Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Am J Respir Cell Mol Biol ; 69(5): 508-520, 2023 11.
Article in English | MEDLINE | ID: mdl-37478333

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleocapsid protein (N-protein) increases early in body fluids during infection and has recently been identified as a direct inducer for lung injury. However, the signal mechanism of N-protein in the lung inflammatory response remains poorly understood. The goal of this study was to determine whether RAGE (receptor for advanced glycation endproducts) participated in N-protein-induced acute lung injury. The binding between N-protein and RAGE was examined via assays for protein-protein interaction. To determine the signaling mechanism in vitro, cells were treated with recombinant N-protein and assayed for the activation of the RAGE/MAPK (mitogen-activated protein kinase)/NF-ĸB pathway. RAGE deficiency mice and antagonist were used to study N-protein-induced acute lung injury in vivo. Binding between N-protein and RAGE was confirmed via flow cytometry-based binding assay, surface plasmon resonance, and ELISA. Pull-down and coimmunoprecipitation assays revealed that N-protein bound RAGE via both N-terminal and C-terminal domains. In vitro, N-protein activated the RAGE-ERK1/2-NF-ĸB signaling pathway and induced a proinflammatory response. RAGE deficiency subdued N-protein-induced proinflammatory signaling and response. In vivo, RAGE was upregulated in the BAL and lung tissue after recombinant N-protein insult. RAGE deficiency and small molecule antagonist partially protected mice from N-protein-induced acute lung injury. Our study demonstrated that RAGE is a receptor for N-protein. RAGE is partially responsible for N-protein-induced acute lung injury and has the potential to become a therapeutic target for treating coronavirus disease.


Subject(s)
Acute Lung Injury , COVID-19 , Animals , Mice , Acute Lung Injury/metabolism , NF-kappa B/metabolism , Receptor for Advanced Glycation End Products/metabolism , SARS-CoV-2/metabolism
2.
Front Immunol ; 14: 1139620, 2023.
Article in English | MEDLINE | ID: mdl-37114058

ABSTRACT

Background: During the COVID-19 epidemic, vaccination has become the most safe and effective way to prevent severe illness and death. Inactivated vaccines are the most widely used type of COVID-19 vaccines in the world. In contrast to spike-based mRNA/protein COVID-19 vaccines, inactivated vaccines generate antibodies and T cell responses against both spike and non-spike antigens. However, the knowledge of inactivated vaccines in inducing non-spike-specific T cell response is very limited. Methods: In this study, eighteen healthcare volunteers received a homogenous booster (third) dose of the CoronaVac vaccine at least 6 months after the second dose. CD4+ and CD8+ T cell responses against a peptide pool from wild-type (WT) non-spike proteins and spike peptide pools from WT, Delta, and Omicron SARS-CoV-2 were examined before and 1-2 weeks after the booster dose. Results: The booster dose elevated cytokine response in CD4+ and CD8+ T cells as well as expression of cytotoxic marker CD107a in CD8+ T cells in response to non-spike and spike antigens. The frequencies of cytokine-secreting non-spike-specific CD4+ and CD8+ T cells correlated well with those of spike-specific from WT, Delta, and Omicron. Activation-induced markers (AIM) assay also revealed that booster vaccination elicited non-spike-specific CD4+ and CD8+ T cell responses. In addition, booster vaccination produced similar spike-specific AIM+CD4+ and AIM+CD8+ T cell responses to WT, Delta, and Omicron, indicting strong cross-reactivity of functional cellular response between WT and variants. Furthermore, booster vaccination induced effector memory phenotypes of spike-specific and non-spike-specific CD4+ and CD8+ T cells. Conclusions: These data suggest that the booster dose of inactive vaccines broadens both non-spike-specific and spike-specific T cell responses against SARS-CoV-2.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , CD8-Positive T-Lymphocytes , Memory T Cells , COVID-19/prevention & control , SARS-CoV-2 , Cytokines , Vaccines, Inactivated
3.
Int J Biol Macromol ; 237: 124175, 2023 May 15.
Article in English | MEDLINE | ID: mdl-37003195

ABSTRACT

Two hydrolyzed fractions of tamarind seed polysaccharide (TSP), denoted ETSP1 (176.68 kDa) and ETSP2 (34.34 kDa), were prepared by partial degradation via endo-xyloglucanase, and then characterized and evaluated by simulated gastrointestinal digestion in vitro. The results showed that the hydrolyzed TSPs remained indigestible in gastric and small intestinal media, and were fermented by gut microbiota, similar to the native TSP (Mw = 481.52 kDa). Although the degradation of hydrolyzed TSPs was accelerated during fermentation with a decreasing degree of polymerization, the content of produced total short-chain fatty acids (SCFAs) decreased. After fermentation, the gut microbiota composition was modified, esp. the Firmicutes/Bacteroidetes ratio decreased (1.06 vs. 0.96 vs. 0.80) with a decreasing degree of polymerization, which implied that the potential anti-obesity prebiotic effect was enhanced. At the genus level, hydrolyzed TSPs maintained similar roles as native TSP, including promoting beneficial bacteria (Bifidobacterium, Parabacteroides, and Faecalibacterium) and inhibiting enteropathogenic bacteria (Escherichia-Shigella and Dorea). Moreover, ETSP1 had additional potential due to abundant Bacteroides vulgatus (LDA = 4.68), and ETSP2 might perform better as related to Bacteroides xylanisolvens (LDA = 4.40). All these results indicated the prebiotic potential of hydrolyzed TSP with detailed information about changes in degradation and gut microbiota based on enzyme-hydrolysis.


Subject(s)
Gastrointestinal Microbiome , Tamarindus , Digestion , Polysaccharides/pharmacology , Seeds/metabolism , Fatty Acids, Volatile/metabolism , Fermentation , Prebiotics
4.
Carbohydr Polym ; 301(Pt B): 120358, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36446497

ABSTRACT

This study aimed to investigate the inhibition effects of tamarind seed polysaccharide (TSP) on ice recrystallization and to figure out its possible molecular weight-dependent effects. TSP fractions (2412.38-20.75 kDa) were prepared while preserving the natural structure. Ice recrystallization was effectively inhibited by TSP. Decreasing the molecular weight to a certain range, such as 224.04 kDa and 90.41 kDa, could enhance the activity of TSP due to the reduction of self- and intermolecular aggregation. Adding TSP into water decreased the melting temperature of bulk ice. Raman spectra showed that partial group vibrations or deformations of TSP molecules were restricted upon solution freezing and also revealed a destructuring effect of TSP on the H-bond network of water. These findings suggested the potential of TSP as a novel food cryoprotectant and help produce TSP fractions with enhanced activity, and shed new light on understanding the antifreeze mechanism of natural polysaccharides.


Subject(s)
Tamarindus , Ice , Molecular Weight , Seeds , Polysaccharides/pharmacology , Dietary Carbohydrates , Water , Cryoprotective Agents
5.
ACS Omega ; 7(45): 41594-41605, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36406540

ABSTRACT

The positive effects of metal oxide nanoparticles (NPs) on dark fermentation (DF) for biohydrogen synthesis have been increased, and the mechanism still needs to be further revealed. In this study, nickel-cobalt oxide (NiCo2O4) NPs were prepared to increase H2 yield via DF. The highest (259.67 mL/g glucose) and the lowest (188.14 mL/g glucose) yields were achieved at 400 and 800 mg/L NiCo2O4 NPs added, respectively, with their corresponding 33.97% increase and 2.93% decrease compared with the control yield (193.82 mL/g glucose). Meanwhile, the microbial community further confirmed that NiCo2O4 NPs increased the abundance of the dominant H2-producing Clostridium sensu stricto 1 by 23.05%. The gene prediction also showed that NiCo2O4 NPs increased the abundance of genes encoding the rate-limiting enzyme pyruvate kinase in glycolysis, thus increasing the substrate conversion. Moreover, the gene abundance of key enzymes directly related to H2 evolution was also increased at different levels.

6.
Front Mol Biosci ; 9: 814240, 2022.
Article in English | MEDLINE | ID: mdl-35187084

ABSTRACT

Background: microRNAs (miRNAs) from circulating extracellular vesicles (EVs) have been reported as disease biomarkers. This study aimed to identify the diagnostic value of plasma EV-miRNAs in sepsis. Methods: EVs were separated from the plasma of sepsis patients at admission and healthy controls. The expression of EV-miRNAs was evaluated by microarray and qRT-PCR. Results: A preliminary miRNA microarray of plasma EVs from a discovery cohort of 3 sepsis patients at admission and three healthy controls identified 11 miRNAs with over 2-fold upregulation in sepsis group. Based on this finding, EV samples from a validation cohort of 37 sepsis patients at admission and 25 healthy controls were evaluated for the expression of the 6 miRNAs relating injury and inflammation via qRT-PCR. Elevated expression of miR-483-3p and let-7d-3p was validated in sepsis patients and corroborated in a mouse model of sepsis. miR-483-3p and let-7d-3p levels positively correlated with the disease severity. Additionally, a combination of miR-483-3p and let-7d-3p had diagnostic value for sepsis. Furthermore, bioinformatic analysis and experimental validation showed that miR-483-3p and let-7d-3p target pathways regulating immune response and endothelial function. Conclusion: The present study reveals the potential role of plasma EV-miRNAs in the pathogenesis of sepsis and the utility of combining miR-483-3p and let-7d-3p as biomarkers for early sepsis diagnosis.

7.
Front Immunol ; 12: 791753, 2021.
Article in English | MEDLINE | ID: mdl-34950152

ABSTRACT

Background: Infection of SARS-CoV-2 may cause acute respiratory syndrome. It has been reported that SARS-CoV-2 nucleocapsid protein (N-protein) presents early in body fluids during infection. The direct involvement of N-protein in lung injury is poorly understood. Methods: Recombinant N-protein was pretreated with polymyxin B, a lipopolysaccharide (LPS)-neutralizing agent. C57BL/6, C3H/HeJ (resistant to LPS), and C3H/HeN (control for C3H/HeJ) mice were exposed to N-protein via intratracheal administration to examine acute lung injury. In vitro, bone marrow-derived macrophages (BMDMs) were cultured with N-protein to study phosphorylation of nuclear factor kappa B (NF-ĸB) p65, macrophage polarization, and expression of proinflammatory cytokines. Results: N-protein produced acute lung injury in C57BL/6 mice, with elevated protein permeability, total cell count, neutrophil infiltration, and proinflammatory cytokines in the bronchioalveolar lavage. N-protein also induced lung injury in both C3H/HeJ and C3H/HeN mice, indicating that the effect could not be attributed to the LPS contamination. N-protein triggered phosphorylation of NF-ĸB p65 in vitro, which was abolished by both N-protein denaturation and treatment with an antibody for N-protein, demonstrating that the effect is N-protein specific. In addition, N-protein promoted M1 macrophage polarization and the expression of proinflammatory cytokines, which was also blocked by N-protein denaturation and antibody for N-protein. Furthermore, N-protein induced NF-ĸB p65 phosphorylation in the lung, while pyrrolidine dithiocarbamate, an NF-ĸB inhibitor, alleviated the effect of N-protein on acute lung injury. Conclusions: SARS-CoV-2 N-protein itself is toxic and induces acute lung injury in mice. Both N-protein and NF-ĸB pathway may be therapeutic targets for treating multi-organ injuries in Coronavirus disease 2019 (COVID-19).


Subject(s)
Acute Lung Injury/virology , COVID-19 , Coronavirus Nucleocapsid Proteins/toxicity , NF-kappa B/metabolism , Acute Lung Injury/metabolism , Animals , Mice , Mice, Inbred C3H , Mice, Inbred C57BL , Phosphoproteins/toxicity , SARS-CoV-2
8.
World J Pediatr Surg ; 4(3): e000249, 2021.
Article in English | MEDLINE | ID: mdl-36474974

ABSTRACT

Objective: Rocuronium-associated intravenous injection pain occurs frequently in children during induction of anesthesia. The aim of this study was to systematically evaluate the benefits of nalbuphine in patients with rocuronium-associated injection pain. Methods: Ninety children undergoing tonsillectomy and adenoidectomy in our hospital between October 2019 and September 2020 were randomly divided into the following groups, with 30 patients per group: control group (group C), lidocaine group (group L), and nalbuphine group (group N). Routine 0.1 mg/kg midazolam and 2 mg/kg propofol were injected intravenously. After sedation, children in group C, group L, and group N were administered an intravenous injection of saline, lidocaine (10 mg/mL), or nalbuphine hydrochloride (2 mg/mL), respectively, at a dosage of 0.1 mL/kg. Intravenous injection of rocuronium stock solution (0.6 mg/kg) was administered 2 minutes later. Pain was evaluated using Ambeshs 4-pointscale. The incidence of rocuronium injection pain was compared among the three groups, and postoperative adverse reactions, such as drowsiness, bradycardia, hypotension, and respiratory depression, were evaluated. Results: The incidence of injection pain among children in group N was significantly lower than that in group C and group L (p<0.05). The incidence of drowsiness in group N was significantly higher than that in the other groups (p<0.05). The incidences of hypotension, bradycardia, and respiratory depression were not significantly different among the three groups (p>0.05). Conclusions: Intravenous nalbuphine during induction of anesthesia effectively prevented rocuronium-associated injection pain in children. Drowsiness is a complication.

9.
Crit Care Med ; 48(12): e1365, 2020 12.
Article in English | MEDLINE | ID: mdl-33255131
10.
Stem Cell Res Ther ; 11(1): 424, 2020 09 29.
Article in English | MEDLINE | ID: mdl-32993783

ABSTRACT

Mesenchymal stem cells (MSCs) are adult stromal cells that reside in virtually all postnatal tissues. Due to their regenerative and immunomodulatory capacities, MSCs have attracted growing attention during the past two decades. MSC-derived extracellular vesicles (MSC-EVs) are able to duplicate the effects of their parental cells by transferring functional proteins and genetic materials to recipient cells without cell-to-cell contact. MSC-EVs also target macrophages, which play an essential role in innate immunity, adaptive immunity, and homeostasis. Recent studies have demonstrated that MSC-EVs reduce M1 polarization and/or promote M2 polarization in a variety of settings. In this review, we discuss the mechanisms of macrophage polarization and roles of MSC-EV-induced macrophage polarization in the outcomes of cardiovascular, pulmonary, digestive, renal, and central nervous system diseases. In conclusion, MSC-EVs may become a viable alternative to MSCs for the treatment of diseases in which inflammation and immunity play a critical role.


Subject(s)
Extracellular Vesicles , Mesenchymal Stem Cells , Immunomodulation , Macrophage Activation , Macrophages
11.
Crit Care Med ; 48(7): e599-e610, 2020 07.
Article in English | MEDLINE | ID: mdl-32317602

ABSTRACT

OBJECTIVES: The goal of this study was to determine the role of microRNA transfer in mediating the effects of mesenchymal stem cell-derived extracellular vesicles in acute lung injury. DESIGN: Experimental cell and animal studies. SETTING: University-based research laboratory. SUBJECTS: THP-1 monocytes, bone marrow-derived macrophages, and C57BL/6 mice. INTERVENTIONS: To determine the microRNA transfer in vitro, mesenchymal stem cells and mesenchymal stem cell-derived extracellular vesicles were cultured with THP-1 cells and bone marrow-derived macrophages and then assayed for microRNA expression in the target cells. To examine the role of microRNA transfer in vivo, mesenchymal stem cell-derived extracellular vesicles were administered to mice with lipopolysaccharide-induced lung injury. MEASUREMENTS AND MAIN RESULTS: Mesenchymal stem cell-derived extracellular vesicles were efficiently taken up by macrophages in vitro and in vivo. miR-27a-3p was one of the most highly expressed microRNAs in THP-1 cells in microarray analysis and was transferred from mesenchymal stem cells and mesenchymal stem cell-derived extracellular vesicles to THP-1/bone marrow-derived macrophages. Mesenchymal stem cell-derived extracellular vesicles promoted M2 polarization in bone marrow-derived macrophages, which was inhibited by lentiviral anti-miR-27a-3p transduction. Mesenchymal stem cell-derived extracellular vesicles administered systemically and intratracheally were as effective as mesenchymal stem cells in alleviating acute lung injury, elevating miR-27a-3p levels in alveolar macrophages, and promoting M2 macrophage polarization. Treatment of mesenchymal stem cell-derived extracellular vesicles concurrently decreased alveolar macrophage expression of nuclear factor kappa B subunit 1, a target of miR-27a-3p. Lentiviral transduction of mesenchymal stem cells with anti-miR-27a-3p or knockdown of miR-27a-3p in vivo abolished the effects of mesenchymal stem cell-derived extracellular vesicles on acute lung injury and M2 macrophage polarization. CONCLUSIONS: Mesenchymal stem cell-derived extracellular vesicles mitigate acute lung injury at least partially via transferring miR-27a-3p to alveolar macrophages. miR-27a-3p acts to target NFKB1 and is a crucial regulator of M2 macrophage polarization.


Subject(s)
Acute Lung Injury/therapy , Extracellular Vesicles/transplantation , MicroRNAs/metabolism , Acute Lung Injury/metabolism , Animals , Macrophages/metabolism , Mesenchymal Stem Cells/metabolism , Mice , Mice, Inbred C57BL , Monocytes/metabolism
12.
Mediators Inflamm ; 2020: 4370983, 2020.
Article in English | MEDLINE | ID: mdl-32214905

ABSTRACT

BACKGROUND: Recent literature has reported the use of circulating microRNAs (miRNAs) as biomarkers for sepsis. Immune cells play an essential role in the pathophysiology of sepsis. The aim of this prospective study was to identify miRNAs in peripheral blood mononuclear cells (PBMC) that could differentiate between sepsis and infection based on Sepsis-3 definition. METHODS: A total of 62 patients (41 with sepsis and 21 with infection suffering from pneumonia but without sepsis) and 20 healthy controls were enrolled into the study. PBMC at admission were examined for a panel of 4 miRNAs (miR-10a, miR-17, miR-27a, and miR-125b), which have been documented to participate in inflammatory response in immune cells, via qRT-PCR. Data were validated in a mouse model of sepsis induced via cecal ligation and puncture (CLP) and THP-1 monocytes. RESULTS: miR-10a levels in PBMC at admission were significantly lower in sepsis patients compared with patients with infection and healthy controls. miR-10a levels were negatively correlated with disease severity scores as well as levels for c-reactive protein and procalcitonin. In addition, low miR-10a expression had a diagnostic value for sepsis and a prognostic value for 28-day mortality in receiving operating characteristic analysis. Compared with infection patients and healthy controls, PBMC from sepsis patients also had higher levels of mitogen-activated kinase kinase kinase 7 (MAP3K7), a known target protein of miR-10a and an activator of the NF-κB pathway. In the mouse model of CLP-induced sepsis, miR-10a levels in PBMC were significantly decreased as early as 8 h after CLP. Overexpression of miR-10a in THP-1 cells significantly reduced the expression of MAP3K7 and proinflammatory cytokines including IL-6, TNF-α, and MCP-1. CONCLUSIONS: PBMC miR-10a levels are decreased in sepsis and negatively correlated with the disease severity. Levels of miR-10a could distinguish between sepsis and infection and predict 28-day mortality. miR-10a plays an anti-inflammatory role in the pathogenesis of sepsis.


Subject(s)
Biomarkers/metabolism , Leukocytes, Mononuclear/metabolism , MicroRNAs/metabolism , Sepsis/metabolism , Aged , Animals , Blotting, Western , Disease Models, Animal , Female , Humans , MAP Kinase Kinase Kinases/genetics , MAP Kinase Kinase Kinases/metabolism , Male , MicroRNAs/genetics , Middle Aged , Reverse Transcriptase Polymerase Chain Reaction , Sepsis/genetics , THP-1 Cells
13.
J Matern Fetal Neonatal Med ; 33(1): 81-91, 2020 Jan.
Article in English | MEDLINE | ID: mdl-29886761

ABSTRACT

Objective: Volatile anesthetic such as isoflurane causes widespread neurodegeneration in the developing animal brains and also induces cognitive impairments. Paeonol is a plant-derived phenolic compound possessing numerous bioactive properties. The study investigates the neuroprotective effects of paeonol against isoflurane-induced neurodegeneration and cognitive disturbances in neonatal rats.Methods: Paeonol (50, 100, and 150 mg/kg body weight/day) was given orally to separate groups of neonatal rats from postnatal day 3 (P3) to P21 and were exposed to isoflurane (0.75%; 6 h) on P7.Results: Neuroapoptosis following isoflurane exposure was remarkably reduced by paeonol. Isoflurane-induced elevated cleaved caspase-3, Bad, and Bax expression, were down-regulated on paeonol administration. Paeonol significantly enhanced expression of antiapoptotic proteins (Bcl-2, Bcl-xL, xIAP, c-IAP-1, c-IAP-2, and survivin) and improved acetylation of HK39 and HK412. The expression of histone deacetylases (HDACs)-HDAC2 and HDAC-3 were down-regulated. Isoflurane-induced activation of JNK/p38MAPK signaling and suppressed ERK signaling and were effectively regulated by paeonol. General behavior and freezing responses of the rats were improved. Results of the Morris Water Maze tests revealed improved learning and memory retention on paeonol treatment.Conclusions: Paeonol effectively inhibited neuroapoptosis and improved isoflurane-induced cognitive dysfunctions via regulating histone acetylation and JNK/ERK1/2/p38MAPK signaling pathways.


Subject(s)
Acetophenones/pharmacology , Anesthesia/adverse effects , Histone Acetyltransferases/metabolism , Histones/metabolism , Isoflurane/adverse effects , Neurotoxicity Syndromes/prevention & control , Acetophenones/therapeutic use , Acetylation/drug effects , Anesthetics/adverse effects , Animals , Animals, Newborn , Female , Hippocampus/drug effects , Hippocampus/pathology , Histone Acetyltransferases/drug effects , Histones/drug effects , JNK Mitogen-Activated Protein Kinases/metabolism , MAP Kinase Signaling System/drug effects , MAP Kinase Signaling System/physiology , Male , Neurons/drug effects , Neurons/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Pregnancy , Rats , Rats, Sprague-Dawley , Signal Transduction/drug effects , p38 Mitogen-Activated Protein Kinases/metabolism
14.
World J Pediatr Surg ; 3(1): e000126, 2020.
Article in English | MEDLINE | ID: mdl-38607939

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread widely and persistently over 100 countries. New challenges have occurred in the perioperative management of airway and anesthesia in children diagnosed with SARS-CoV-2 infection. According to current publications and to our own experiences in anesthesia management for cases with SARS-CoV-2 suspected, we reviewed concerns about the perioperative prevention of SARS-CoV-2 to medical staff and the anesthesia strategy to the patient.

15.
Stem Cell Res Ther ; 10(1): 359, 2019 11 28.
Article in English | MEDLINE | ID: mdl-31779700

ABSTRACT

Extracellular vesicles (EVs) contain proteins, microRNAs, mRNAs, long non-coding RNAs, and phospholipids, and are a novel mechanism of intercellular communication. It has been proposed that the immunomodulatory and regenerative effects of mesenchymal stem/stromal cells (MSCs) are mainly mediated by soluble paracrine factors and MSC-derived EVs (MSC-EVs). Recent studies suggest that MSC-EVs may serve as a novel and cell-free alternative to whole-cell therapies. The focus of this review is to discuss the functional proteins which facilitate the effects of MSC-EVs. The first section of the review discusses the general functions of EV proteins. Next, we describe the proteomics of MSC-EVs as compared with their parental cells. Then, the review presents the current knowledge that protein contents of MSC-EVs play an essential role in immunomodulation and treatment of various diseases. In summary, functional protein components are at least partially responsible for disease-modulating capacity of MSC-EVs.


Subject(s)
Extracellular Vesicles/metabolism , Animals , Endosomal Sorting Complexes Required for Transport/metabolism , Extracellular Vesicles/transplantation , Humans , Immunomodulation , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Nervous System Diseases/metabolism , Nervous System Diseases/pathology , Nervous System Diseases/therapy , Proteome/analysis , Proteomics , Skin Diseases/metabolism , Skin Diseases/pathology , Skin Diseases/therapy
16.
Aging (Albany NY) ; 11(18): 7996-8014, 2019 09 29.
Article in English | MEDLINE | ID: mdl-31575829

ABSTRACT

Old age is a known risk factor for mortality in acute respiratory distress syndrome (ARDS)/acute lung injury. Mesenchymal stem cells (MSCs) possess potent immunomodulatory properties, while aging MSCs have reduced capacity. Recent studies have demonstrated that MSC-derived extracellular vesicles (MSC-EVs) are able to mimic MSCs in alleviating acute lung injury. The goals of this study were to determine whether EVs from young and aging MSCs had differential effects on lipopolysaccharide (LPS)-induced lung injury in young mice and unravel the underlying mechanisms. Our results showed that both aging and young MSC-EVs had similar physical and phenotypical properties. As their parental cells, young MSC-EVs alleviated LPS-induced acute lung injury, while aging MSC-EVs did not exhibit the protective effects. In contrast to young MSC-EVs, aging MSC-EVs failed to alter macrophage phenotypes and reduce macrophage recruitment. In addition, the internalization of aging MSC-EVs by macrophages was significantly lower compared with that of young MSC-EVs. Furthermore, aging and young MSC-EVs differed in levels of several miRNAs relating macrophage polarization. In conclusion, aging and young MSC-EVs have differential effects in alleviating acute lung injury and macrophage polarization, which may be associated with internalization of EVs and their miRNA content.


Subject(s)
Acute Lung Injury/therapy , Extracellular Vesicles/metabolism , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/metabolism , Acute Lung Injury/metabolism , Age Factors , Animals , Disease Models, Animal , Mice , Treatment Outcome
17.
J Cell Physiol ; 234(7): 10615-10624, 2019 07.
Article in English | MEDLINE | ID: mdl-30488589

ABSTRACT

Recently, increasing numbers of long noncoding RNAs (lncRNAs) have been found to be aberrantly expressed in various cancers. However, the roles of lncRNAs in hepatocellular carcinoma (HCC) progression is largely unknown. In our current study, we identified that long intergenic nonprotein-coding RNA 707 (LINC00707) was remarkably elevated in HCC cells, indicating that LINC00707 was involved in HCC development. Subsequently, LINC00707 was significantly decreased in HepG2 and Huh7 cells. The in vitro functional assays demonstrated that knockdown of LINC00707 significantly reduced HCC cell proliferation, induced cell apoptosis, and blocked the cell cycle progression. In addition, HCC cell migration and invasion was also greatly inhibited by downregulation of LINC00707. Increasing evidence has indicated that lncRNAs can act as molecular sponges of microRNAs. Currently, we observed that microRNA-206 (miR-206) was dramatically inhibited in HCC cells and LINC00707 can modulate HCC development through sponging miR-206. The binding correlation between LINC00707 and miR-206 was confirmed by dual-luciferase reporter assay, RNA pull down and RNA immunoprecipitation assay in our study. Moreover, cyclin-dependent kinase 14 (CDK14) was predicted as a target of miR-206 and we found that miR-206 suppressed CDK14 levels in HCC cells. Finally, in vivo assays were used and it was proved that silence of LINC00707 can restrain HCC development through modulating miR-206 to upregulate CDK14. In conclusion, it was implied that LINC00707 can lead to HCC progression through sponging miR-206 and modulating CDK14.


Subject(s)
Carcinoma, Hepatocellular/genetics , Cyclin-Dependent Kinases/genetics , Liver Neoplasms/genetics , MicroRNAs/genetics , RNA, Long Noncoding/genetics , Apoptosis/genetics , Carcinoma, Hepatocellular/pathology , Cell Cycle/genetics , Cell Movement/genetics , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Hep G2 Cells , Humans , Liver Neoplasms/pathology
18.
Stem Cell Res Ther ; 9(1): 320, 2018 11 21.
Article in English | MEDLINE | ID: mdl-30463593

ABSTRACT

Mesenchymal stem cells (MSCs) are adult stromal cells with the capacity to differentiate into multiple types of cells. MSCs represent an attractive option in regenerative medicine due to their multifaceted abilities for tissue repair, immunosuppression, and anti-inflammation. Recent studies demonstrate that MSCs exert their effects via paracrine activity, which is at least partially mediated by extracellular vesicles (EVs). MSC-derived EVs (MSC-EVs) could mimic the function of parental MSCs by transferring their components such as DNA, proteins/peptides, mRNA, microRNA (miRNA), lipids, and organelles to recipient cells. In this review, we aim to summarize the mechanism and role of miRNA transfer in mediating the effects of MSC-EVs in the models of human diseases. The first three sections of the review discuss the sorting of miRNAs into EVs, uptake of EVs by target cells, and functional transfer of miRNAs via EVs. Then, we describe the composition of miRNAs in MSC-EVs. Next, we provide the existing evidence that MSC-EVs affect the outcomes of renal, liver, heart, and brain diseases by transferring their miRNA contents. In conclusion, EV-mediated miRNA transfer plays an important role in disease-modulating capacity of MSCs.


Subject(s)
Exosomes/metabolism , Exosomes/transplantation , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/metabolism , MicroRNAs/metabolism , Animals , Brain Diseases/therapy , Disease Models, Animal , Endocytosis , Heart Diseases/therapy , Humans , Liver Diseases/therapy , Treatment Outcome
19.
Cell Tissue Res ; 374(1): 1-15, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29955951

ABSTRACT

Mesenchymal stromal (stem) cells (MSCs) have multipotent differentiation capacity and exist in nearly all forms of post-natal organs and tissues. The immunosuppressive and anti-inflammatory properties of MSCs have made them an ideal candidate in the treatment of diseases, such as sepsis, in which inflammation plays a critical role. One of the key mechanisms of MSCs appears to derive from their paracrine activity. Recent studies have demonstrated that MSC-derived extracellular vesicles (MSC-EVs) are at least partially responsible for the paracrine effect. MSC-EVs transfer molecules (such as proteins/peptides, mRNA, microRNA and lipids) with immunoregulatory properties to recipient cells. MSC-EVs have been shown to mimic MSCs in alleviating sepsis and may serve as an alternative to whole cell therapy. Compared with MSCs, MSC-EVs may offer specific advantages due to lower immunogenicity and higher safety profile. The first two sections of the review discuss the preclinical and clinical findings of MSCs in sepsis. Next, we review the characteristics of EVs and MSC-EVs. Then, we summarize the mechanisms of MSC-EVs, including tissue regeneration and immunomodulation. Finally, our review presents the evidences that MSC-EVs are effective in treating models of sepsis. In conclusion, MSC-EVs may have the potential to become a novel therapeutic strategy for sepsis.


Subject(s)
Cell- and Tissue-Based Therapy/methods , Extracellular Vesicles/immunology , Immunomodulation/immunology , Mesenchymal Stem Cells/metabolism , Sepsis/immunology , Cell Differentiation , Humans , Mesenchymal Stem Cells/cytology , Sepsis/pathology
20.
J Ethnopharmacol ; 224: 429-440, 2018 Oct 05.
Article in English | MEDLINE | ID: mdl-29783016

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Cerebrovascular diseases (CBVDs), characterized by striking morbidity and mortality, have become the most common life-threatening diseases. The existing drugs of CBVDs target one or a few of pathogenic factors, the efficacy of which is limited because of the complexity of CBVDs. Traditional Chinese medicine (TCM), featured by multi-component and multi-target endows the great effectiveness in CBVDs treatment. For instance, Erigeron breviscapus (vant.) Hand. Mazz. (Erigeron breviscapus) has been used to treat CBVDs for a long time and the efficacy has been verified through years' of practice. Nevertheless, the mechanisms of Erigeron breviscapus for treating CBVDs are still unclear. THE AIM OF THE STUDY: Systematically decipher the mechanisms of Erigeron breviscapus for treating CBVDs. MATERIALS AND METHODS: The systems pharmacology approach is utilized by integrating ADME pharmacokinetic screening, target fishing, protein-protein interaction (PPI), network analysis and in vitro experiments verification. RESULTS: First, 14 potentially active molecules were screened out through in silico ADME pharmacokinetic evaluation, most of which have been reported with excellent biological activities. Then 169 targets of active molecules were read out using our in-house softwares, systems drug targeting (sysDT) and Weighted Ensemble Similarity(WES). We found that the targets of the active compounds were significantly enriched to the CBVDs therapeutic targets by analyzing their biological processes and protein-protein interactions (PPIs). A multi-layer network analysis including compound-target network, target-pathway network and "CBVDs pathway" indicated that the Erigeron breviscapus exerts a protective effect on CBVDs via regulating multiple pathways and hitting on multiple targets. Meanwhile in vitro experiments confirmed that the stigmasterol, scutellarein, and daucosterol from Erigeron breviscapus increased the MEK and PLCγ proteins levels, and decreased the expression of Bax, PI3K, and eNOS, which led to the cell survival, proliferation and contraction. CONCLUSION: The approach used in this work offers a new exemplification for systematically understanding the mechanisms of herbal medicines, which will give an impulse to the CBVDs drug development.


Subject(s)
Cerebrovascular Disorders/metabolism , Erigeron , Phytochemicals/pharmacology , Phytochemicals/pharmacokinetics , Administration, Oral , Animals , Biological Availability , Blood Pressure/drug effects , Blood-Brain Barrier/metabolism , Cell Hypoxia , Cell Survival/drug effects , Cerebrovascular Disorders/drug therapy , Glucose/deficiency , Mitogen-Activated Protein Kinase Kinases/metabolism , Models, Biological , Neovascularization, Physiologic/drug effects , Neuroprotection/drug effects , Nitric Oxide Synthase Type III/metabolism , PC12 Cells , Phosphatidylinositol 3-Kinases/metabolism , Phospholipase C gamma/metabolism , Rats , Systems Biology , bcl-2-Associated X Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...