Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
J Colloid Interface Sci ; 668: 618-633, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38696990

ABSTRACT

Tumor metastasis and recurrence are closely related to immune escape and hypoxia. Chemodynamic therapy (CDT), photodynamic therapy (PDT), and photothermal therapy (PTT) can induce immunogenic cell death (ICD), and their combination with immune checkpoint agents is a promising therapeutic strategy. Iron based nanomaterials have received more and more attention, but their low Fenton reaction efficiency has hindered their clinical application. In this study, Fe3O4-carbon dots complex (Fe3O4-CDs) was synthesized, which was modified with ferrocenedicarboxylic acid by amide bond, and crosslinked into Fe3O4-CDs@Fc nano complex. The CDs catalyzed the Fenton reaction activity of Fe3O4 by helping to improve the electron transfer efficiency, extended the reaction pH condition to 7.4. The Fe3O4-CDs@Fc exhibit exceptional optical activity, achieving a thermal conversion efficiency of 56.43 % under 808 nm light and a photosensitive single-line state oxygen quantum yield of 33 % under 660 nm light. Fe3O4-CDs@Fc improved intracellular oxygen level and inhibited hypoxia-inducing factor (HIF-1α) by in-situ oxygen production based on Fenton reaction. The multimodal combination of Fe3O4-CDs@Fc (CDT/PDT/PTT) strongly induced immune cell death (ICD). The expression of immune-related protein and HIF-1α was investigated by immunofluorescence method. In vivo, Fe3O4-CDs@Fc combined with immune checkpoint blocker (antibody PD-L1, αPD-L1) effectively ablated primary tumors and inhibited distal tumor growth. Fe3O4-CDs@Fc is a promising immune-antitumor drug.


Subject(s)
Carbon , Oxygen , Quantum Dots , Mice , Animals , Quantum Dots/chemistry , Carbon/chemistry , Humans , Catalysis , Oxygen/chemistry , Immunotherapy , Particle Size , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Photochemotherapy , Mice, Inbred BALB C , Cell Line, Tumor , Iron/chemistry , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/pharmacology , Surface Properties , Cell Survival/drug effects , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Female
2.
Sensors (Basel) ; 24(8)2024 Apr 14.
Article in English | MEDLINE | ID: mdl-38676128

ABSTRACT

Conventional optical microscopes are only able to resolve objects down to a size of approximately 200 nm due to optical diffraction limits. The rapid development of nanotechnology has increased the demand for greater imaging resolution, with a need to break through those diffraction limits. Among super-resolution techniques, microsphere imaging has emerged as a strong contender, offering low cost, simple operation, and high resolution, especially in the fields of nanodevices, biomedicine, and semiconductors. However, this technology is still in its infancy, with an inadequate understanding of the underlying principles and the technology's limited field of view. This paper comprehensively summarizes the status of current research, the advantages and disadvantages of the basic principles and methods of microsphere imaging, the materials and preparation processes, microsphere manipulation methods, and applications. The paper also summarizes future development trends.

3.
ACS Appl Mater Interfaces ; 16(13): 16653-16668, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38520338

ABSTRACT

Cancer metastasis and recurrence are closely associated with immunosuppression and a hypoxic tumor microenvironment. Chemodynamic therapy (CDT) and photothermodynamic therapy (PTT) have been shown to induce immunogenic cell death (ICD), effectively inhibiting cancer metastasis and recurrence when combined with immune adjuvants. However, the limited efficacy of Fenton's reaction and suboptimal photothermal effect present significant challenges for successfully inducing ICD through CDT and PTT. This paper described the synthesis and immunoantitumor activity of the novel iron-copper-doped folic acid carbon dots (CFCFB). Copper-doped folic acid carbon dots (Cu-FACDs) were initially synthesized via a hydrothermal method, using folic acid and copper gluconate as precursors. Subsequently, the nanoparticles CFCFB were obtained through cross-linking and self-assembly of Cu-FACDs with ferrocene dicarboxylic acid (FeDA) and 3-bromopyruvic acid (3BP). The catalytic effect of carbon dots in CFCFB enhanced the activity of the Fenton reaction, thereby promoting CDT-induced ICD and increasing the intracellular oxygen concentration. Additionally, 3BP inhibited cellular respiration, further amplifying the oxygen concentration. The photothermal conversion efficiency of CFCFB reached 55.8%, which significantly enhanced its antitumor efficacy through photothermal therapy. Immunofluorescence assay revealed that treatment with CFCFB led to an increased expression of ICD markers, including calreticulin (CRT) and ATP, as well as extracellular release of HMGB-1, indicating the induction of ICD by CFCFB. Moreover, the observed downregulation of ARG1 expression indicates a transition in the tumor microenvironment from an immunosuppressive state to an antitumor state following treatment with CFCFB. The upregulation of IL-2 and CD8 expression facilitated the differentiation of effector T cells, resulting in an augmented population of CD8+ T cells, thereby indicating the activation of systemic immune response.


Subject(s)
Nanoparticles , Neoplasms , Humans , Copper/pharmacology , CD8-Positive T-Lymphocytes , Iron/pharmacology , Carbon/pharmacology , Folic Acid/pharmacology , Neoplasms/drug therapy , Oxygen/pharmacology , Cell Line, Tumor , Tumor Microenvironment , Hydrogen Peroxide
4.
MedComm (2020) ; 5(2): e482, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38344399

ABSTRACT

Metastasis is the leading cause of death in hepatocellular carcinoma (HCC) patients, and autophagy plays a crucial role in this process by orchestrating epithelial-mesenchymal transition (EMT). Stromal interaction molecule 1 (STIM1), a central regulator of store-operated calcium entry (SOCE) in nonexcitable cells, is involved in the development and spread of HCC. However, the impact of STIM1 on autophagy regulation during HCC metastasis remains unclear. Here, we demonstrate that STIM1 is temporally regulated during autophagy-induced EMT in HCC cells, and knocking out (KO) STIM1 significantly reduces both autophagy and EMT. Interestingly, STIM1 enhances autophagy through both SOCE-dependent and independent pathways. Mechanistically, STIM1 directly interacts with microtubule-associated protein 1A/1B-light chain 3B (LC3B) to form a complex via the sterile-α motif (SAM) domain, which promotes autophagosome formation. Furthermore, deletion of the SAM domain of STIM1 abolishes its binding with LC3B, leading to a decrease in autophagy and EMT in HCC cells. These findings unveil a novel mechanism by which the STIM1/LC3B complex mediates autophagy and EMT in HCC cells, highlighting a potential target for preventing HCC metastasis.

5.
PLoS One ; 18(8): e0290533, 2023.
Article in English | MEDLINE | ID: mdl-37624783

ABSTRACT

Cracks in concrete tunnel linings are inevitable during service life. It is necessary to keep abreast of the cracking condition of the lining and formulate reasonable inspection and maintenance measures to ensure operational safety. Considering the influence of train loads on the safety and service performance of cracked linings, the expansion process of lining cracks and the maintenance strategy of tunnels during the service period was investigated. The impact of detection probability and maintenance measures on the service life of tunnel lining and the cost of detection and maintenance of cracked lining in the whole life cycle was analyzed; the optimization calculation model of tunnel lining crack detection and maintenance strategy based on genetic algorithm was established with the multi-objective optimization function of maximizing the service life of detection and maintenance and minimizing the total cost of detection and maintenance of fatigue cracks. The optimization analysis of lining crack expansion, detection, and maintenance was carried out for an operational railroad tunnel. Finally, an optimization analysis of lining crack expansion and maintenance was carried out in a railway tunnel. The results show that the stress intensity factor at the tip of the lining cracks is the same as the train load waveform; the magnitude of the stress intensity factor approximately satisfies the exponential function relationship with the depth of cracks; the fatigue service life of cracked lining is positively correlated with the cost of inspection and maintenance; the adoption of the necessary maintenance and the increase in the number of inspections and maintenance have a better economy while meeting the expectation of the service life. According to the Pareto solution set, the management can formulate the inspection and maintenance strategy based on the tunnel's expected life and maintenance budget.


Subject(s)
Budgets , Railroads , Humans , Fatigue , Probability
6.
Chem Biol Interact ; 382: 110633, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37451662

ABSTRACT

Cyclic peptides have become an attractive modality for drug development due to their high specificity, metabolic stability and higher cell permeability. In an effort to explore novel antitumor compounds based on natural cyclopeptide from the phakellistatin family, we found an isoindolinone-containing analog (S-PK6) of phakellistatin 6 capable of suppressing the viability and proliferation of HepG2 cells. The aim of the present study is to shed light on the mechanism of action of this novel compound. We have detected differences in gene expression before and after treatment with S-PK6 in human hepatocellular carcinoma HepG2 cell line by transcriptome sequencing. To further investigate biological effects, we have also extensively investigated the tumor cell cycle, mitochondrial membrane potential, and intracellular Ca2+ concentration after S-PK6 treatment. Based on the finding that the apoptosis was associated with the p53 signaling pathway and MAPK signaling pathway, western blotting tests were used to assess the expression level of p53 protein and its degenerative regulator MDM2 protein, which showed that S-PK6 could increase p53 levels efficiently. In summary, our results demonstrate the mechanism of action of a small-molecule cyclopeptide, which could be very useful for examining of the possible mechanisms of natural cyclopeptides.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Tumor Suppressor Protein p53/metabolism , Hep G2 Cells , Liver Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation , Carcinoma, Hepatocellular/pathology , Apoptosis
7.
Polymers (Basel) ; 15(14)2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37514531

ABSTRACT

In miniaturized and integrated electronic devices, thermal potential and fire hazards caused by heat diffusion require an efficient thermal management system with versatile electronic packaging equipment. The flame retardancy was endowed on the surface of carbon nitride after thermal etching (CNNS) containing piperazine pyrophosphate (PPAP) by hydrogen bonding, and the obtained nanosheet was defined as PPAP-CNNS. During solution blending and program-controlled curing, PPAP-CNNS was used as a multifunctional filler to fabricate highly thermoconductive and fire retardant epoxy resin (EP) composites. In line with expectations, the resultant EP composites containing 7 wt% PPAP-CNNS had an exceptional thermal conductivity (TC) of 1.1 W·m-1K-1, which was 4.8 times higher than pure EP. Simultaneously, there was a sharp drop in the heat release rate (HRR), total heat release (THR), smoke production rate (SPR), and total smoke production (TSP) compared to pure EP. These reductions were, respectively, 63.7%, 54.2%, 17.9%, and 57.2%. The addition of PPAP-CNNS increased the specific surface area, which increased the heat conduction routes, and also the shape of the compact and solid char layer during burning, protecting the underlying polymer. These improvements to dispersion and surface functionalization were made possible by the compound. These results indicate that the preparation of integrated multi-functional resin described in this study has a wide application.

8.
Cancer Lett ; 564: 216208, 2023 06 28.
Article in English | MEDLINE | ID: mdl-37150500

ABSTRACT

Cancer immunotherapy targeting myeloid-derived suppressor cells (MDSCs) is one of the most promising anticancer strategies. Metabolic reprogramming is vital for MDSC activation, however, the regulatory mechanisms of cholesterol metabolic reprogramming in MDSCs remains largely unexplored. Using the receptor-interacting protein kinase 3 (RIPK3)-deficient MDSC model, a previously established tumor-infiltrating MDSC-like model, we found that the cholesterol accumulation was significantly decreased in these cells. Moreover, the phosphorylated AKT-mTORC1 signaling was reduced, and downstream SREBP2-HMGCR-mediated cholesterol synthesis was blunted. Interestingly, cholesterol deficiency profoundly elevated the immunosuppressive activity of MDSCs. Mechanistically, cholesterol elimination induced nuclear accumulation of LXRß, thereby promoting LXRß-RXRα heterodimer binding of a novel composite element in the promoter of Arg1. Furthermore, itraconazole enhanced the immunosuppressive activity of MDSCs to boost tumor growth by suppressing the RIPK3-AKT-mTORC1 pathway and impeding cholesterol synthesis. Our findings demonstrate that RIPK3 deficiency leads to cholesterol abrogation in MDSCs, which facilitates tumor-infiltrating MDSC activation, and highlight the therapeutic potential of targeting cholesterol synthesis to overcome tumor immune evasion.


Subject(s)
Myeloid-Derived Suppressor Cells , Neoplasms , Humans , Myeloid-Derived Suppressor Cells/metabolism , Tumor Escape , Proto-Oncogene Proteins c-akt/metabolism , Neoplasms/pathology , Immunosuppressive Agents , Mechanistic Target of Rapamycin Complex 1/metabolism , Tumor Microenvironment
9.
J Lipid Res ; 64(7): 100393, 2023 07.
Article in English | MEDLINE | ID: mdl-37257561

ABSTRACT

Odd-chain FAs (OCFAs) are present in very low level at nearly 1% of total FAs in human plasma, and thus, their functions were usually ignored. Recent epidemiological studies have shown that OCFAs are inversely associated with a variety of disease risks. However, the contribution of OCFAs incorporated into complex lipids remains elusive. Here, we developed a targeted odd-chain fatty acyl-containing lipidomics method based on equivalent carbon number and retention time prediction. The method displayed good reproducibility and robustness as shown by peak width at half height within 0.7 min and coefficient of variation under 20%. A total number of 776 lipid species with odd-chain fatty acyl residues could be detected in the ESI mode of reverse-phase LC-MS, of which 309 lipids were further validated using multiple reaction monitoring transitions. Using this method, we quantified odd-chain fatty acyl-containing lipidome in tissues from 12 colon cancer patients, revealing the remodeling of triacylglycerol. The dynamics of odd-chain fatty acyl lipids were further consolidated by the association with genomic and proteomic features of altered catabolism of branched-chain amino acids and triacylglycerol endogenous synthesis in colon cancer. This lipidomics approach will be applicable for screening of dysregulated odd-chain fatty acyl lipids, which enriches and improves the methods for diagnosis and prognosis evaluation of cancer using lipidomics.


Subject(s)
Colonic Neoplasms , Lipidomics , Humans , Triglycerides , Proteomics , Reproducibility of Results , Fatty Acids/metabolism
10.
J Chem Phys ; 158(15)2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37094007

ABSTRACT

Machine learning (ML) has demonstrated its potential usefulness for the development of density functional theory methods. In this work, we construct an ML model to correct the density functional approximations, which adopts semilocal descriptors of electron density and density derivative and is trained by accurate reference data of relative and absolute energies. The resulting ML-corrected functional is tested on a comprehensive dataset including various types of energetic properties. Particularly, the ML-corrected Becke's three parameters and the Lee-Yang-Parr correlation (B3LYP) functional achieves a substantial improvement over the original B3LYP on the prediction of total energies of atoms and molecules and atomization energies, and a marginal improvement on the prediction of ionization potentials, electron affinities, and bond dissociation energies; whereas, it preserves the same level of accuracy for isomerization energies and reaction barrier heights. The ML-corrected functional allows for fully self-consistent-field calculation with similar efficiency to the parent functional. This study highlights the progress of building an ML correction toward achieving a functional that performs uniformly better than B3LYP.

11.
Small ; 19(20): e2207609, 2023 May.
Article in English | MEDLINE | ID: mdl-36799197

ABSTRACT

Creation of architectures with exquisite hierarchies actuates the germination of revolutionized functions and applications across a wide range of fields. Hierarchical self-assembly of colloidal particles holds the promise for materialized realization of structural programing and customizing. This review outlines the general approaches to organize atom-like micro- and nanoparticles into prescribed colloidal analogs of molecules by exploiting diverse interparticle driving motifs involving confining templates, interactive surface ligands, and flexible shape/surface anisotropy. Furthermore, the self-regulated/adaptive co-assembly of simple unvarnished building blocks is discussed to inspire new designs of colloidal assembly strategies.

14.
ACS Med Chem Lett ; 13(7): 1118-1124, 2022 Jul 14.
Article in English | MEDLINE | ID: mdl-35859879

ABSTRACT

Small- and medium-sized cyclopeptides have been found to have extensive bioactivities and have drawn much attention from medicinal chemists. In the work described in this paper, various cyclic peptide analogs of Fenestin A were synthesized by intramolecular photoinduced electron-transfer cyclization reactions to study the influence of slight structural changes on the bioactivity of small cyclopeptides. The incorporation of thiazole and rigid isoindolinone fragments was found to improve the bioactivity of the cyclopeptide. Detailed in vitro studies of the apoptosis mechanism, mitochondrial membrane potential, cell cycle, intracellular Ca2+ concentration, and lactate dehydrogenase activity following treatment with a cyclopeptide showed that the cyclopeptide could induce apoptosis of tumor cells and lead to cycle arrest in the G2/M phase. The research also suggested that the photoinduced reaction could be applied to construct cyclic peptides stereoselectively, and the introduction of rigid fragments could enhance the biological activity of cyclopeptide drugs.

15.
Front Oncol ; 12: 843879, 2022.
Article in English | MEDLINE | ID: mdl-35252012

ABSTRACT

As a major reason for tumor metastasis, circulating tumor cell (CTC) is one of the critical biomarkers for cancer diagnosis and prognosis. On the one hand, CTC count is closely related to the prognosis of tumor patients; on the other hand, as a simple blood test with the advantages of safety, low cost and repeatability, CTC test has an important reference value in determining clinical results and studying the mechanism of drug resistance. However, the determination of CTC usually requires a big effort from pathologist and is also error-prone due to inexperience and fatigue. In this study, we developed a novel convolutional neural network (CNN) method to automatically detect CTCs in patients' peripheral blood based on immunofluorescence in situ hybridization (imFISH) images. We collected the peripheral blood of 776 patients from Chifeng Municipal Hospital in China, and then used Cyttel to delete leukocytes and enrich CTCs. CTCs were identified by imFISH with CD45+, DAPI+ immunofluorescence staining and chromosome 8 centromeric probe (CEP8+). The sensitivity and specificity based on traditional CNN prediction were 95.3% and 91.7% respectively, and the sensitivity and specificity based on transfer learning were 97.2% and 94.0% respectively. The traditional CNN model and transfer learning method introduced in this paper can detect CTCs with high sensitivity, which has a certain clinical reference value for judging prognosis and diagnosing metastasis.

16.
Cancer Immunol Immunother ; 71(11): 2677-2689, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35353239

ABSTRACT

Hepatocellular carcinoma (HCC) is one of the most common causes of cancer-related mortality; however, effective immunotherapy strategies are limited because of the immunosuppressive tumor microenvironment. Macrophages are essential components of the HCC microenvironment and are related to poor prognosis. Here, we evaluated the attributes of paracancer tissues in tumor immunity and progression using public databases. Based on the abundance of immune cells estimated by CIBERSORT, we performed weighted gene co-expression network analysis and found a specific module associated with M2 macrophages. Through analyzing interaction networks using Cytoscape and public datasets, we identified oncoprotein-induced transcript 3 (OIT3) as a novel marker of M2 macrophages. Overexpression of OIT3 remodeled immune features and reprogrammed the metabolism of M2 macrophages. Moreover, compared with wildtype macrophages, OIT3-overexpressing macrophages further enhanced the migration and invasion of co-cultured cancer cells. Additionally, OIT3-overexpressing macrophages promoted tumorigenesis and cancer development in vivo. Taken together, the findings demonstrate that OIT3 is a novel biomarker of alternatively activated macrophages and facilitates HCC metastasis.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Biomarkers/metabolism , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Humans , Liver Neoplasms/pathology , Macrophages , Membrane Proteins , Oncogene Proteins/metabolism , Tumor Microenvironment
17.
J Phys Chem A ; 126(6): 970-978, 2022 Feb 17.
Article in English | MEDLINE | ID: mdl-35113552

ABSTRACT

The past decade has seen an increasing interest in designing sophisticated density functional approximations (DFAs) by integrating the power of machine learning (ML) techniques. However, application of the ML-based DFAs is often confined to simple model systems. In this work, we construct an ML correction to the widely used Perdew-Burke-Ernzerhof (PBE) functional by establishing a semilocal mapping from the electron density and reduced gradient to the exchange-correlation energy density. The resulting ML-corrected PBE is immediately applicable to any real molecule and yields significantly improved heats of formation while preserving the accuracy for other thermochemical and kinetic properties. This work highlights the prospect of combining the power of data-driven ML methods with physics-inspired derivations for reaching the heaven of chemical accuracy.

18.
Theranostics ; 12(2): 842-858, 2022.
Article in English | MEDLINE | ID: mdl-34976216

ABSTRACT

Background: FcγRIIB, the sole inhibitory receptor of the Fc gamma receptor family, plays pivotal roles in innate and adaptive immune responses. However, the expression and function of FcγRIIB in myeloid-derived suppressor cells (MDSCs) remains unknown. This study aimed to investigate whether and how FcγRIIB regulates the immunosuppressive activity of MDSCs during cancer development. Methods: The MC38 and B16-F10 tumor-bearing mouse models were established to investigate the role of FcγRIIB during tumor progression. FcγRIIB-deficient mice, adoptive cell transfer, mRNA-sequencing and flow cytometry analysis were used to assess the role of FcγRIIB on immunosuppressive activity and differentiation of MDSCs. Results: Here we show that FcγRIIB was upregulated in tumor-infiltrated MDSCs. FcγRIIB-deficient mice showed decreased accumulation of MDSCs in the tumor microenvironment (TME) compared with wild-type mice. FcγRIIB was required for the differentiation and immunosuppressive activity of MDSCs. Mechanistically, tumor cell-derived granulocyte-macrophage colony stimulating factor (GM-CSF) increased the expression of FcγRIIB on hematopoietic progenitor cells (HPCs) by activating specificity protein 1 (Sp1), subsequently FcγRIIB promoted the generation of MDSCs from HPCs via Stat3 signaling. Furthermore, blockade of Sp1 dampened MDSC differentiation and infiltration in the TME and enhanced the anti-tumor therapeutic efficacy of gemcitabine. Conclusion: These results uncover an unrecognized regulatory role of the FcγRIIB in abnormal differentiation of MDSCs during cancer development and suggest a potential therapeutic target for anti-tumor therapy.


Subject(s)
Carcinogenesis , Cell Differentiation , Myeloid-Derived Suppressor Cells/cytology , Receptors, IgG/physiology , Tumor Escape , Adult , Animals , Cell Line, Tumor , Drug Delivery Systems , Female , Humans , Male , Mice , Mice, Inbred C57BL , Myeloid-Derived Suppressor Cells/immunology , Receptors, IgG/deficiency , Receptors, IgG/metabolism , Signal Transduction
19.
J Lipid Res ; 62: 100143, 2021.
Article in English | MEDLINE | ID: mdl-34710433

ABSTRACT

FFAs display pleiotropic functions in human diseases. Short-chain FAs (SCFAs), medium-chain FAs, and long-chain FAs are derived from different origins, and precise quantification of these FFAs is critical for revealing their roles in biological processes. However, accessing stable isotope-labeled internal standards is difficult, and different chain lengths of FFAs challenge the chromatographic coverage. Here, we developed a metabolomics strategy to analyze FFAs based on isotope-free LC-MS-multiple reaction monitoring integrated with dual derivatization. Samples and dual derivatization internal standards were synthesized using 2-dimethylaminoethylamine or dansyl hydrazine as a "light" label and N,N-diethyl ethylene diamine or N,N-diethyldansulfonyl hydrazide as a "heavy" label under mild and efficient reaction conditions. General multiple reaction monitoring parameters were designed to analyze these FFAs. The limit of detection of SCFAs varied from 0.5 to 3 nM. Furthermore, we show that this approach exhibits good linearity (R2 = 0.99374-0.99929), there is no serious substrate interference, and no quench steps are required, confirming the feasibility and reliability of the method. Using this method, we successfully quantified 15 types of SCFAs in fecal samples from hepatocellular carcinoma patients and healthy individuals; among these, propionate, butyrate, isobutyrate, and 2-methylbutyrate were significantly decreased in the hepatocellular carcinoma group compared with the healthy control group. These results indicate that the integrated LC-MS metabolomics with isotope-free and dual derivatization is an efficient approach for quantifying FFAs, which may be useful for identifying lipid biomarkers of cancer.


Subject(s)
Carcinoma, Hepatocellular/chemistry , Fatty Acids, Nonesterified/analysis , Feces/chemistry , Liver Neoplasms/chemistry , Metabolomics , Carcinoma, Hepatocellular/metabolism , Chromatography, High Pressure Liquid , Fatty Acids, Nonesterified/metabolism , Female , Humans , Liver Neoplasms/metabolism , Male , Middle Aged , Molecular Structure , Tandem Mass Spectrometry
20.
Theranostics ; 11(10): 5045-5060, 2021.
Article in English | MEDLINE | ID: mdl-33754043

ABSTRACT

Background & Aims: Liver cancer stem cells (LCSCs) mediate therapeutic resistance and correlate with poor outcomes in patients with hepatocellular carcinoma (HCC). Fibroblast growth factor (FGF)-19 is a crucial oncogenic driver gene in HCC and correlates with poor prognosis. However, whether FGF19 signaling regulates the self-renewal of LCSCs is unknown. Methods: LCSCs were enriched by serum-free suspension. Self-renewal of LCSCs were characterized by sphere formation assay, clonogenicity assay, sorafenib resistance assay and tumorigenic potential assays. Ca2+ image was employed to determine the intracellular concentration of Ca2+. Gain- and loss-of function studies were applied to explore the role of FGF19 signaling in the self-renewal of LCSCs. Results: FGF19 was up-regulated in LCSCs, and positively correlated with certain self-renewal related genes in HCC. Silencing FGF19 suppressed self-renewal of LCSCs, whereas overexpressing FGF19 facilitated CSCs-like properties via activation of FGF receptor (FGFR)-4 in none-LCSCs. Mechanistically, FGF19/FGFR4 signaling stimulated store-operated Ca2+ entry (SOCE) through both the PLCγ and ERK1/2 pathways. Subsequently, SOCE-calcineurin signaling promoted the activation and translocation of nuclear factors of activated T cells (NFAT)-c2, which transcriptionally activated the expression of stemness-related genes (e.g., NANOG, OCT4 and SOX2), as well as FGF19. Furthermore, blockade of FGF19/FGFR4-NFATc2 signaling observably suppressed the self-renewal of LCSCs. Conclusions: FGF19/FGFR4 axis promotes the self-renewal of LCSCs via activating SOCE/NFATc2 pathway; in turn, NFATc2 transcriptionally activates FGF19 expression. Targeting this signaling circuit represents a potential strategy for improving the therapeutic efficacy of HCC.


Subject(s)
Calcium Signaling/genetics , Carcinoma, Hepatocellular/genetics , Cell Self Renewal/genetics , Fibroblast Growth Factors/genetics , Liver Neoplasms/genetics , NFATC Transcription Factors/genetics , Neoplastic Stem Cells/metabolism , Carcinoma, Hepatocellular/metabolism , Cell Line, Tumor , Fibroblast Growth Factors/metabolism , Humans , Liver Neoplasms/metabolism , MAP Kinase Signaling System , NFATC Transcription Factors/metabolism , Phospholipase C gamma , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...