Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
Ecol Evol ; 14(4): e11208, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38571786

ABSTRACT

Selecting thresholds to convert continuous predictions of species distribution models proves critical for many real-world applications and model assessments. Prevalent threshold selection methods for presence-only data require unproven pseudo-absence data or subjective researchers' decisions. This study proposes a new method, Boyce-Threshold Quantile Regression (BTQR), to determine thresholds objectively without pseudo-absence data. We summarize that the mutation point is a typical shape feature of the predicted-to-expected (P/E) curve after reviewing relevant articles. Analysis based on source-sink theory suggests that this mutation point may represent a transition in habitat types and serve as an appropriate threshold. Threshold regression is introduced to accurately locate the mutation point. To validate the effectiveness of BTQR, we used four virtual species of varying prevalence and a real species with reliable distribution data. Six different species distribution models were employed to generate continuous suitability predictions. BTQR and nine other traditional methods transformed these continuous outputs into binary results. Comparative experiments show that BTQR has advantages in terms of accuracy, applicability, and consistency over the existing methods.

2.
Nat Commun ; 15(1): 2565, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38519520

ABSTRACT

Dent and flint kernel architectures are important characteristics that affect the physical properties of maize kernels and their grain end uses. The genes controlling these traits are unknown, so it is difficult to combine the advantageous kernel traits of both. We found mutation of ARFTF17 in a dent genetic background reduces IAA content in the seed pericarp, creating a flint-like kernel phenotype. ARFTF17 is highly expressed in the pericarp and encodes a protein that interacts with and inhibits MYB40, a transcription factor with the dual functions of repressing PIN1 expression and transactivating genes for flavonoid biosynthesis. Enhanced flavonoid biosynthesis could reduce the metabolic flux responsible for auxin biosynthesis. The decreased IAA content of the dent pericarp appears to reduce cell division and expansion, creating a shorter, denser kernel. Introgression of the ARFTF17 mutation into dent inbreds and hybrids improved their kernel texture, integrity, and desiccation, without affecting yield.


Subject(s)
Seeds , Zea mays , Zea mays/genetics , Zea mays/metabolism , Phenotype , Seeds/genetics , Mutation , Flavonoids/metabolism
3.
Sci Total Environ ; 926: 171815, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38513859

ABSTRACT

Typhoons can bring substantial casualties and economic ramifications, and effective prevention strategies necessitate a comprehensive risk assessment. Nevertheless, existing studies on its comprehensive risk assessment are characterized by coarse spatial scales, limited incorporation of geographic big data, and rarely considering disaster mitigation capacity. To address these problems, this study combined multi-source geographic big data to develop the Comprehensive Risk Assessment Model (CRAM). The model integrated 17 indicators from 4 categories of factors, including exposure, vulnerability, hazard, and mitigation capacity. A subjective-objective combination weighting method was introduced to generate the indicator weights, and comprehensive risk index of typhoon disasters was calculated for 987 counties along China's coastal regions. Results revealed a pronounced spatial heterogeneity of the comprehensive typhoon risk, which exhibited an overall decreasing trend from the southeast coastal areas toward the northwest inland territories. 61.7 % of the counties exhibited a medium-to-high level of comprehensive risk, and counties with very-high risks are predominantly concentrated in the Shandong Peninsula, Yangtze River Delta, Hokkien Golden Triangle, Greater Bay Area, Leizhou Peninsula, and Hainan Province, mainly due to high exposure and hazard factors. The correlation coefficient between the risk assessment results and typhoon-induced direct economic losses reached 0.702, indicating the effectiveness and reliability of the CRAM. Meanwhile, indicators from intrinsic attributes of typhoons and geographic big data had pronounced importance, and regional mitigation capacity should be improved. Our proposed method can help to scientifically understand spatial patterns of comprehensive risk and mitigate the effects of typhoon disasters in China's coastal regions.

5.
Plant Biotechnol J ; 22(6): 1453-1467, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38163293

ABSTRACT

Kernel weight is a critical factor that essentially affects maize (Zea mays) yield. In natural inbred lines, popcorn kernels exhibit overtly smaller sizes compared to dent corn kernels, and kernel weight, which is controlled by multiple genetic loci, varies widely. Here, we characterized a major quantitative trait locus on chromosome 1, responsible for controlling kernel weight (qKW1) and size. The qKW1 locus encodes a protein containing a seven in absentia domain with E3 ubiquitin ligase activity, expressed prominently from the top to the middle region of the endosperm. The presence and function of qKW1 were confirmed through ZmKW1 gene editing, where the mutations in ZmKW1 within dent corn significantly increased kernel weight, consistent with alterations in kernel size, while overexpression of ZmKW1 had the opposite effect. ZmKW1 acts as a negative regulator of kernel weight and size by reducing both the number and size of the endosperm cells and impacting endosperm filling. Notably, the popcorn allele qKW1N and the dent corn allele qKW1D encode identical proteins; however, the differences in promoter activity arise due to the insertion of an Indel-1346 sequence in the qKW1N promoter, resulting in higher expression levels compared to qKW1D, thus contributing to the variation in kernel weight and size between popcorn and dent corn kernels. Linkage disequilibrium analysis of the 2.8 kb promoter region of ZmKW1 in a dataset comprising 111 maize association panels identified two distinct haplotypes. Our results provide insight into the mechanisms underlying kernel development and yield regulation in dent corn and popcorn, with a specific focus on the role of the ubiquitination system.


Subject(s)
Plant Proteins , Quantitative Trait Loci , Zea mays , Zea mays/genetics , Zea mays/growth & development , Zea mays/metabolism , Quantitative Trait Loci/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Genetic Variation , Endosperm/genetics , Endosperm/metabolism , Endosperm/growth & development , Seeds/genetics , Seeds/growth & development , Seeds/metabolism , Gene Expression Regulation, Plant
6.
New Phytol ; 241(5): 2075-2089, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38095260

ABSTRACT

Nuclear-cytoplasmic trafficking is crucial for protein synthesis in eukaryotic cells due to the spatial separation of transcription and translation by the nuclear envelope. However, the mechanism underlying this process remains largely unknown in plants. In this study, we isolated a maize (Zea mays) mutant designated developmentally delayed kernel 1 (ddk1), which exhibits delayed seed development and slower filling. Ddk1 encodes a plant-specific protein known as Importin-4 ß, and its mutation results in reduced 80S monosomes and suppressed protein synthesis. Through our investigations, we found that DDK1 interacts with eIF1A proteins in vivo. However, in vitro experiments revealed that this interaction exhibits low affinity in the absence of RanGTP. Additionally, while the eIF1A protein primarily localizes to the cytoplasm in the wild-type, it remains significantly retained within the nuclei of ddk1 mutants. These observations suggest that DDK1 functions as an exportin and collaborates with RanGTP to facilitate the nuclear export of eIF1A, consequently regulating endosperm development at the translational level. Importantly, both DDK1 and eIF1A are conserved among various plant species, implying the preservation of this regulatory module across diverse plants.


Subject(s)
Seeds , Zea mays , Active Transport, Cell Nucleus , Zea mays/metabolism , Seeds/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Karyopherins/genetics , Karyopherins/metabolism , Edible Grain/metabolism
7.
Nat Commun ; 14(1): 7191, 2023 11 08.
Article in English | MEDLINE | ID: mdl-37938556

ABSTRACT

Maize kernels are complex biological systems composed of three genetic sources, namely maternal tissues, progeny embryos, and progeny endosperms. The lack of gene expression profiles with spatial information has limited the understanding of the specific functions of each cell population, and hindered the exploration of superior genes in kernels. In our study, we conduct microscopic sectioning and spatial transcriptomics analysis during the grain filling stage of maize kernels. This enables us to visualize the expression patterns of all genes through electronical RNA in situ hybridization, and identify 11 cell populations and 332 molecular marker genes. Furthermore, we systematically elucidate the spatial storage mechanisms of the three major substances in maize kernels: starch, protein, and oil. These findings provide valuable insights into the functional genes that control agronomic traits in maize kernels.


Subject(s)
Transcriptome , Zea mays , Zea mays/genetics , Phloem , In Situ Hybridization , Sucrose
8.
Plant Physiol Biochem ; 201: 107876, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37413942

ABSTRACT

Plant 2-cysteine peroxiredoxin (2-Cys Prx) is a mercaptan peroxidase localized in chloroplasts and has unique catalytic properties. To explore the salt stress tolerance mechanisms of 2-Cys Prx in plants, we analyzed the effects of overexpressing the 2-CysPrx gene on the physiological and biochemical metabolic processes of tobacco under NaHCO3 stress through joint physiological and transcriptomic analysis. These parameters included growth phenotype, chlorophyll, photosynthesis, and antioxidant system. After NaHCO3 stress treatment, a total of 5360 differentially expressed genes (DEGs) were identified in 2-Cysprx overexpressed (OE) plants, and the number of DEGs was significantly lower than 14558 in wild-type (WT) plants. KEGG enrichment analysis showed that DEGs were mainly enriched in photosynthetic pathways, photosynthetic antenna proteins, and porphyrin and chlorophyll metabolism. Overexpressing 2-CysPrx significantly reduced the growth inhibition of tobacco induced by NaHCO3 stress, alleviating the down-regulation of the DEGs related to chlorophyll synthesis, photosynthetic electron transport and the Calvin cycle and the up-regulation of those related to chlorophyll degradation. In addition, it also interacted with other redox systems such as thioredoxins (Trxs) and the NADPH-dependent Trx reductase C (NTRC), and mediated the positive regulation of the activities of antioxidant enzymes such as peroxidase (POD) and catalase (CAT) and the expression of related genes, thereby reducing the accumulation of superoxide anion (O2·-), hydrogen peroxide (H2O2) and malondialdehyde (MDA). In conclusion, 2-CysPrx overexpression could alleviate the NaHCO3 stress-induced photoinhibition and oxidative damage by regulating chlorophyll metabolism, promoting photosynthesis and participating in the regulation of antioxidant enzymes, and thus improve the ability of plants to resist salt stress damage.


Subject(s)
Antioxidants , Peroxiredoxins , Reactive Oxygen Species/metabolism , Antioxidants/metabolism , Peroxiredoxins/genetics , Peroxiredoxins/metabolism , Peroxiredoxins/pharmacology , Nicotiana/genetics , Nicotiana/metabolism , Hydrogen Peroxide/metabolism , Cysteine/metabolism , Photosynthesis , Oxidoreductases/metabolism , Peroxidase/metabolism , Chlorophyll
9.
Cell Prolif ; 56(10): e13443, 2023 Oct.
Article in English | MEDLINE | ID: mdl-36941019

ABSTRACT

Developing a nanosystem that can perform multimodal imaging-guided combination therapy is highly desirable but challenging. In this study, we introduced multifunctional nanoparticles (NPs) consisting of graphene oxide-grafted hollow mesoporous organosilica loaded with the drug doxorubicin (DOX) and photosensitizers tetraphenylporphyrin (TPP). These NPs were encapsulated by thermosensitive liposomes that release their contents once the temperature exceeds a certain threshold. Metal oxide NPs grown on the graphene oxide (GO) surface served multiple roles, including enhancing photothermal efficiency, acting as contrast agents to improve magnetic resonance imaging, increasing the sensitivity and specificity of photoacoustic imaging, and catalysing hydrogen peroxide for the generation of reactive oxygen species (ROS). When locally injected, the HMONs-rNGO@Fe3 O4 /MnOx@FA/DOX/TPP NPs effectively enriched in subcutaneous Hela cell tumour of mice. The photothermal/photodynamic/chemo combination therapy triggered by near-infrared (NIR) successfully suppressed the tumour without noticeable side effects. This study presented a unique approach to develop multimodal imaging-guided combination therapy for cancer.


Subject(s)
Graphite , Nanoparticles , Humans , Animals , Mice , Phototherapy , HeLa Cells , Doxorubicin/pharmacology , Cell Line, Tumor
10.
Plant Physiol Biochem ; 194: 524-532, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36521289

ABSTRACT

The effects of overexpression of the thioredoxin-like protein CDSP32 (Trx CDSP32) on reactive oxygen species (ROS) metabolism in tobacco leaves exposed to cadmium (Cd) were studied by combining physiological measures and proteomics technology. Thus, the number of differentially expressed proteins (DEPs) in plants overexpressing the Trx CDSP32 gene in tobacco (OE) was observed to be evidently lower than that in wild-type (WT) tobacco under Cd exposure, especially the number of down-regulated DEPs. Cd exposure induced disordered ROS metabolism in tobacco leaves. Although Cd exposure inhibited the activities of superoxide dismutase (SOD), catalase (CAT), and l-ascorbate peroxidase (APX) and the expression of proteins related to the thioredoxin-peroxiredoxin (Trx-Prx) pathway, the increase in the activities of peroxidase (POD), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), glutathione reductase (GR), glutathione peroxidase (GPX), and glutathione S-transferase (GST) and their protein expression levels played an important role in the physiological response to Cd exposure. Notably, Trx CDSP32 was observed to alleviate the decrease in the expression and activities of SOD and CAT caused by Cd exposure and enhance the function of POD. Trx CDSP32 was observed to increase the H2O2 scavenging capacity of the ascorbic acid-glutathione (AsA-GSH) cycle and Trx-Prx pathway under Cd exposure, and it can especially regulate 2-Cys peroxiredoxin (2-Cys Prx) protein expression and thioredoxin peroxidase (TPX) activity. Thus, overexpression of the Trx CDSP32 gene can alleviate the oxidative damage that occurs in tobacco leaves under Cd exposure by modulating antioxidant defense systems.


Subject(s)
Antioxidants , Cadmium , Antioxidants/metabolism , Cadmium/toxicity , Nicotiana/genetics , Nicotiana/metabolism , Reactive Oxygen Species/metabolism , Hydrogen Peroxide/metabolism , Oxidative Stress , Glutathione/metabolism , Superoxide Dismutase/metabolism , Peroxiredoxins/genetics , Peroxiredoxins/metabolism , Peroxiredoxins/pharmacology , Thioredoxins/genetics , Thioredoxins/metabolism , Thioredoxins/pharmacology
11.
Nature ; 612(7939): 292-300, 2022 12.
Article in English | MEDLINE | ID: mdl-36385527

ABSTRACT

Teosinte, the wild ancestor of maize (Zea mays subsp. mays), has three times the seed protein content of most modern inbreds and hybrids, but the mechanisms that are responsible for this trait are unknown1,2. Here we use trio binning to create a contiguous haplotype DNA sequence of a teosinte (Zea mays subsp. parviglumis) and, through map-based cloning, identify a major high-protein quantitative trait locus, TEOSINTE HIGH PROTEIN 9 (THP9), on chromosome 9. THP9 encodes an asparagine synthetase 4 enzyme that is highly expressed in teosinte, but not in the B73 inbred, in which a deletion in the tenth intron of THP9-B73 causes incorrect splicing of THP9-B73 transcripts. Transgenic expression of THP9-teosinte in B73 significantly increased the seed protein content. Introgression of THP9-teosinte into modern maize inbreds and hybrids greatly enhanced the accumulation of free amino acids, especially asparagine, throughout the plant, and increased seed protein content without affecting yield. THP9-teosinte seems to increase nitrogen-use efficiency, which is important for promoting a high yield under low-nitrogen conditions.


Subject(s)
Nitrogen , Zea mays , Zea mays/genetics , Family , Seeds/genetics
12.
Front Plant Sci ; 13: 943153, 2022.
Article in English | MEDLINE | ID: mdl-35903240

ABSTRACT

MYB transcription factors (TFs) mediate plant responses and defenses to biotic and abiotic stresses. The effects of overexpression of MYB37, an R2R3 MYB subgroup 14 transcription factors in Arabidopsis thaliana, on chlorophyll content, chlorophyll fluorescence parameters, reactive oxygen species (ROS) metabolism, and the contents of osmotic regulatory substances were studied under 100 mM NaCl stress. Compared with the wild type (Col-0), MYB37 overexpression significantly alleviated the salt stress symptoms in A. thaliana plants. Chlorophyll a (Chl a) and chlorophyll b (Chl b) contents were significantly decreased in OE-1 and OE-2 than in Col-0. Particularly, the Chl a/b ratio was also higher in OE-1 and OE-2 than in Col-0 under NaCl stress. However, MYB37 overexpression alleviated the degradation of chlorophyll, especially Chl a. Salt stress inhibited the activities of PSII and PSI in Arabidopsis leaves, but did not affect the activity of PSII electron donor side oxygen-evolving complex (OEC). MYB37 overexpression increased photosynthesis in Arabidopsis by increasing PSII and PSI activities. MYB37 overexpression also promoted the transfer of electrons from Q A to Q B on the PSII receptor side of Arabidopsis under NaCl stress. Additionally, MYB37 overexpression increased Y(II) and Y(NPQ) of Arabidopsis under NaCl stress and decreased Y(NO). These results indicate that MYB37 overexpression increases PSII activity and regulates the proportion of energy dissipation in Arabidopsis leaves under NaCl stress, thus decreasing the proportion of inactivated reaction centers. Salt stress causes excess electrons and energy in the photosynthetic electron transport chain of Arabidopsis leaves, resulting in the release of reactive oxygen species (ROS), such as superoxide anion and hydrogen peroxide, leading to oxidative damage. Nevertheless, MYB37 overexpression reduced accumulation of malondialdehyde in Arabidopsis leaves under NaCl stress and alleviated the degree of membrane lipid peroxidation caused by ROS. Salt stress also enhanced the accumulation of soluble sugar (SS) and proline (Pro) in Arabidopsis leaves, thus reducing salt stress damage to plants. Salt stress also degraded soluble protein (SP). Furthermore, the accumulation of osmoregulation substances SS and Pro in OE-1 and OE-2 was not different from that in Col-0 since MYB37 overexpression in Arabidopsis OE-1, and OE-2 did not significantly affect plants under NaCl stress. However, SP content was significantly higher in OE-1 and OE-2 than in Col-0. These results indicate that MYB37 overexpression can alleviate the degradation of Arabidopsis proteins under NaCl stress, promote plant growth and improve salt tolerance.

13.
Plant Cell ; 34(5): 1933-1956, 2022 04 26.
Article in English | MEDLINE | ID: mdl-35157077

ABSTRACT

Opaque2 (O2) functions as a central regulator of the synthesis of starch and storage proteins and the O2 gene is transcriptionally regulated by a hub coordinator of seed development and grain filling, ABSCISIC ACID INSENSITIVE 19 (ZmABI19), in maize (Zea mays). Here, we identified a second hub coordinator, basic Leucine Zipper 29 (ZmbZIP29) that interacts with ZmABI19 to regulate O2 expression. Like zmabi19, zmbzip29 mutations resulted in a dramatic decrease of transcript and protein levels of O2 and thus a significant reduction of starch and storage proteins. zmbzip29 seeds developed slower and had a smaller size at maturity than those of the wild type. The zmbzip29;zmabi19 double mutant displayed more severe seed phenotypes and a greater reduction of storage reserves compared to the single mutants, whereas overexpression of the two transcription factors enhanced O2 expression, storage-reserve accumulation, and kernel weight. ZmbZIP29, ZmABI19, and O2 expression was induced by abscisic acid (ABA). With ABA treatment, ZmbZIP29 and ZmABI19 synergistically transactivated the O2 promoter. Through liquid chromatography tandem-mass spectrometry analysis, we established that the residues threonine(T) 57 in ZmABI19, T75 in ZmbZIP29, and T387 in O2 were phosphorylated, and that SnRK2.2 was responsible for the phosphorylation. The ABA-induced phosphorylation at these sites was essential for maximum transactivation of downstream target genes for endosperm filling in maize.


Subject(s)
Endosperm , Zea mays , Abscisic Acid/metabolism , Abscisic Acid/pharmacology , Endosperm/genetics , Endosperm/metabolism , Gene Expression Regulation, Plant , Leucine Zippers , Phosphorylation , Plant Proteins/genetics , Plant Proteins/metabolism , Starch/metabolism , Transcriptional Activation , Zea mays/genetics , Zea mays/metabolism
14.
Mol Plant ; 15(3): 468-487, 2022 03 07.
Article in English | MEDLINE | ID: mdl-34848346

ABSTRACT

Maize (Zea mays) endosperm filling is coordinated with cell expansion to enlarge the grain size, but the mechanism coupling the two processes is poorly understood. Starchy endosperm cells basically contain no visible vacuoles for cell expansion. During grain filling, efficient synthesis of storage compounds leads to reduced cytoplasm and thus lowered cell turgor pressure. Although bioactive gibberellins (GAs) are essential for cell expansion, they accumulate at a low level at this stage. In this study, we identified an endosperm-specific GRAS domain-containing protein (ZmGRAS11) that lacks the DELLA domain and promotes cell expansion in the filling endosperm. The zmgras11 loss-of-function mutants showed normal grain filling but delayed cell expansion, thereby resulting in reduced kernel size and weight. Overexpression of ZmGRAS11 led to larger endosperm cells and therefore increased kernel size and weight. Consistent with this, ZmGRAS11 positively regulates the expression of ZmEXPB12, which is essential for cell expansion, at the endosperm filling stage. Moreover, we found that Opaque2 (O2), a central transcription factor that regulates endosperm filling, could directly bind to the promoter of ZmGRAS11 and activate its expression. Taken together, these results suggest that endosperm cell expansion is coupled with endosperm filling, which is orchestrated by the O2-ZmGRAS11-centered transcriptional regulatory network. Our findings also provide potential targets for maize yield improvement by increasing the storage capacity of endosperm cells.


Subject(s)
Endosperm , Zea mays , Endosperm/genetics , Endosperm/metabolism , Gene Expression Regulation, Plant/genetics , Gene Regulatory Networks , Plant Proteins/genetics , Plant Proteins/metabolism , Starch/metabolism , Zea mays/genetics , Zea mays/metabolism
15.
J Hazard Mater ; 424(Pt A): 127265, 2022 02 15.
Article in English | MEDLINE | ID: mdl-34583160

ABSTRACT

Nitrogen dioxide (NO2) is a common outdoor air pollutant, which has adverse effects on the environment and human health. Herein, NO2 inhibited photosynthesis and antioxidant capacity in plants. Melatonin (Mel) is a neurohormone found in the pineal gland. Exogenous Mel alleviated chlorophyll degradation and increased the expression of key proteins and genes in the process of chlorophyll synthesis in tobacco leaves exposed to NO2. Additionally, the activities of photosystem II (PSII) and photosystem I (PSI) were enhanced. PSII and PSI reaction center proteins and genes were upregulated. Mel pre-treatment enhanced enzyme activities and expression of proteins related to the ascorbic acid-glutathione cycle and thioredoxin-peroxiredoxin pathway in leaves exposed to NO2, thus regulating their redox balance. Furthermore, exogenous Mel mediated the polyamine synthesis pathway and increased the expression of the key enzyme proteins SAMS1, SAMS2, and SAMS3 in the polyamine synthesis pathway in leaves under NO2 stress. Mel regulated ABA signal transduction and calmodulin binding transcription factors CAMTA12 and NtCaM calmodulin NtCaM2 in Ca2+ signal transduction. Collectively, these results elucidate that Mel can alleviate high-concentration NO2, thus suitable for agricultural application.


Subject(s)
Melatonin , Nicotiana , Antioxidants , Chlorophyll , Electron Transport , Homeostasis , Humans , Nitrogen Dioxide/toxicity , Oxidation-Reduction , Photosynthesis , Plant Leaves , Signal Transduction
16.
J Hazard Mater ; 426: 128012, 2022 03 15.
Article in English | MEDLINE | ID: mdl-34923383

ABSTRACT

To reveal the response and adaptative mechanism of plants to the organic pollutants PBDEs, physiological and transcriptomic techniques were used to study the effects of exposure to BDE47 and BDE209 on tobacco (Nicotiana tabacum L.) plant growth, physiological function and response of key genes. Exposure to both BDE47 and BDE209 inhibited the growth of tobacco plants. The number of down-regulated DEGs following exposure to BDE47 was significantly higher than that following exposure to BDE209. Enrichment analysis using the KEGG showed that BDE47 and BDE209 primarily affected tobacco leaf photosynthesis-antenna proteins, photosynthesis, plant hormone signal transduction and α-linolenic acid metabolism. BDE47 primarily inhibits the synthesis of Chl a, and BDE209 has a more significant impact on Chl b. Most photosynthesis-related DEGs were concentrated in PSII and PSI; the number of down-regulated DEGs in PSI was significantly higher than that in PSII, and the range in which the PSI activity was reduced was also higher than that of PSII, i.e., PSII and PSI (particularly PSI) were sensitive to the effects of exposure to BDE47 and BDE209 on photosynthesis. The increase of the ratio of regulatory energy dissipation played an important protective role in alleviating the photoinhibition of PSII. Exposure to BDE47 and BDE209 can lead to the accumulation of ROS in tobacco leaves, but correspondingly, the activities of antioxidant enzymes SOD, POD, CAT, APX and GPX and the up-regulated expression of their coding genes play an important role in preventing excessive oxidative damage. Exposure to BDE47 and BDE209 promoted the up-regulation of gene expression related to Pro synthesis. In particular, the Pro synthetic process of the Orn pathway was promoted. Exposure to BDE47 and BDE209 induced the up-regulated expression of genes related to the synthesis of ABA and JA, promoted the synthesis of ABA and JA, and activated ABA and JA signal transduction pathways. In conclusion, both BDE47 and BDE209 inhibit the synthesis of chlorophyll and hinder the process of light energy capture and electron transfer in tobacco leaves. BDE47 was more toxic than BDE209. However, tobacco leaves can also adapt to BDE47 and BDE209 by regulating the antioxidant system, accumulating Pro and initiating the hormone signal transduction process. The results of this study provide a theoretical basis for the phytotoxicity mechanism of PBDEs.


Subject(s)
Halogenated Diphenyl Ethers , Nicotiana , Halogenated Diphenyl Ethers/toxicity , Hormones , Photosynthesis , Photosystem II Protein Complex/genetics , Photosystem II Protein Complex/metabolism , Plant Leaves/metabolism , Reactive Oxygen Species , Signal Transduction , Nicotiana/metabolism
17.
Front Pharmacol ; 12: 741295, 2021.
Article in English | MEDLINE | ID: mdl-34966277

ABSTRACT

Circadian clocks participate in the coordination of various metabolic and biological activities to maintain homeostasis. Disturbances in the circadian rhythm and cancers are closely related. Circadian clock genes are differentially expressed in many tumors, and accelerate the development and progression of tumors. In addition, tumor tissues exert varying biological activities compared to normal tissues due to resetting of altered rhythms. Thus, chronotherapeutics used for cancer treatment should exploit the timing of circadian rhythms to achieve higher efficacy and mild toxicity. Due to interpatient differences in circadian functions, our findings advocate an individualized precision approach to chronotherapy. Herein, we review the specific association between circadian clocks and cancers. In addition, we focus on chronotherapies in cancers and personalized biomarkers for the development of precision chronotherapy. The understanding of circadian clocks in cancer will provide a rationale for more effective clinical treatment of tumors.

18.
Stem Cells Int ; 2021: 4307961, 2021.
Article in English | MEDLINE | ID: mdl-34777503

ABSTRACT

The bone extracellular matrix (ECM) contains organic and mineral constituents. The establishment and degradation processes of ECM connect with spatial and temporal patterns, especially circadian rhythms in ECM. These patterns are responsible for the physical and biological characteristics of bone. The disturbances of the patterns disrupt bone matrix remodeling and cause diverse bone diseases, such as osteogenesis imperfecta (OI) and bone fracture. In addition, the main regulatory factors and inflammatory factors also follow circadian rhythms. Studies show that the circadian oscillations of these factors in bone ECM potentially influence the interactions between immune responses and bone formation. More importantly, mesenchymal stem cells (MSCs) within the specific microenvironments provide the regenerative potential for tissue remodeling. In this review, we summarize the advanced ECM spatial characteristics and the periodic patterns of bone ECM. Importantly, we focus on the intrinsic connections between the immunoinflammatory system and bone formation according to circadian rhythms of regulatory factors in bone ECM. And our research group emphasizes the multipotency of MSCs with their microenvironments. The advanced understandings of bone ECM formation patterns and MSCs contribute to providing optimal prevention and treatment strategies.

19.
Plant Physiol Biochem ; 167: 831-839, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34530327

ABSTRACT

Thioredoxin-like protein CDSP32 (Trx CDSP32), a thioredoxin-like (Trx-like) protein located in the chloroplast, can regulate photosynthesis and the redox state of plants under stress. In order to examine the role of Trx CDSP32 in the photosynthetic apparatus of plants exposed to cadmium (Cd), the effects of Trx CDSP32 on photosynthetic function and photoprotection in tobacco leaves under Cd exposure were studied using a proteomics approach with wild-type (WT) and Trx CDSP32 overexpression (OE) tobacco plants. Cd exposure reduced stomatal conductance, blocked PSII photosynthetic electron transport, and inhibited carbon assimilation. Increased water use efficiency (WUE), cyclic electron flow (CEF) of the proton gradient regulation 5 pathway (PGR5-CEF), and regulated energy dissipation [Y(NPQ)] are important mechanisms of Cd adaptation. However, CEF of the NAD(P)H dehydrogenase pathway (NDH-CEF) was inhibited by Cd exposure. Relative to control conditions, the expression levels of violaxanthin de-epoxidase (VDE) and photosystem II 22 kDa protein (PsbS) in OE leaves were significantly increased under Cd exposure, but those in WT leaves did not change significantly. Moreover, the expression of zeaxanthin epoxidase (ZE) under Cd exposure was significantly higher than that in WT leaves. Thus, Trx CDSP32 increased Y(NPQ) and alleviated PSII photoinhibition under Cd exposure. Trx CDSP32 not only increased PGR5-like protein 1A and 1B expression, but also alleviated the down-regulation of NAD(P)H-quinone oxidoreductase subunits induced by Cd exposure. Thus, Trx CDSP32 promotes CEF in Cd-exposed tobacco leaves. Thus, Trx CDSP32 alleviates the Cd-induced photoinhibition in tobacco leaves by regulating two photoprotective mechanisms: CEF and xanthophyll cycle-dependent energy dissipation.


Subject(s)
Cadmium , Nicotiana , Cadmium/metabolism , Cadmium/toxicity , Chlorophyll , Electron Transport , Electrons , Light , Photosynthesis , Photosystem I Protein Complex/metabolism , Photosystem II Protein Complex/metabolism , Plant Leaves/metabolism , Thioredoxins , Nicotiana/metabolism
20.
Plant Physiol Biochem ; 167: 140-152, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34352517

ABSTRACT

Soil salinization is a critical factor limiting growth and causing physiological dysfunction in plants. The damage from alkaline salt in most plants is significantly greater than that from neutral salt. However, there is still a lack of research on the action mechanism by which saline alkali stress on plants under the same salt concentration across different pH values. The present study examined the effects of different pH values (7.0, 8.0, 9.0, and 10.0) under the same salt concentration (200 mmolL-1) on photosynthetic function, photoprotective mechanism, nitrogen metabolism, and osmotic regulation in alfalfa (Medicago sativa) leaves, including a transcriptomic analysis of changes in gene expression related to the above metabolic processes. The results showed that low pH saline alkali stress (pH 7.0 and 8.0) promoted chlorophyll synthesis in alfalfa leaves, and non-photochemical quenching (NPQ) and cyclic electron transfer (CEF) were promoted. There was no significant effect on plant growth or photochemical activity. The soluble sugar, proline, and soluble protein contents did not change significantly, and there was no obvious oxidative damage in alfalfa leaves. However, when pH increased to 9.0 and 10.0, KEGG enrichment analysis showed that photosynthesis (map00195) and nitrogen metabolism (map00910) were significantly enriched (P < 0.05), and PSII antenna protein coding genes were down-regulated under pH 9.0 and 10.0 treatments. The activities of PSII and PSI were decreased under high pH saline alkali stress, and the expression levels of the photosynthetic electron transporter-related genes PetA, PetB, petE, and petF were also significantly down-regulated. PSII was more sensitive to high pH saline alkali stress than PSI, and the PSII receptor side was more sensitive to high pH saline alkali stress than the PSII donor side. The activities of the oxygen-evolving complex (OEC) and PSI were significantly damaged only at pH 10.0. The activities of nitrate reductase (NR) and nitrite reductase (NiR), the expression levels of their genes, and the content of soluble protein were also decreased under pH 9.0 and 10.0 treatments. The inhibition of plant growth and oxidative damage to alfalfa leaves caused by high pH saline alkali stress were mainly related to the inhibition of photosynthesis (light energy absorption, electron transfer) and nitrogen metabolism (NO3- reduction). Under high pH saline alkali stress (pH 10.0), the photoprotection mechanisms such as CEF and NPQ were inhibited, which was also one of the important reasons for photoinhibition in alfalfa leaves. The accumulation of osmotic adjustment substances, such as soluble sugar and proline, was an important mechanism by which alfalfa physiologically adapted to high pH alkaline salt stress.


Subject(s)
Medicago sativa , Transcriptome , Alkalies , Gene Expression Profiling , Hydrogen-Ion Concentration , Medicago sativa/genetics , Plant Leaves
SELECTION OF CITATIONS
SEARCH DETAIL
...