Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Genes Genomics ; 43(5): 447-457, 2021 05.
Article in English | MEDLINE | ID: mdl-33683574

ABSTRACT

BACKGROUND: Aberrant expression of beta-1,3-N-acetylglucosaminyltransferase-3 (B3GNT3) has been frequently clarified in various cancers, however, its role in endometrial cancer (EC) has not been assessed in detail. PURPOSE: This study aimed to investigate the biological role of B3GNT3 in EC and simply explored the detailed mechanism. METHODS: The EC RNA-Seq dataset from TCGA database was applied to evaluate the expression of B3GNT3 and assess its role on prognostic value. HEC-1-A and KLE cell lines of EC were used to perform loss- and gain-of-function B3GNT3 assays respectively. Quantitative real-time PCR (qRT-PCR) and western blot were used to measure the mRNA and protein levels of indicated molecules respectively. Cell counting kit-8, clone formation tests, and Transwell assay served to determine the changes of proliferative, invasive and migratory abilities of EC cells after altering the expression of B3GNT3. RESULTS: B3GNT3 was found to be highly expressed in EC tissues compared to normal tissues according to the online public databases, which confirmed by the following qRT-PCR in 3 EC cell lines. Besides, high B3GNT3 expression presented a worse overall survival in EC patients as compared with low B3GNT3 expression group. Furthermore, functional experiments in vitro indicated that B3GNT3 could facilitate the cell growth, invasion and migration. Moreover, we found that downregulation of B3GNT3 significantly reduced the expression level of GTP-RhoA and GTP-RAC1, whereas upregulation of B3GNT3 presented the opposite results. CONCLUSION: The results of current study demonstrate that B3GNT3 acts as an oncogene that promotes EC cells growth, invasion and migration possibly through regulating the RhoA/RAC1 signaling pathway-related markers, suggesting that B3GNT3 may be a candidate biomarker for EC therapeutic intervention.


Subject(s)
Endometrial Neoplasms/genetics , N-Acetylglucosaminyltransferases/genetics , Cell Line, Tumor , Cell Movement , Cell Proliferation , Endometrial Neoplasms/metabolism , Endometrial Neoplasms/pathology , Female , Humans , N-Acetylglucosaminyltransferases/metabolism , Signal Transduction , rac1 GTP-Binding Protein/genetics , rac1 GTP-Binding Protein/metabolism , rhoA GTP-Binding Protein/genetics , rhoA GTP-Binding Protein/metabolism
2.
J Biochem Mol Toxicol ; 35(6): 1-11, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33634536

ABSTRACT

This paper investigates the function of lncRNA DARS-AS1 in cervical cancer (CC) as well as its in-depth mechanism. The differential expression of DARS-AS1 and ATP1B2 were analyzed based on The Cancer Genome Atlas and the Genotype-Tissue Expression databases, and the survival rate was measured using Kaplan-Meier survival analysis. Biological function experiments were performed to detect cell proliferation, invasion, and migration. Quantitative real-time polymerase chain reaction was carried out to detect the expression of DARS-AS1 and ATP1B2. Western blot analysis was utilized to assess the protein levels of ATP1B2 and cGMP-PKG pathway-related proteins. DARS-AS1 was expressed at high levels in CC tissues and cell lines, and high expression of DARS-AS1 indicated a lower survival rate. CCK-8 and colony formation assays revealed that the overexpression of DARS-AS1 promoted the proliferation of CC cells. Furthermore, bioinformatics analysis suggested that the cGMP-PKG pathway ranks as the first pathway enriched by the differential genes that correlated with DARS-AS1 (|r| > 0.4). ATP1B2, as a cGMP-PKG pathway-related gene, was significantly correlated with the overall survival of CC patients. We further confirmed that ATP1B2 was lowly expressed in CC and negatively correlated with the DARS-AS1 expression. Then, biological function experiments exhibited that the promotion of cell proliferation, invasion, and migration resulted due to the upregulation of DARS-AS1 could be canceled by ATP1B2 overexpression. Finally, Western blot revealed that upregulation of DARS-AS1 could activate the cGMP-PKG pathway, while overexpression of ATP1B2 reversed this activation. Our study revealed that DARS-AS1/ATP1B2 contributes to regulating the progression of CC at least partially by modulating the cGMP-PKG pathway.


Subject(s)
Cyclic GMP-Dependent Protein Kinases/metabolism , Cyclic GMP/metabolism , Neoplasm Proteins/metabolism , RNA, Long Noncoding/metabolism , RNA, Neoplasm/metabolism , Second Messenger Systems , Uterine Cervical Neoplasms/metabolism , Cyclic GMP/genetics , Cyclic GMP-Dependent Protein Kinases/genetics , Female , Humans , Neoplasm Proteins/genetics , RNA, Long Noncoding/genetics , RNA, Neoplasm/genetics , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...