Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 132024 Aug 12.
Article in English | MEDLINE | ID: mdl-39133873

ABSTRACT

Group 1 innate lymphoid cells (ILCs) comprise conventional natural killer (cNK) cells and type 1 innate lymphoid cells (ILC1s). The main functions of liver cNK cells and ILC1s not only include directly killing target cells but also regulating local immune microenvironment of the liver through the secretion of cytokines. Uncovering the intricate mechanisms by which transcriptional factors regulate and influence the functions of liver cNK cells and ILC1s, particularly within the context of liver tumors, presents a significant opportunity to amplify the effectiveness of immunotherapies against liver malignancies. Using Ncr1-drived conditional knockout mouse model, our study reveals the regulatory role of Prdm1 in shaping the composition and maturation of cNK cells. Although Prdm1 did not affect the killing function of cNK cells in an in vivo cytotoxicity model, a significant increase in cancer metastasis was observed in Prdm1 knockout mice. Interferon-gamma (IFN-γ), granzyme B, and perforin secretion decreased significantly in Prdm1-deficient cNK cells and liver ILC1s. Single-cell RNA sequencing (scRNA-seq) data also provided evidences that Prdm1 maintains functional subsets of cNK cells and liver ILC1s and facilitates communications between cNK cells, liver ILC1s, and macrophages. The present study unveiled a novel regulatory mechanism of Prdm1 in cNK cells and liver ILC1s, showing promising potential for developing innovative immune therapy strategies against liver cancer.


Subject(s)
Liver Neoplasms , Mice, Knockout , Positive Regulatory Domain I-Binding Factor 1 , Animals , Mice , Positive Regulatory Domain I-Binding Factor 1/genetics , Positive Regulatory Domain I-Binding Factor 1/metabolism , Liver Neoplasms/immunology , Liver Neoplasms/genetics , Killer Cells, Natural/immunology , Interferon-gamma/metabolism , Immunity, Innate , Lymphocytes/immunology , Immunologic Surveillance , Granzymes/metabolism , Granzymes/genetics , Natural Cytotoxicity Triggering Receptor 1/metabolism , Natural Cytotoxicity Triggering Receptor 1/genetics , Perforin/metabolism , Perforin/genetics , Liver/immunology , Liver/metabolism , Mice, Inbred C57BL , Tumor Microenvironment/immunology , Antigens, Ly
2.
Biopolymers ; : e23620, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39109846

ABSTRACT

Welan gum (WG) has a wide range of applications, but it is not yet suitable for applications such as oil recovery profile control that have complex requirements for viscosity, gelation properties, and so forth. Grafting modification is an important strategy for improving the property of WG, but there are few reports on controllable modification of WG to customize it for specific application. Acrylamide (AM) dosage was identified as the key factor affecting the grafting ratio of AM onto WG by a uniform experimental design. The grafting ratio can be directly adjusted between 99% and 378% based on the positive correlation with dosage of AM, and viscosity can be adjusted between 206 and 327 mPa s based on the negative correlation with grafting ratio. The 50% weight loss temperature of W11 with a grafting ratio of 110% raised from 314 to 336°C after grafting. The viscosity of the hydrogel formed with WG11 reached 15,654 mPa s, nearly nine times higher than that of unmodified WG. In addition, the gelation time can be controlled within 5 days, so that it can be injected to the optimal area in oilfield profile, avoiding pipeline blockage. This study enables adjusting viscosity of WG grafted with AM by controlling the grafting rate, and enhances gelation performance and thermal stability of WG, which will expand the application of WG in oil recovery and other fields.

3.
Int J Biol Macromol ; 271(Pt 1): 132625, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38795884

ABSTRACT

Graft copolymerization is an effective approach to improve performance of polysaccharide. However, selecting the most suitable modification strategy can be challenging due to the intricate molecular structure. Rational design through computer aided molecular dynamics (MD) simulations requires substantial computational resources. This study designed a simplified MD simulation strategy and suggested that grafting acrylamide (AM) could effectively adjust the molecular conformation of xanthan gum (XG) and its derivatives, thus regulating its viscosity and gelation properties. To rationally modify XG, a uniform experimental design was applied to tune the grafting ratios ranging from 72 % to 360 %, resulting in XG-AM solutions with viscosity ranging from 9 to 104 mPa•s at a concentration of 0.3 %. XG-AM was crosslinked by acid phenolic resin to generate gel with the viscosity of 7890 mPa·s in 3 days, which was 13 times the viscosity of unmodified XG. The controllable gelation will enhance the efficacy of XG-AM in oil recovery. By integrating rational selection of grafting strategies based on simplified MD simulation of polysaccharide derivatives and controllable grafting modification with specified grafting rates, customized production of polysaccharide derivatives can meet the requirements of a diverse range of applications.


Subject(s)
Molecular Dynamics Simulation , Polysaccharides, Bacterial , Polysaccharides, Bacterial/chemistry , Viscosity , Acrylamide/chemistry , Polymerization
4.
J Appl Microbiol ; 135(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38724452

ABSTRACT

AIM: Biotechnical processes in Escherichia coli often operate with artificial plasmids. However, these bioprocesses frequently encounter plasmid loss. To ensure stable expression of heterologous genes in E. coli BL21(DE3), a novel plasmid addiction system (PAS) was developed. METHODS AND RESULTS: This PAS employed an essential gene grpE encoding a cochaperone in the DnaK-DnaJ-GrpE chaperone system as the selection marker, which represented a chromosomal ΔgrpE mutant harboring episomal expression plasmids that carry supplementary grpE alleles to restore the deficiency. To demonstrate the feasibility of this system, it was implemented in phloroglucinol (PG) biosynthesis, manifesting improved host tolerance to PG and increased PG production. Specifically, PG titer significantly improved from 0.78 ± 0.02 to 1.34 ± 0.04 g l-1, representing a 71.8% increase in shake-flask fermentation. In fed-batch fermentation, the titer increased from 3.71 ± 0.11 to 4.54 ± 0.10 g l-1, showing a 22.4% increase. RNA sequencing and transcriptome analysis revealed that the improvements were attributed to grpE overexpression and upregulation of various protective chaperones and the biotin acetyl-CoA carboxylase ligase coding gene birA. CONCLUSION: This novel PAS could be regarded as a typical example of nonanabolite- and nonmetabolite-related PAS. It effectively promoted plasmid maintenance in the host, improved tolerance to PG, and increased the titer of this compound.


Subject(s)
Escherichia coli Proteins , Heat-Shock Proteins , Phloroglucinol , Plasmids , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Fermentation , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Phloroglucinol/metabolism , Phloroglucinol/analogs & derivatives , Plasmids/genetics
5.
Opt Express ; 32(6): 9374-9383, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38571173

ABSTRACT

To realize the high sensitivity polarization sensitive optical coherence tomography (PS-OCT) imaging, a fiber-based full-range depth-encoded swept source PS-OCT (SS-PS-OCT) method is proposed. The two OCT images corresponding to the orthogonal polarized input light are located on the high sensitivity imaging region of the opposite sides relative to the zero optical path difference position. The full-range OCT images can be obtained by implementing the spatial phase modulation in the reference arm. The detection sensitivity of the system was measured experimentally to be 67 dB when the imaging depth approaching to 2 mm. The imaging of the biological tissue verifies that the proposed full-range depth-encoded SS-PS-OCT system has the higher detection sensitivity compared with the conventional depth encoded SS-PS-OCT system. Finally, we demonstrated the full-range high sensitivity phase retardation image of the bovine tendon and skin of human fingertip. The fiber-based full-range depth-encoded SS-PS-OCT method can realize the high sensitivity birefringence imaging in the medical diagnosis scenes with the requirements for long imaging range and high detection sensitivity.

6.
Nat Commun ; 15(1): 3512, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664441

ABSTRACT

As an intrinsically direct current device, quantum-dot LED cannot be directly driven by household alternating current electricity. Thus, a driver circuit is required, which increases the complexity and cost. Here, by using a transparent and conductive indium-zinc-oxide as an intermediate electrode, we develop a tandem quantum-dot LED that can be operated at both negative and positive alternating current cycles with an external quantum efficiency of 20.09% and 21.15%, respectively. Furthermore, by connecting multiple tandem devices in series, the panel can be directly driven by household alternating current electricity without the need for complicated back-end circuits. Under 220 V/50 Hz driving, the red plug-and-play panel demonstrates a power efficiency of 15.70 lm W-1 and a tunable brightness of up to 25,834 cd m-2. The developed plug-and-play quantum-dot LED panel could enable the production of cost-effective, compact, efficient, and stable solid-state light sources that can be directly powered by household alternating current electricity.

7.
Int Wound J ; 21(2): e14670, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38361225

ABSTRACT

Totally extraperitoneal prosthetic (TEP) is a surgical technique for the treatment of hernia. The purpose of this research is to compare the efficacy of both general anaesthesia and spine anaesthesia for TEP herniorrhaphy. The number of patients who received TEP operations related to the injury from 2008 to 2022 was counted in this study. Patients with TEP operation were classified into general anaesthesia and spine anaesthesia. In this research, 186 related articles were found in the data base, and in the end, 8 were analysed. This study involved 2452 cases of hernia. The data of the operation time, the infection of the wound and the bleeding of the wound were analysed. The analysis of the data was done with RevMan 5.3. Results indicated that there was no significant difference between general anaesthesia and spinal anaesthesia in post-surgical rates for post-operative wound infection (odds ratio [OR], 0.94; 95% confidence interval [CI], 0.49-1.83; p = 0.86); In general anaesthesia, there was no difference in the risk of post-operative wound haematoma when compared with those treated with spinal anaesthesia (OR, 2.96; 95% CI, 0.37-23.69; p = 0.31). In the seven trials, there was no difference in the duration of the surgery between the general anaesthetic and the spinal anaesthesia group (mean difference, -1.44; 95% CI, -4.11 to 1.22; p = 0.29). Data from the available meta-analysis indicate that there is no difference in the risk of post-operative wound infection or wound haematoma when treated with TEP.


Subject(s)
Anesthesia, Spinal , Hernia, Inguinal , Laparoscopy , Humans , Laparoscopy/methods , Hernia, Inguinal/surgery , Herniorrhaphy/methods , Surgical Wound Infection/surgery , Wound Healing , Hematoma/surgery , Treatment Outcome
8.
Opt Express ; 32(2): 2774-2785, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38297798

ABSTRACT

Lissajous micro scanners are very attractive in compact laser scanning applications for biomedical endoscopic imaging, such as confocal microscopy, endomicroscopy or optical coherence tomography. The scanning frequencies have a very important effect on the quality of the resulting Lissajous scanning imaging. In this paper, we propose a frequency selection rule for high definition and high frame-rate (HDHF) Lissajous scanning imaging, by deriving the relationship among the scanning field of view (FOV), actuation frequencies and pixel size based on the characteristics of the scanning trajectory. The minimum sampling rate based on the proposed frequency selection rule is further discussed. We report a lead zirconate titanate piezoelectric ceramic (PZT) based Lissajous fiber scanner to achieve HDHF Lissajous scanning imaging. Based on the frequency selection rule, different frequency combinations are calculated, under which the Lissajous fiber scanner can work at the frame rate (FR) of 10 Hz, 20 Hz, 40 Hz and 52 Hz. The trajectory evolution of the Lissajous scanning at the frame rate of 10 Hz has been obtained to verify the applicability of the proposed rule. The measured resolution of the scanner is 50.8 lp/mm at the unit optical magnification, and the measured FOV at the FR of 10 Hz and 40 Hz are 1.620 mm ×1.095 mm and 0.405 mm ×0.27 mm, respectively. HDHF Lissajous scanning images of the customized spatial varying binary pattern are obtained and reconstructed at the FR of 10 Hz and 40 Hz, demonstrating the practicability of the frequency selection rule.

9.
Adv Mater ; 36(16): e2312334, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38236142

ABSTRACT

Alternating current (AC)-driven quantum-dot light-emitting diodes (QLEDs) are superior to direct current-driven QLEDs because they can be directly integrated into household AC electricity and have high stability. However, achieving high-performance AC-driven QLEDs remains challenging. In this work, a bipolar QLED with coplanar electrodes is realized by horizontally connecting a regular QLED and an inverted QLED in series using an Al bridging layer. The bipolar QLED can be turned on with either a positive or a negative bias voltage, with a high external quantum efficiency (EQE) of 22.9%. By replacing the Al with Ag, the resistances of the electron transport layers are effectively reduced, and thus the bipolar QLED shows an enhanced brightness of 16370 cd m-2 at 15 V. By connecting multiple bipolar QLEDs in series, the resulting light source can be directly driven by a 220 V/50 Hz household power supply without the need for back-end electronics. The bipolar QLED can also be realized by vertically stacking a regular QLED and an inverted QLED with a metallic intermediate connection layer. It is demonstrated that the coplanar or vertical bipolar QLEDs could find potential applications in household AC electricity play-and-plug solid-state lighting and single- or double-sided displays.

SELECTION OF CITATIONS
SEARCH DETAIL