Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
3.
Low Urin Tract Symptoms ; 15(6): 256-264, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37649457

ABSTRACT

OBJECTIVES: A lot of ion channels participate in the regulation of bladder function. TACAN, a new mechanosensitive ion channel, was first discovered in 2020. TACAN has been found to be expressed in many tissues, such as the dorsal root ganglia (DRG) and adipose tissue. However, it is unclear whether or not TACAN is expressed in the bladder. In this work, we decided to study the expression and distribution of TACAN in human and rat bladders. Meanwhile, the expression of TACAN in the rat model of interstitial cystitis/bladder pain syndrome (IC/BPS) was studied. METHODS: Human bladder tissues were obtained from female patients. Cyclophosphamide (CYP) was used to build the rat model of IC/BPS. Real-time polymerase chain reaction, agarose gel electrophoresis, and western blotting were used to assess the expression of TACAN in human and rat bladders. Immunohistochemistry and immunofluorescence were used to observe the distribution of TACAN in human and rat bladders. Hematoxylin-eosin stain, withdrawal threshold, and micturition interval were used to evaluate animal models. RESULTS: The results of agarose gel electrophoresis and western blotting suggested that TACAN was expressed in human and rat bladders. Immunohistochemical results suggested that TACAN showed positive immunoreaction in the urothelial and detrusor layers. The immunofluorescence results indicated that TACAN was co-stained with UPKIII, α-SMA, and PGP9.5. The IC/BPS model was successfully established with CYP. The mRNA and protein expression of TACAN was upregulated in the CYP-induced rat model of IC/BPS. CONCLUSIONS: TACAN was found in human and rat bladders. TACAN was mainly distributed in the urothelial and detrusor layers and bladder nerves. The expression of TACAN was upregulated in the CYP-induced rat model of IC/BPS. This new discovery will provide a theoretical basis for future research on the function of TACAN in the bladder and a potential therapeutic target for IC/BPS.


Subject(s)
Cystitis, Interstitial , Urinary Bladder , Humans , Female , Rats , Animals , Cystitis, Interstitial/drug therapy , Urination , Immunohistochemistry , Fluorescent Antibody Technique
4.
J Biochem ; 168(1): 73-82, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32240302

ABSTRACT

The standard-of-care for metastatic muscle-invasive bladder cancer (MIBC) is platinum-based chemotherapy regimens. Acquired resistance that occurs frequently through unidentified mechanisms, however, remains the major obstacle for implementing therapeutic effectiveness. Here, using data mining and analysis on clinical samples, we show that expression of JUND, a core component of activator protein-1 family, was significantly induced in cisplatin (CDDP)-resistant MIBC. Accumulation of nuclear JUND was associated with low post-chemotherapy survival in MIBC patients. In both genetically engineered cell models and murine xenograft models, we provided evidence that bladder cancer (BC) cells with excessive JUND expression were less responsive to CDDP treatment. This CDDP resistance was further demonstrated to be mediated, at least in part, by transactivation of HMOX1 [the gene encoding heme oxygenase-1 (HO-1)], one of the most important antioxidant signalling pathways of cell adaptation to stress. One mutation within the HMOX1 promoter successfully abolished oxidative stress-enhanced and JUND-driven HMOX1 promoter activation, suggesting that this unique site synergized for maximal HO-1 induction in CDDP-challenged BC cells. Overall, our data highlight an indispensible role of JUND, both as a target as a modifier of the oxidative stress signalling, in conferring an adaptive response during the pathogenesis of CDDP resistance in MIBC.


Subject(s)
Cisplatin/therapeutic use , Drug Resistance, Neoplasm , Gene Expression Regulation, Neoplastic , Heme Oxygenase-1/metabolism , Muscle Neoplasms/pathology , Proto-Oncogene Proteins c-jun/metabolism , Urinary Bladder Neoplasms/pathology , Animals , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Heme Oxygenase-1/genetics , Humans , Mice , Mice, Nude , Muscle Neoplasms/genetics , Muscle Neoplasms/metabolism , Prognosis , Proto-Oncogene Proteins c-jun/genetics , Signal Transduction , Survival Rate , Up-Regulation , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL