Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Plant Cell Rep ; 43(5): 114, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38587681

ABSTRACT

KEY MESSAGE: SmZHDs was highly expressed in anthocyanin-rich parts of eggplant. SmZHD12 can activate the expression of SmCHS, SmANS, SmDFR and SmF3H. Overexpression of SmZHD12 promotes anthocyanin biosynthesis in Arabidopsis. The Zinc finger-homeodomain (ZHD) proteins family genes are known to play a significant role in plant development and physiological processes. However, the evolutionary history and function of the ZHD gene family in eggplant remain largely unexplored. This study categorizes a total of 15 SmZHD genes into SmMIF and SmZHD subfamilies based on conserved domains. The phylogeny, gene structure, conserved motifs, promoter elements, and chromosomal locations of the SmZHD genes were comprehensively analyzed. Tissue expression profiles indicate that the majority of SmZHD genes are expressed in anthocyanin-rich areas. qRT-PCR assays revealed distinct expression patterns of SmZHD genes in response to various treatments, indicating their potential involvement in multiple signaling pathways. Analysis of transcriptomic data from light-treated eggplant peel identified SmZHD12 as the most light-responsive gene among the 15 SmZHD genes. Consequently, this study provides further evidence that SmZHD12 facilitates anthocyanin accumulation in Arabidopsis leaves by upregulating the expression of anthocyanin biosynthesis structural genes, as confirmed by dual-luciferase assays and Arabidopsis genetic transformation. Our study will lay a solid foundation for the in-depth study of the involvement of SmZHD genes in the regulation of anthocyanin biosynthesis.


Subject(s)
Arabidopsis , Solanum melongena , Solanum melongena/genetics , Anthocyanins , Arabidopsis/genetics , Biological Evolution , Gene Expression Profiling
2.
Toxins (Basel) ; 15(11)2023 11 17.
Article in English | MEDLINE | ID: mdl-37999528

ABSTRACT

Harmful algal blooms (HABs) caused by lake eutrophication and climate change have become one of the most serious problems for the global water environment. Timely and comprehensive data on HABs are essential for their scientific management, a need unmet by traditional methods. This study constructed a novel digital twin lake framework (DTLF) aiming to integrate, represent and analyze multi-source monitoring data on HABs and water quality, so as to support the prevention and control of HABs. In this framework, different from traditional research, browser-based front ends were used to execute the video-based HAB monitoring process, and real-time monitoring in the real sense was realized. On this basis, multi-source monitored results of HABs and water quality were integrated and displayed in the constructed DTLF, and information on HABs and water quality can be grasped comprehensively, visualized realistically and analyzed precisely. Experimental results demonstrate the satisfying frequency of video-based HAB monitoring (once per second) and the valuable results of multi-source data integration and analysis for HAB management. This study demonstrated the high value of the constructed DTLF in accurate monitoring and scientific management of HABs in lakes.


Subject(s)
Harmful Algal Bloom , Lakes , Water Quality , Climate Change
3.
Crit Rev Food Sci Nutr ; : 1-11, 2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37427571

ABSTRACT

The traditional packaging concept has reached its limits when it comes to ensuring the quality of food and extending its shelf life. Compared to traditional packaging materials, food packaging with self-healing function is becoming more and more popular. This is because they can automatically repair the damaged area, restore the original properties and prevent the decline of food quality and loss of nutrients. Materials based on various self-healing mechanisms have been developed and used on a laboratory scale in the form of coatings and films for food packaging. However, more efforts are needed for the commercial application of these new self-healing packaging materials. Understanding the self-healing mechanism of these packaging materials is very important for their commercial application. This article first discusses the self-healing mechanism of different packaging materials and compares the self-healing efficiency of self-healing materials under different conditions. Then, the application potential of self-healing coatings and films in the food industry is systematically analyzed. Finally, we give an outlook on the application of self-healing materials in the field of food packaging.

4.
Food Chem ; 429: 136965, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37516607

ABSTRACT

It is important to detect the presence of biogenic amines (BAs) as indicators of food freshness. The purpose of this study was to develop a novel ultrasonic-microwave synergistic supramolecular solvent liquid-liquid microextraction based on solidification of floating organic droplet (UMS-SUPRAS-SFO-LLME) combined with high-performance liquid chromatography for the determination of BAs. The physical properties and microstructure of SUPRAS based on 1-dodecanol and tetrahydrofuran were studied, and the extraction conditions such as the SUPRAS volume, the UMS process, and the centrifugal conditions were optimized. The results for the extraction kinetics and thermodynamics showed that UMS-SUPRAS-SFO-LLME is a spontaneous, endothermic diffusion process. The linear ranges of this method are 0.1-2.0 × 105 ng·mL-1 (R2 > 0.994), the limits of detection are 4.0 × 10-3-6.0 × 10-2 ng·mL-1, and the recoveries were 96.28-103.15%. Compared with existing analysis methods, UMS-SUPRAS-SFO-LLME is a sensitive, green and economical sample pretreatment method for analyzing the enrichment of BAs in beer and fish.


Subject(s)
Liquid Phase Microextraction , Ultrasonics , Solvents/chemistry , Beer , Liquid Phase Microextraction/methods , Microwaves , Biogenic Amines , Chromatography, High Pressure Liquid/methods
5.
Chem Commun (Camb) ; 59(56): 8739-8742, 2023 Jul 11.
Article in English | MEDLINE | ID: mdl-37357802

ABSTRACT

A binary Mo/Fe-nitrogen-carbon material (MoFe-NC) catalyst was synthesized following the concept of biological nitrogen fixation. The MoFe-NC catalyst demonstrated a maximum N2 reduction faradaic efficiency of 39.9% and a NH3 yield rate of 28.5 µg mgcat-1 h-1 under ambient conditions.

6.
Ann Hum Biol ; 50(1): 172-186, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36882371

ABSTRACT

BACKGROUND: Reference ranges for bone turnover markers (BTMs) are still lacking in the healthy Chinese population. AIM: To establish reference intervals for BTMs and to investigate the correlations between BTMs and bone mineral density (BMD) in Chinese older adults. SUBJECTS AND METHODS: A community-based cross-sectional study was conducted among 2511 Chinese subjects aged over 50 yrs residing in Zhenjiang, Southeast China. Reference intervals for BTMs (i.e. procollagen type I N-terminal propeptide, P1NP; ß cross-linked C-terminal telopeptide of type I collagen, ß-CTX) were calculated as the central 95% range of all measurements in Chinese older adults. RESULTS: The reference intervals of P1NP, ß-CTX and P1NP/ß-CTX were 15.8-119.9 ng/mL, 0.041-0.675 ng/mL and 49.9-1261.5 for females and 13.6-111.4 ng/mL, 0.038-0.627 ng/mL and 41.0-1269.1 for males, respectively. In the multiple linear regression analysis, only ß-CTX was negatively associated with BMD after adjusting for age and body mass index (BMI) in both sex-stratified groups (all p < .05). CONCLUSION: This study established age- and sex-specific reference intervals for BTMs in a large sample of healthy Chinese participants ≥ 50 and < 80 years of age and explored the correlations between BTMs and BMD, which provides an effective reference for the assessment of bone turnover in the clinical practice of osteoporosis.


Subject(s)
Peptide Fragments , Peptides , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Biomarkers , Bone Density , Bone Remodeling , Collagen Type I , Cross-Sectional Studies , East Asian People , Reference Values
7.
Colloids Surf B Biointerfaces ; 223: 113155, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36724563

ABSTRACT

Assessment of lactic acid bacteria (LAB) activity plays a key role in the fermented food industry. Fluorescence imaging method based on dye is facile to detect LAB viability. However, it is difficult to obtain stable fluorescence, non-toxic and low-cost dyes. In this study, we prepare P- and N-doped carbon dots (PN-CDs) via microwave-assisted hydrothermal synthesis. The properties of high quantum yield (60.36%) and excitation dependence allowed for multicolor imaging of LAB (Lactobacillus plantarum [L.p] and Streptococcus thermophilus [S.t]). The abundant functional groups and positive charges (+2.34 mV) on the surface of PN-CDs facilitated their quickly integrated into cell wall of live LAB with obvious fluorescence or into dead cells. As a result, PN-CDs can not only be used to rapidly and efficiently monitor bacterial viability (one minute), but can also be used to visualize LAB division using fluorescence imaging. Importantly, the PN-CDs have potential to rapidly detect LAB activity in LAB-fermented juices.


Subject(s)
Lactobacillales , Quantum Dots , Carbon , Fluorescent Dyes , Optical Imaging , Nitrogen
8.
Crit Rev Food Sci Nutr ; : 1-26, 2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36651301

ABSTRACT

Food spoilage caused by foodborne microorganisms will not only cause significant economic losses, but also the toxins produced by some microorganisms will also pose a serious threat to human health. Essential oil (EOs) has significant antimicrobial activity, but its application in the field of food preservation is limited because of its volatile, insoluble in water and sensitive to light and heat. Therefore, in order to solve these problems effectively, this paper first analyzed the antibacterial effect of EOs as an antimicrobial agent on foodborne bacteria and its mechanism. Then, the application strategies of EOs as a sustained-release antimicrobial agent in food preservation were reviewed. On this basis, the release mechanism and application cases of EOs in different antibacterial composites were analyzed. The purpose of this paper is to provide technical support and solutions for the preparation of new antibacterial packaging materials based on plant active components to ensure food safety and reduce food waste.

9.
Sci Bull (Beijing) ; 67(7): 716-724, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-36546136

ABSTRACT

Despite the advances of aqueous zinc (Zn) batteries as sustainable energy storage systems, their practical application remains challenging due to the issues of spontaneous corrosion and dendritic deposits at the Zn metal anode. In this work, conformal growth of zinc hydroxide sulfate (ZHS) with dominating (001) facet was realized on (002) plane-dominated Zn metal foil fabricated through a facile thermal annealing process. The ZHS possessed high Zn2+ conductivity (16.9 mS cm-1) and low electronic conductivity (1.28 × 104 Ω cm), and acted as a heterogeneous and robust solid electrolyte interface (SEI) layer on metallic Zn electrode, which regulated the electrochemical Zn plating behavior and suppressed side reactions simultaneously. Moreover, low self-diffusion barrier along the (002) plane promoted the 2D diffusion and horizontal electrochemical plating of metallic Zn for (002)-textured Zn electrode. Consequently, the as-achieved Zn electrode exhibited remarkable cycling stability over 7000 cycles at 2 mA cm-2 and 0.5 mAh cm-2 with a low overpotential of 25 mV in symmetric cells. Pairing with a MnO2 cathode, the as-achieved Zn electrode achieved stable cell cycling with 92.7% capacity retention after 1000 cycles at 10 C with a remarkable average Coulombic efficiency of 99.9%.

10.
Angew Chem Int Ed Engl ; 61(14): e202116560, 2022 Mar 28.
Article in English | MEDLINE | ID: mdl-35088500

ABSTRACT

Metallic Zn is a preferred anode material for rechargeable aqueous batteries towards a smart grid and renewable energy storage. Understanding how the metal nucleates and grows at the aqueous Zn anode is a critical and challenging step to achieve full reversibility of Zn battery chemistry, especially under fast-charging conditions. Here, by combining in situ optical imaging and theoretical modeling, we uncover the critical parameters governing the electrodeposition stability of the metallic Zn electrode, that is, the competition among crystallographic thermodynamics, kinetics, and Zn2+ -ion diffusion. Moreover, steady-state Zn metal plating/stripping with Coulombic efficiency above 99 % is achieved at 10-100 mA cm-2 in a reasonably high concentration (3 M) ZnSO4 electrolyte. Significantly, a long-term cycling-stable Zn metal electrode is realized with a depth of discharge of 66.7 % under 50 mA cm-2 in both Zn||Zn symmetrical cells and MnO2 ||Zn full cells.

11.
J Am Chem Soc ; 143(8): 3143-3152, 2021 Mar 03.
Article in English | MEDLINE | ID: mdl-33595314

ABSTRACT

Metal anodes represent as a prime choice for the coming generation rechargeable batteries with high energy density. However, daunting challenges including electrode volume variation and inevitable side reactions preclude them from becoming a viable technology. Here, a facile replacement reaction was employed to fabricate a three-dimensional (3D) interdigitated metal/solid electrolyte composite electrode, which not only provides a stable host structure for buffering the volume change within the composite but also prevents side reactions by avoiding the direct contact between active metal and liquid electrolyte. As a proof-of-concept demonstration, a 3D interdigitated zinc (Zn) metal/solid electrolyte architecture was fabricated via a galvanic replacement reaction between Zn metal foil and indium (In) chloride solution followed by electrochemical activation, featuring the interdigitation between metallic Zn and amorphous indium hydroxide sulfate (IHS) with high Zn2+ conductivity (56.9 ± 1.8 mS cm-1), large Zn2+ transference number (0.55), and high electronic resistivity [(2.08 ± 0.01) × 103 Ω cm]. The as-designed Zn/IHS electrode sustained stable electrochemical Zn plating/stripping over 700 cycles with a record-low overpotential of 8 mV at 1 mA cm-2 and 0.5 mAh cm-2. More impressively, it displayed cycle-stable performance with low overpotential of 10 mV under ultrahigh current density and areal capacity (20 mA cm-2, 20 mAh cm-2), which outperformed all the reported Zn metal electrodes in mild aqueous electrolyte. The fabrication of interdigitated metal/solid electrolyte was generalized to other metal pairs, including Zn/Sn and Zn/Co, which provide inspiration for next-generation Zn metal batteries with high energy density and reversibility.

12.
ACS Appl Mater Interfaces ; 12(20): 23028-23034, 2020 May 20.
Article in English | MEDLINE | ID: mdl-32329612

ABSTRACT

Aqueous rechargeable zinc (Zn) metal batteries show great application prospects in grid-scale energy storage devices due to their good safety, low cost, and considerable energy density. However, the electrical and topographical inhomogeneity caused by the native passivation layer of metallic Zn foil leads to inhomogeneous electrochemical plating and stripping of metallic Zn, and the limited accessible area to the electrolyte of the regular foil electrode causes the poor rate capability, which together hinder the practical application of the Zn metal electrode in rechargeable aqueous batteries. In this work, we show that the native passivation layer on the Zn foil electrode can be removed by a simple chemical polishing strategy, associated with the formation of a three-dimensional ridge-like structure of metallic Zn (r-Zn) on the surface of the Zn foil electrode due to the selective etching of weak crystallographic planes and grain boundary of metallic Zn. The clean and uniform surface of the metallic Zn electrode enables homogeneous plating and stripping of metallic Zn, and the ridge-like structure of r-Zn increases the accessible surface area to the electrolyte and reduces the local current density, which elevates the electrochemical performance of the Zn metal anode with regard to the cycling stability and rate capability. It is demonstrated that a r-Zn anode cycles stably for over 200 h at 1 mA cm-2 and 0.5 mA h cm-2 with a low overpotential of 20 mV, which far outperforms 39 h of cycling with an overpotential of 72 mV for its pristine metallic Zn counterpart.

13.
Chemistry ; 22(31): 10923-9, 2016 Jul 25.
Article in English | MEDLINE | ID: mdl-27362916

ABSTRACT

Investigations on Ag nanostructures/reduced graphene oxide composites have been frequently reported, yet the morphology control of those loaded Ag nanocrystals is still challenging. We herein develop a facile method to grow triangular Ag nanoplates (AgP) on polyethylenimine-modified reduced graphene oxide (AgP/PEI-rGO). The AgP/PEI-rGO hybrids show unexpected high stability against chloride ions (Cl(-) ) and hydrogen peroxide (H2 O2 ), which is possibly due to the strong interaction between surface Ag atoms with the amine groups of PEI. In the chronoamperometry measurements for detecting H2 O2 , N2 H4 , and NaNO2 , the AgP/PEI-rGO hybrid shows very wide linear ranges (usually 10(-6) -10(-2)  mol L(-1) for H2 O2 , N2 H4 , and NaNO2 ) and low detection limits (down to ≈1×10(-7)  mol L(-1) ), which demonstrate the promising electrochemical sensor applications of these metal/graphene hybrids with well-defined morphologies and facets. In addition, this strategy could be extended to the deposition of other noble metals on rGO with controlled morphologies.

14.
PLoS One ; 10(9): e0137545, 2015.
Article in English | MEDLINE | ID: mdl-26332035

ABSTRACT

The Complicate Observations and Multi-Parameter Land Information Constructions on Allied Telemetry Experiment (COMPLICATE) comprises a network of remote sensing experiments designed to enhance the dynamic analysis and modeling of remotely sensed information for complex land surfaces. Two types of experimental campaigns were established under the framework of COMPLICATE. The first was designed for continuous and elaborate experiments. The experimental strategy helps enhance our understanding of the radiative and scattering mechanisms of soil and vegetation and modeling of remotely sensed information for complex land surfaces. To validate the methodologies and models for dynamic analyses of remote sensing for complex land surfaces, the second campaign consisted of simultaneous satellite-borne, airborne, and ground-based experiments. During field campaigns, several continuous and intensive observations were obtained. Measurements were undertaken to answer key scientific issues, as follows: 1) Determine the characteristics of spatial heterogeneity and the radiative and scattering mechanisms of remote sensing on complex land surfaces. 2) Determine the mechanisms of spatial and temporal scale extensions for remote sensing on complex land surfaces. 3) Determine synergist inversion mechanisms for soil and vegetation parameters using multi-mode remote sensing on complex land surfaces. Here, we introduce the background, the objectives, the experimental designs, the observations and measurements, and the overall advances of COMPLICATE. As a result of the implementation of COMLICATE and for the next several years, we expect to contribute to quantitative remote sensing science and Earth observation techniques.


Subject(s)
Conservation of Natural Resources , Remote Sensing Technology , Telemetry
15.
Chem Asian J ; 10(8): 1731-7, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26045404

ABSTRACT

A simple hydrothermal method has been developed to prepare hexagonal tablet precursors, which are then transformed into porous sodium-doped Ni2P2O7 hexagonal tablets by a simple calcination method. The obtained samples were evaluated as electrode materials for supercapacitors. Electrochemical measurements show that the electrode based on the porous sodium-doped Ni2P2O7 hexagonal tablets exhibits a specific capacitance of 557.7 F g(-1) at a current density of 1.2 A g(-1) . Furthermore, the porous sodium-doped Ni2P2O7 hexagonal tablets were successfully used to construct flexible solid-state hybrid supercapacitors. The device is highly flexible and achieves a maximum energy density of 23.4 Wh kg(-1) and a good cycling stability after 5000 cycles, which confirms that the porous sodium-doped Ni2P2 O7 hexagonal tablets are promising active materials for flexible supercapacitors.

16.
Dalton Trans ; 43(33): 12495-500, 2014 Sep 07.
Article in English | MEDLINE | ID: mdl-24959674

ABSTRACT

Au nanoring@Ag core-shell nanostructures with controllable morphologies and tunable symmetries are synthesized via the seed-mediated growth of Ag onto a sole seed: a circular Au nanoring (AuNR). The 2D isotropic AuNR is prepared firstly by chemical etching, then by galvanic replacement with HAuCl4. By delicately altering the regrowth procedure and mixing the capping agents, different Ag triangular nanoplates with embedded AuNRs in different sizes and shapes can be obtained. Furthermore, by using a single capping agent, the growth of Ag on the AuNR can be preferentially confined to a lateral or vertical mode, to form eccentric nanoplates or nanocubes in both sequence sets at room temperature. Such nanostructures with precisely controllable shape evolution not only displayed unique optical properties, but also revealed the feasibility of breaking the original dimensions, and especially symmetry, at the nanoscale using seed-mediated growth. This paves the way for future applications including catalysis, diagnosis, plasmonics, and biological and chemical sensing.

17.
Sensors (Basel) ; 14(5): 9271-89, 2014 May 23.
Article in English | MEDLINE | ID: mdl-24859029

ABSTRACT

The canopy foliage clumping effect is primarily caused by the non-random distribution of canopy foliage. Currently, measurements of clumping index (CI) by handheld instruments is typically time- and labor-intensive. We propose a low-cost and low-power automatic measurement system called Multi-point Linear Array of Optical Sensors (MLAOS), which consists of three above-canopy and nine below-canopy optical sensors that capture plant transmittance at different times of the day. Data communication between the MLAOS node is facilitated by using a ZigBee network, and the data are transmitted from the field MLAOS to a remote data server using the Internet. The choice of the electronic element and design of the MLAOS software is aimed at reducing costs and power consumption. A power consumption test showed that, when a 4000 mAH Li-ion battery is used, a maximum of 8-10 months of work can be achieved. A field experiment on a coniferous forest revealed that the CI of MLAOS may reveal a clumping effect that occurs within the canopy. In further work, measurement of the multi-scale clumping effect can be achieved by utilizing a greater number of MLAOS devices to capture the heterogeneity of the plant canopy.


Subject(s)
Agriculture/instrumentation , Environmental Monitoring/instrumentation , Forests , Optical Devices , Photometry/instrumentation , Tracheophyta/growth & development , Transducers , Equipment Design , Equipment Failure Analysis
18.
Guang Pu Xue Yu Guang Pu Fen Xi ; 31(9): 2485-90, 2011 Sep.
Article in Chinese | MEDLINE | ID: mdl-22097854

ABSTRACT

In the present paper, the empirical LAI dynamic model was constructed using the MOD15A2 data set, and the canopy radiative transfer model MCRM2 was coupled with the LAI dynamic model through LAI. The scheme was proposed to retrieve LAI by assimilating MOD09A1 data set into the coupled model. The ensemble Kalman smoother (EnKS) method was first introduced. In order to preferably assess the feasibility of EnKS, the LAI retrieval results of EnKS were compared with the ensemble Kalman filter (EnKF) solutions and MODIS LAI product. The results indicated that the EnKS method achieved ideal results. The retrieved LAI temporal profiles by the EnKS method were smoother and more continuous than the EnKF solutions and the MODIS LAI product, which were in good agreement with the realistic LAI climatology. The developed inversion method in this paper can be applied to retrieve LAI time--continuous profiles effectively.

19.
Guang Pu Xue Yu Guang Pu Fen Xi ; 29(8): 2141-7, 2009 Aug.
Article in Chinese | MEDLINE | ID: mdl-19839326

ABSTRACT

Computer simulation is based on computer graphics to generate the realistic 3D structure scene of vegetation, and to simulate the canopy regime using radiosity method. In the present paper, the authors expand the computer simulation model to simulate forest canopy bidirectional reflectance at pixel scale. But usually, the trees are complex structures, which are tall and have many branches. So there is almost a need for hundreds of thousands or even millions of facets to built up the realistic structure scene for the forest It is difficult for the radiosity method to compute so many facets. In order to make the radiosity method to simulate the forest scene at pixel scale, in the authors' research, the authors proposed one idea to simplify the structure of forest crowns, and abstract the crowns to ellipsoids. And based on the optical characteristics of the tree component and the characteristics of the internal energy transmission of photon in real crown, the authors valued the optical characteristics of ellipsoid surface facets. In the computer simulation of the forest, with the idea of geometrical optics model, the gap model is considered to get the forest canopy bidirectional reflectance at pixel scale. Comparing the computer simulation results with the GOMS model, and Multi-angle Imaging SpectroRadiometer (MISR) multi-angle remote sensing data, the simulation results are in agreement with the GOMS simulation result and MISR BRF. But there are also some problems to be solved. So the authors can conclude that the study has important value for the application of multi-angle remote sensing and the inversion of vegetation canopy structure parameters.


Subject(s)
Computer Simulation , Trees , Models, Theoretical , Optics and Photonics
20.
Guang Pu Xue Yu Guang Pu Fen Xi ; 29(12): 3348-52, 2009 Dec.
Article in Chinese | MEDLINE | ID: mdl-20210167

ABSTRACT

The correlation of cotton leaf verticillium wilt severity level with raw hyperspectral reflectance, first derivative hyperspectral reflectance, and hyperspectral characteristic parameters was analyzed. Using linear and nonlinear regression methods, the hyperspectral remote sensing retrieval models of verticillium wilt severity level with remote sensing parameters as independent variables were constructed and validated. The result showed that spectral reflectance increased significantly in visible and short infrared wave band with the increase in the severity level, and this is especially significant in visible band. The raw spectral reflectance has the maximum coefficient of determination at 694 nm (R2 = 0.461 6) with severity level and the logarithm model constructed with reflectance at this point is the better one as compared to linear model. By the precision evaluation of retrieval models, the linear model with the first derivative reflectance at 717 nm as independent variable was proved to be the best, with R2 = 0.488 9, RMSE = 0.257 1, and relative error = 12.74%, for the estimation of verticllium wilt severity level of cotton leaf. The results provide a good basis for further studying monitoring mechanism of cotton verticillium wilt by remote sensing data, and have an important application in acquiring cotton disease information using hyperspectral remote sensing.


Subject(s)
Gossypium/microbiology , Plant Diseases , Plant Leaves/microbiology , Spectrum Analysis , Verticillium/pathogenicity , Linear Models , Nonlinear Dynamics , Remote Sensing Technology
SELECTION OF CITATIONS
SEARCH DETAIL
...