Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Fish Shellfish Immunol ; 145: 109322, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38128679

ABSTRACT

Nocardia seriolae is a severe bacterial pathogen that has seriously affected the development of aquaculture industry. Largemouth bass (Micropterus salmoides) is a commercially significant freshwater fish that suffers a variety of environmental threats, including bacterial pathogens. However, the immune responses and metabolic alterations of largemouth bass to N. seriolae infection remain largely unclear. We discovered that N. seriolae caused pathological alterations in largemouth bass and shifted the transcript of immune-related and apoptotic genes in head kidney after infection. To answer the aforementioned question, a combined transcriptome and metabolome analysis was employed to explore the alterations in genes, metabolites, and metabolic pathways in largemouth bass following bacterial infection. A total of 3579 genes and 1929 metabolites are significant differentially changed in the head kidney post infection. In response to N. seriolae infection, host modifies the PI3K-Akt signaling pathway, TCA cycle, glycolysis, and amino acid metabolism. The integrated analysis of transcriptome and metabolome suggested that with the arginine metabolism pathway as the core, multiple biomarkers (arg gene, arginine) are involved in the antibacterial and immune functions of largemouth bass. Thus, we hypothesized that arginine plays a crucial role in the immune responses of largemouth bass against N. seriolae infection, and increasing arginine levels suitably is beneficial for the host against bacterial infection. Our results shed light on the regulatory mechanism of largemouth bass resistance to N. seriolae infection and contributed to the development of more effective N. seriolae resistance strategies.


Subject(s)
Bacterial Infections , Bass , Nocardia Infections , Nocardia , Animals , Transcriptome , Phosphatidylinositol 3-Kinases/genetics , Metabolome , Arginine
2.
J Immunother Cancer ; 10(3)2022 03.
Article in English | MEDLINE | ID: mdl-35256517

ABSTRACT

BACKGROUND: The CD47-SIRPα pathway acts as an important myeloid cell immune checkpoint and targeting the CD47/SIRPα axis represents a promising strategy to promote antitumor immunity. Several CD47-targeting agents show encouraging early activity in clinical trials. However, due to ubiquitous expression of CD47, the antigen sink and hematologic toxicity, such as anemia and thrombocytopenia, are main problems for developing CD47-targeting therapies. Considering the limited expression of SIRPα, targeting SIRPα is an alternative approach to block the CD47-SIRPα pathway, which may result in differential efficacy and safety profiles. METHODS: SIRPα-targeting antibody BR105 was generated by hybridoma fusion and following humanization. BR105 was characterized for binding to human SIRPα alleles and blockade of the interaction with CD47. The functional activity was determined in in vitro phagocytosis assays by using human macrophages. The effect of BR105 on human T cell activation was studied using an OKT3-induced T-cell proliferation assay and an allogeneic mixed lymphocyte reaction. Human SIRPα-humanized immunodeficient mice were used in cancer models for evaluating the in vivo antitumor efficacy of BR105. Safety was addressed in a repeat-dose toxicity study in cynomolgus monkeys, and toxicokinetic analysis was further evaluated. RESULTS: BR105 shows broad binding activity across various SIRPα variants, and potently blocks the interaction of SIRPα and CD47. In vitro functional assays demonstrated that BR105 synergizes with therapeutic antibodies to promote phagocytosis of tumor cells. Moreover, the combination of BR105 and therapeutic antibody significantly inhibits tumor growth in a xenograft tumor model. Although BR105 may slightly bind to SIRPγ, it does not inhibit T cell activation, unlike other non-selective SIRPα-targeting antibody and CD47-targeting agents. Toxicity studies in non-human primates show that BR105 is well tolerated with no treatment-related adverse effects noted. CONCLUSIONS: The novel and differentiated SIRPα-targeting antibody, BR105, was discovered and displays promising antitumor efficacy in vitro and in vivo. BR105 has a favorable safety profile and shows no adverse effects on T cell functionality. These data support further clinical development of BR105, especially as a therapeutic agent to enhance efficacy when used in combination with tumor-targeting antibodies or antibodies that target other immune checkpoints.


Subject(s)
CD47 Antigen , Neoplasms , Animals , Antibodies, Neoplasm , CD47 Antigen/metabolism , Humans , Macrophages , Mice , Neoplasms/therapy , Phagocytosis
3.
Article in English | MEDLINE | ID: mdl-34781108

ABSTRACT

HS002 is the recombinant human tumor necrosis factor-α receptor Ⅱ: IgG Fc fusion protein licensed in China to treat rheumatism and psoriasis. The aim of this study was to isolate and characterize the hydrophobic freeze-dried powder injection (HS002) and ampoule injection (HS002A) variants derived from proteins of the same sequence and then to explore the structure-function relationship. Extensive physicochemical and structural testing was performed during a side-by-side comparison of the monomer peak and variant. Then the TNF-α-related binding activity, cell biological activity and affinity with FcRn were analyzed. Finally, a transformation study of the hydrophobic variant was performed under serum-like redox conditions. This research revealed that HS002A has similar physicochemical and structure-function relationship profiles to those of HS002. The hydrophobic variant exhibited the presence of new incorrect disulfide bridging. At the same time, this novel disulfide scrambled species structure-function relationship was found to be the molecular basis for reduced TNF-α binding and cell biological activities. In addition, incorrect disulfide bridging was found to be reversible under serum-like redox conditions, restoring TNF-α binding and cell biological activities to almost normal levels, all of which indicate that the variant is probably irrelevant to clinical efficacy once the drug enters the bloodstream.


Subject(s)
Anti-Inflammatory Agents/chemistry , Receptors, Tumor Necrosis Factor, Type II/chemistry , Tumor Necrosis Factor-alpha/chemistry , Anti-Inflammatory Agents/immunology , Humans , Hydrophobic and Hydrophilic Interactions , Immunoglobulin Fc Fragments/chemistry , Immunoglobulin Fc Fragments/immunology , Immunoglobulin G/chemistry , Protein Binding , Receptors, Tumor Necrosis Factor, Type II/immunology , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/immunology , Structure-Activity Relationship , Tumor Necrosis Factor-alpha/immunology
SELECTION OF CITATIONS
SEARCH DETAIL