/T) cell synaptic partners, within the mammalian olfactory system. Neurexin isoforms are differentially expressed within distinct populations of OSNs, resulting in unique pattern of neurexin expression that is specific to each OSN type, and synergistically cooperate to regulate axonal innervation, guiding OSN axons to their designated glomeruli. This process is facilitated through the interactions of neurexins with their postsynaptic partners, including neuroligins, which have distinct expression patterns in M/T cells. Our findings suggest a novel mechanism underpinning the precise assembly of olfactory neural circuits, driven by the trans -interaction between neurexins and their ligands.

2.
Nat Commun ; 15(1): 3360, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38637611

ABSTRACT

The mammalian olfactory system detects and discriminates between millions of odorants to elicit appropriate behavioral responses. While much has been learned about how olfactory sensory neurons detect odorants and signal their presence, how specific innate, unlearned behaviors are initiated in response to ethologically relevant odors remains poorly understood. Here, we show that the 4-transmembrane protein CD20, also known as MS4A1, is expressed in a previously uncharacterized subpopulation of olfactory sensory neurons in the main olfactory epithelium of the murine nasal cavity and functions as a mammalian olfactory receptor that recognizes compounds produced by mouse predators. While wildtype mice avoid these predator odorants, mice genetically deleted of CD20 do not appropriately respond. Together, this work reveals a CD20-mediated odor-sensing mechanism in the mammalian olfactory system that triggers innate behaviors critical for organismal survival.


Subject(s)
Olfactory Receptor Neurons , Receptors, Odorant , Animals , Mice , Learning/physiology , Mammals/metabolism , Odorants , Olfactory Mucosa/metabolism , Olfactory Receptor Neurons/metabolism , Receptors, Odorant/genetics , Receptors, Odorant/metabolism , Smell/physiology , Antigens, CD20/metabolism
3.
Res Sq ; 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37790559

ABSTRACT

The mammalian olfactory system detects and discriminates between millions of odorants to elicit appropriate behavioral responses. While much has been learned about how olfactory sensory neurons detect odorants and signal their presence, how specific innate, unlearned behaviors are initiated in response to ethologically relevant odors remains poorly understood. Here, we show that the 4-transmembrane protein CD20, also known as MS4A1, is expressed in a previously uncharacterized subpopulation of olfactory sensory neurons in the main olfactory epithelium of the murine nasal cavity and functions as a mammalian odorant receptor that recognizes compounds produced by mouse predators. While wild-type mice avoid these predator odorants, mice genetically deleted of CD20 do not appropriately respond. Together, this work reveals a novel CD20-mediated odor-sensing mechanism in the mammalian olfactory system that triggers innate behaviors critical for organismal survival.

4.
bioRxiv ; 2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37609248

ABSTRACT

The mammalian olfactory system detects and discriminates between millions of odorants to elicit appropriate behavioral responses. While much has been learned about how olfactory sensory neurons detect odorants and signal their presence, how specific innate, unlearned behaviors are initiated in response to ethologically relevant odors remains poorly understood. Here, we show that the 4-transmembrane protein CD20, also known as MS4A1, is expressed in a previously uncharacterized subpopulation of olfactory sensory neurons in the main olfactory epithelium of the murine nasal cavity and functions as a mammalian odorant receptor that recognizes compounds produced by mouse predators. While wild-type mice avoid these predator odorants, mice genetically deleted of CD20 do not appropriately respond. Together, this work reveals a novel CD20-mediated odor-sensing mechanism in the mammalian olfactory system that triggers innate behaviors critical for organismal survival.

5.
Nat Neurosci ; 25(4): 484-492, 2022 04.
Article in English | MEDLINE | ID: mdl-35314823

ABSTRACT

The olfactory system's ability to detect and discriminate between the vast array of chemicals present in the environment is critical for an animal's survival. In mammals, the first step of this odor processing is executed by olfactory sensory neurons, which project their axons to a stereotyped location in the olfactory bulb (OB) to form glomeruli. The stereotyped positioning of glomeruli in the OB suggests an importance for this organization in odor perception. However, because the location of only a limited subset of glomeruli has been determined, it has been challenging to determine the relationship between glomerular location and odor discrimination. Using a combination of single-cell RNA sequencing, spatial transcriptomics and machine learning, we have generated a map of most glomerular positions in the mouse OB. These observations significantly extend earlier studies and suggest an overall organizational principle in the OB that may be used by the brain to assist in odor decoding.


Subject(s)
Olfactory Bulb , Olfactory Receptor Neurons , Animals , Mammals , Mice , Odorants , Olfactory Bulb/physiology , Olfactory Receptor Neurons/physiology , Smell , Transcriptome
6.
Genome Biol ; 22(1): 134, 2021 05 04.
Article in English | MEDLINE | ID: mdl-33947439

ABSTRACT

BACKGROUND: The evolution of multicellularity is a critical event that remains incompletely understood. We use the social amoeba, Dictyostelium discoideum, one of the rare organisms that readily transits back and forth between both unicellular and multicellular stages, to examine the role of epigenetics in regulating multicellularity. RESULTS: While transitioning to multicellular states, patterns of H3K4 methylation and H3K27 acetylation significantly change. By combining transcriptomics, epigenomics, chromatin accessibility, and orthologous gene analyses with other unicellular and multicellular organisms, we identify 52 conserved genes, which are specifically accessible and expressed during multicellular states. We validated that four of these genes, including the H3K27 deacetylase hdaD, are necessary and that an SMC-like gene, smcl1, is sufficient for multicellularity in Dictyostelium. CONCLUSIONS: These results highlight the importance of epigenetics in reorganizing chromatin architecture to facilitate multicellularity in Dictyostelium discoideum and raise exciting possibilities about the role of epigenetics in the evolution of multicellularity more broadly.


Subject(s)
Dictyostelium/cytology , Dictyostelium/genetics , Epigenesis, Genetic , Acetylation , Animals , Caenorhabditis elegans/cytology , Chromatin/metabolism , Gene Expression Profiling , Histones/metabolism , Methylation , Schizosaccharomyces/cytology , Transcription Factors/metabolism
7.
Mol Biol Cell ; 30(8): 1008-1019, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30726160

ABSTRACT

The Arf and Rab/Ypt GTPases coordinately regulate membrane traffic and organelle structure by regulating vesicle formation and fusion. Ample evidence has indicated that proteins in these two families may function in parallel or complementarily; however, the manner in which Arf and Rab/Ypt proteins perform interchangeable functions remains unclear. In this study, we report that a Golgi-localized Arf, Arl1, could suppress Ypt6 dysfunction via its effector golgin, Imh1, but not via the lipid flippase Drs2. Ypt6 is critical for the retrograde transport of vesicles from endosomes to the trans-Golgi network (TGN), and its mutation leads to severe protein mislocalization and growth defects. We first overexpress the components of the Arl3-Syt1-Arl1-Imh1 cascade and show that only Arl1 and Imh1 can restore endosome-to-TGN trafficking in ypt6-deleted cells. Interestingly, increased abundance of Arl1 or Imh1 restores localization of the tethering factor Golgi associated retrograde-protein (GARP) complex to the TGN in the absence of Ypt6. We further show that the N-terminal domain of Imh1 is critical for restoring GARP localization and endosome-to-TGN transport in ypt6-deleted cells. Together, our results reveal the mechanism by which Arl1-Imh1 facilitates the recruitment of GARP to the TGN and compensates for the endosome-to-TGN trafficking defects in dysfunctional Ypt6 conditions.


Subject(s)
Monomeric GTP-Binding Proteins/metabolism , Protein Transport/physiology , Saccharomyces cerevisiae Proteins/metabolism , Vesicular Transport Proteins/metabolism , ADP-Ribosylation Factors/metabolism , Biological Transport , Endocytosis , Endosomes/metabolism , Golgi Apparatus/metabolism , Golgi Matrix Proteins , Membrane Proteins/metabolism , Monomeric GTP-Binding Proteins/physiology , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/physiology , Vesicular Transport Proteins/physiology , rab GTP-Binding Proteins/metabolism , trans-Golgi Network/metabolism , trans-Golgi Network/physiology
8.
Traffic ; 18(9): 580-589, 2017 09.
Article in English | MEDLINE | ID: mdl-28627726

ABSTRACT

The Arl3-Arl1 GTPase cascade plays important roles in vesicle trafficking at the late Golgi and endosomes. Subunits of the conserved oligomeric Golgi (COG) complex, a tethering factor, are important for endosome-to-Golgi transport and contribute to the efficient functioning of the cytoplasm-to-vacuole targeting (Cvt) pathway, a well-known selective autophagy pathway. According to our findings, the Arl3-Arl1 GTPase cascade co-operates with Cog8 to regulate the Cvt pathway via Atg9 trafficking. arl3cog8Δ and arl1cog8Δ exhibit profound defects in aminopeptidase I maturation in rich medium. In addition, the Arl3-Arl1 cascade acts on the Cvt pathway via dynamic nucleotide binding. Furthermore, Atg9 accumulates at the late Golgi in arl3cog8Δ and arl1cog8Δ cells under normal growth conditions but not under starvation conditions. Thus, our results offer insight into the requirement for multiple components in the Golgi-endosome system to determine Atg9 trafficking at the Golgi, thereby regulating selective autophagy.


Subject(s)
ADP-Ribosylation Factors/metabolism , Autophagy/physiology , Membrane Proteins/metabolism , Monomeric GTP-Binding Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Vesicular Transport Proteins/metabolism , Autophagy-Related Proteins/metabolism , Endosomes/metabolism , Golgi Apparatus/metabolism , Humans , Protein Transport/physiology , Saccharomyces cerevisiae/metabolism
9.
Proc Natl Acad Sci U S A ; 113(12): E1683-90, 2016 Mar 22.
Article in English | MEDLINE | ID: mdl-26966233

ABSTRACT

ADP ribosylation factor (Arf) GTPases are key regulators of membrane traffic at the Golgi complex. In yeast, Arf guanine nucleotide-exchange factor (GEF) Syt1p activates Arf-like protein Arl1p, which was accompanied by accumulation of golgin Imh1p at late Golgi, but whether and how this function of Syt1p is regulated remains unclear. Here, we report that the inositol-requiring kinase 1 (Ire1p)-mediated unfolded protein response (UPR) modulated Arl1p activation at late Golgi. Arl1p activation was dependent on both kinase and endo-RNase activities of Ire1p. Moreover, constitutively active transcription factor Hac1p restored the Golgi localization of Arl1p and Imh1p inIRE1-deleted cells. Elucidating the mechanism of Ire1p-Hac1p axis actions, we found that it regulated phosphorylation of Syt1p, which enhances Arl1p activation, recruitment of Imh1p to the Golgi, and Syt1p interaction with Arl1p. Consistent with these findings, the induction of UPR by tunicamycin treatment increases phosphorylation of Syt1p, resulting in Arl1p activation. Thus, these findings clarify how the UPR influences the roles of Syt1p, Arl1p, and Imh1p in Golgi transport.


Subject(s)
Basic-Leucine Zipper Transcription Factors/metabolism , Golgi Apparatus/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Membrane Glycoproteins/metabolism , Monomeric GTP-Binding Proteins/metabolism , Protein Processing, Post-Translational , Protein Serine-Threonine Kinases/metabolism , Repressor Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Unfolded Protein Response/physiology , Vesicular Transport Proteins/metabolism , Endoplasmic Reticulum Stress , Genes, Reporter , Phosphorylation , Protein Transport , Recombinant Fusion Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...