Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
1.
BMC Nephrol ; 25(1): 169, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760750

ABSTRACT

BACKGROUND: Polypharmacy would increase the risk of adverse drug events and the burden of renal drug excretion among older people. Nevertheless, the association between the number of medication and the risk of chronic kidney disease (CKD) remains controversial. Therefore, this study aims to investigate the association between the number of medication and the incidence of CKD in older people. METHODS: This study investigates the association between the number of medications and CKD in 2672 elderly people (≥ 65 years older) of the community health service center in southern China between 2019 and 2022. Logistic regression analysis was used to evaluate the relationship between polypharmacy and CKD. RESULTS: At baseline, the average age of the study subjects was 71.86 ± 4.60, 61.2% were females, and 53 (2.0%) suffer from polypharmacy. During an average follow-up of 3 years, new-onset CKD developed in 413 (15.5%) participants. Logistic regression analysis revealed that taking a higher number of medications was associated with increase of CKD. Compared with people who didn't take medication, a higher risk of CKD was observed in the older people who taken more than five medications (OR 3.731, 95% CI 1.988, 7.003), followed by those who take four (OR 1.621, 95% CI 1.041, 2.525), three (OR 1.696, 95% CI 1.178, 2.441), two drugs (OR 1.585, 95% CI 1.167, 2.153), or one drug (OR 1.503, 95% CI 1.097, 2.053). Furthermore, age, systolic blood pressure (SBP), white blood cell (WBC), blood urea nitrogen (BUN) and triglyceride (TG) were also independent risk factors CKD (P < 0.05). CONCLUSION: The number of medications was associated with CKD in older people. As the number of medications taken increased, the risk of CKD was increased.


Subject(s)
Independent Living , Polypharmacy , Renal Insufficiency, Chronic , Humans , Female , Male , Aged , Renal Insufficiency, Chronic/epidemiology , China/epidemiology , Longitudinal Studies , Incidence , Aged, 80 and over , Risk Factors
2.
J Hazard Mater ; 472: 134501, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38735182

ABSTRACT

Rapid advances in machine learning (ML) provide fast, accurate, and widely applicable methods for predicting free radical-mediated organic pollutant reactivity. In this study, the rate constants (logk) of four halogen radicals were predicted using Morgan fingerprint (MF) and Mordred descriptor (MD) in combination with a series of ML models. The findings highlighted that making accurate predictions for various datasets depended on an effective combination of descriptors and algorithms. To further alleviate the challenge of limited sample size, we introduced a data combination strategy that improved prediction accuracy and mitigated overfitting by combining different datasets. The Light Gradient Boosting Machine (LightGBM) with MF and Random Forest (RF) with MD models based on the unified dataset were finally selected as the optimal models. The SHapley Additive exPlanations revealed insights: the MF-LightGBM model successfully captured the influence of electron-withdrawing/donating groups, while autocorrelation, walk count and information content descriptors in the MD-RF model were identified as key features. Furthermore, the important contribution of pH was emphasized. The results of the applicability domain analysis further supported that the developed model can make reliable predictions for query compounds across a broader range. Finally, a practical web application for logk calculations was built.

3.
Bioorg Chem ; 147: 107364, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38636434

ABSTRACT

Osteoporosis is particularly prevalent among postmenopausal women and the elderly. In the present study, we investigated the effect of the novel small molecule E0924G (N-(4-methoxy-pyridine-2-yl)-5-methylfuran-2-formamide) on osteoporosis. E0924G significantly increased the protein expression levels of osteoprotegerin (OPG) and runt-related transcription factor 2 (RUNX2), and thus significantly promoted osteogenesis in MC3T3-E1 cells. E0924G also significantly decreased osteoclast differentiation and inhibited bone resorption and F-actin ring formation in receptor activator of NF-κB ligand (RANKL)-induced osteoclasts from RAW264.7 macrophages. Importantly, oral administration of E0924G in both ovariectomized (OVX) rats and SAMP6 senile mice significantly increased bone mineral density and decreased bone loss compared to OVX controls or SAMR1 mice. Further mechanistic studies showed that E0924G could bind to and then activate peroxisome proliferator-activated receptor delta (PPARδ), and the pro-osteoblast effect and the inhibition of osteoclast differentiation induced by E0924G were significantly abolished when PPARδ was knocked down or inhibited. In conclusion, these data strongly suggest that E0924G has the potential to prevent OVX-induced and age-related osteoporosis by dual regulation of bone formation and bone resorption through activation of the PPARδ signaling pathway.


Subject(s)
Bone Resorption , Osteogenesis , Ovariectomy , PPAR delta , Signal Transduction , Animals , Mice , Bone Resorption/drug therapy , Bone Resorption/prevention & control , Bone Resorption/metabolism , Rats , PPAR delta/metabolism , Female , Osteogenesis/drug effects , Signal Transduction/drug effects , Structure-Activity Relationship , Molecular Structure , RAW 264.7 Cells , Osteoporosis/drug therapy , Osteoporosis/prevention & control , Osteoporosis/metabolism , Dose-Response Relationship, Drug , Small Molecule Libraries/pharmacology , Small Molecule Libraries/chemistry , Rats, Sprague-Dawley , Osteoclasts/drug effects , Osteoclasts/metabolism , Cell Differentiation/drug effects
4.
Chemosphere ; 354: 141584, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38460852

ABSTRACT

Carbonaceous materials are commonly used as adsorbents for heavy metals. The determination of the adsorption capacity needs time and energy, and the key factors affecting the adsorption capacity have not been determined. Therefore, a new and efficient method is needed to predict the adsorption capacity and explore the decisive factors in the adsorption process. In this study, three tree-based machine learning models (i.e., random forest, gradient boosting decision tree, and extreme gradient boosting) were developed to predict the adsorption capacity of eight heavy metals (i.e., As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn) on activated carbons, biochars, and carbon nanotubes using 3674 data points extracted from 151 journal articles. After a comprehensive comparison, the gradient boosting decision tree had the best performance for a combined model based on all data (R2 = 0.9707, RMSE = 0.1420). Moreover, independent models were developed for three datasets classified by the adsorbent and eight datasets classified by the heavy metals. In addition, a graphical user interface was built to predict the adsorption capacity of heavy metals. This study provides a novel strategy and convenient tool for the removal of heavy metals and can help to improve the removal efficiency of heavy metals to build a healthier world.


Subject(s)
Metals, Heavy , Nanotubes, Carbon , Charcoal , Adsorption , Machine Learning
5.
Nucleic Acids Res ; 52(9): 4906-4921, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38407438

ABSTRACT

Eukaryotic genomes are spatially organized within the nucleus in a nonrandom manner. However, fungal genome arrangement and its function in development and adaptation remain largely unexplored. Here, we show that the high-order chromosome structure of Fusarium graminearum is sculpted by both H3K27me3 modification and ancient genome rearrangements. Active secondary metabolic gene clusters form a structure resembling chromatin jets. We demonstrate that these jet-like domains, which can propagate symmetrically for 54 kb, are prevalent in the genome and correlate with active gene transcription and histone acetylation. Deletion of GCN5, which encodes a core and functionally conserved histone acetyltransferase, blocks the formation of the domains. Insertion of an exogenous gene within the jet-like domain significantly augments its transcription. These findings uncover an interesting link between alterations in chromatin structure and the activation of fungal secondary metabolism, which could be a general mechanism for fungi to rapidly respond to environmental cues, and highlight the utility of leveraging three-dimensional genome organization in improving gene transcription in eukaryotes.


Subject(s)
Chromatin , Fusarium , Histones , Secondary Metabolism , Chromatin/metabolism , Chromatin/genetics , Fusarium/genetics , Fusarium/metabolism , Secondary Metabolism/genetics , Histones/metabolism , Histones/genetics , Genome, Fungal , Gene Expression Regulation, Fungal , Acetylation , Histone Acetyltransferases/metabolism , Histone Acetyltransferases/genetics , Fungal Proteins/metabolism , Fungal Proteins/genetics , Transcription, Genetic , Multigene Family , Chromosomes, Fungal/genetics , Chromosomes, Fungal/metabolism
6.
NPJ Precis Oncol ; 8(1): 31, 2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38341519

ABSTRACT

Tumor drug resistance emerges from the interaction of two critical factors: tumor cellular heterogeneity and the immunosuppressive nature of the tumor microenvironment (TME). Tumor-associated macrophages (TAMs) constitute essential components of the TME. M2-like TAMs are essential in facilitating tumor metastasis as well as augmenting the drug resistance of tumors. This review encapsulates the mechanisms that M2-like TAMs use to promote tumor drug resistance. We also describe the emerging therapeutic strategies that are currently targeting M2-like TAMs in combination with other antitumor drugs, with some still undergoing clinical trial evaluation. Furthermore, we summarize and analyze various existing approaches for developing novel drugs that target M2-like TAMs to overcome tumor resistance, highlighting how targeting M2-like TAMs can effectively stop tumor growth, metastasis, and overcome tumor drug resistance.

7.
J Hazard Mater ; 466: 133563, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38262323

ABSTRACT

Although the sorption of antibiotics in soil has been extensively studied, their spatial distribution patterns and sorption mechanisms still need to be clarified, which hinders the assessment of antibiotic resistance risk. In this study, machine learning was employed to develop the models for predicting the soil sorption behavior of three classes of antibiotics (sulfonamides, tetracyclines, and fluoroquinolones) in 255 soils with 2203 data points. The optimal independent models obtained an accurate predictive performance with R2 of 0.942 to 0.977 and RMSE of 0.051 to 0.210 on test sets compared to combined models. Besides, a global map of the antibiotic sorption capacity of soil predicted with the optimal models revealed that the sorption potential of fluoroquinolones was the highest, followed by tetracyclines and sulfonamides. Additionally, 14.3% of regions had higher antibiotic sorption potential, mainly in East and South Asia, Central Siberia, Western Europe, South America, and Central North America. Moreover, a risk index calculated with the antibiotic sorption capacity of soil and population density indicated that about 3.6% of soils worldwide have a high risk of resistance, especially in South and East Asia with high population densities. This work has significant implications for assessing the antibiotic contamination potential and resistance risk.


Subject(s)
Anti-Bacterial Agents , Soil Pollutants , Soil , Soil Pollutants/analysis , Sulfanilamide , Fluoroquinolones , Tetracyclines/analysis , Sulfonamides , Drug Resistance, Microbial , Machine Learning , Adsorption
8.
Nat Chem Biol ; 20(3): 333-343, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37735239

ABSTRACT

CRISPR-Cas9 genome engineering is a powerful technology for correcting genetic diseases. However, the targeting range of Cas9 proteins is limited by their requirement for a protospacer adjacent motif (PAM), and in vivo delivery is challenging due to their large size. Here, we use phage-assisted continuous directed evolution to broaden the PAM compatibility of Campylobacter jejuni Cas9 (CjCas9), the smallest Cas9 ortholog characterized to date. The identified variant, termed evoCjCas9, primarily recognizes N4AH and N5HA PAM sequences, which occur tenfold more frequently in the genome than the canonical N3VRYAC PAM site. Moreover, evoCjCas9 exhibits higher nuclease activity than wild-type CjCas9 on canonical PAMs, with editing rates comparable to commonly used PAM-relaxed SpCas9 variants. Combined with deaminases or reverse transcriptases, evoCjCas9 enables robust base and prime editing, with the small size of evoCjCas9 base editors allowing for tissue-specific installation of A-to-G or C-to-T transition mutations from single adeno-associated virus vector systems.


Subject(s)
CRISPR-Cas Systems , Gene Editing , CRISPR-Cas Systems/genetics , Mutation , CRISPR-Associated Protein 9/genetics , CRISPR-Associated Protein 9/metabolism , Genome
9.
BMC Plant Biol ; 23(1): 614, 2023 Dec 04.
Article in English | MEDLINE | ID: mdl-38044435

ABSTRACT

Citrus melanose, caused by Diaporthe citri, is one of the most important and widespread fungal diseases of citrus. Previous studies demonstrated that the citrus host was able to trigger the defense response to restrict the spread of D. citri. However, the molecular mechanism underlying this defense response has yet to be elucidated. Here, we used RNA-Seq to explore the gene expression pattern at the early (3 days post infection, dpi) and late (14 dpi) infection stages of citrus leaves in response to D. citri infection, and outlined the differences in transcriptional regulation associated with defense responses. The functional enrichment analysis indicated that the plant cell wall biogenesis was significantly induced at the early infection stage, while the callose deposition response was more active at the late infection stage. CYP83B1 genes of the cytochrome P450 family were extensively induced in the callus deposition-mediated defense response. Remarkably, the gene encoding pectin methylesterase showed the highest upregulation and was only found to be differentially expressed at the late infection stage. Genes involved in the synthesis and regulation of phytoalexin coumarin were effectively activated. F6'H1 and S8H, encoding key enzymes in the biosynthesis of coumarins and their derivatives, were more strongly expressed at the late infection stage than at the early infection stage. Collectively, our study profiled the response pattern of citrus leaves against D. citri infection and provided the transcriptional evidence to support the defense mechanism.


Subject(s)
Ascomycota , Citrus , Xanthomonas , Plant Leaves/genetics , Plant Leaves/microbiology , Plant Diseases/genetics , Plant Diseases/microbiology , Xanthomonas/physiology
10.
Zhongguo Zhong Yao Za Zhi ; 48(20): 5632-5640, 2023 Oct.
Article in Chinese | MEDLINE | ID: mdl-38114156

ABSTRACT

This study aimed to investigate the mechanism of Xihuang Pills in improving hyperplasia of mammary gland(HMG) in rats based on urine metabolomics using ultra-performance liquid chromatography-quadrupole-Orbitrap mass spectrometry(UPLC-Q-Orbitrap-MS). The HMG rat model was established by intramuscular injection of estradiol benzoate solution(0.5 mg·kg~(-1), 25 days) followed by progesterone injection(5 mg·kg~(-1), 5 days). UPLC-Q-Orbitrap-MS technology was used to establish the endogenous small-molecule metabolic profiles in urine samples of rats in the blank group, the HMG model group, and Xihuang Pills group. Multivariate statistical analysis was performed for pattern recognition, t test and variable importance in the projection(VIP) were used to screen potential biomarkers. The significantly changed differential metabolites were identified using the online database Human Metabolome Database(HMDB). Metabolic pathway enrichment analysis was conducted using the MetaboAnalyst 5.0 database. The results showed that 90 differential metabolites with significant changes(P<0.05) were identified between the blank group and the HMG model group using the HMDB. Among them, 48 metabolites significantly reverted(P<0.05) after administration of Xihuang Pills, which may be related to the regulatory effect of Xihuang Pills. Thirteen metabolic pathways significantly associated with HMG were identified when the differential metabolites were imported into the MetaboAnalyst 5.0 database, and Xihuang Pills could modulate seven of these pathways. These metabolic pathways mainly involved histidine metabolism, arginine and proline metabolism, ß-alanine metabolism, glycine, serine and threonine metabolism, tryptophan metabolism, pyrimidine metabolism, and amino sugar and nucleotide sugar metabolism. This study utilized UPLC-Q-Orbitrap-MS and urine metabolomics technology to analyze the mechanism of Xihuang Pills in improving HMG, laying the foundation for further in-depth research.


Subject(s)
Metabolome , Metabolomics , Humans , Rats , Animals , Chromatography, High Pressure Liquid/methods , Hyperplasia , Metabolomics/methods , Biomarkers/urine
12.
Nucleic Acids Res ; 51(19): 10238-10260, 2023 10 27.
Article in English | MEDLINE | ID: mdl-37650633

ABSTRACT

Plant pathogens are challenged by host-derived iron starvation or excess during infection, but the mechanism through which pathogens counteract iron stress is unclear. Here, we found that Fusarium graminearum encounters iron excess during the colonization of wheat heads. Deletion of heme activator protein X (FgHapX), siderophore transcription factor A (FgSreA) or both attenuated virulence. Further, we found that FgHapX activates iron storage under iron excess by promoting histone H2B deubiquitination (H2B deub1) at the promoter of the responsible gene. Meanwhile, FgSreA is shown to inhibit genes mediating iron acquisition during iron excess by facilitating the deposition of histone variant H2A.Z and histone 3 lysine 27 trimethylation (H3K27 me3) at the first nucleosome after the transcription start site. In addition, the monothiol glutaredoxin FgGrx4 is responsible for iron sensing and control of the transcriptional activity of FgHapX and FgSreA via modulation of their enrichment at target genes and recruitment of epigenetic regulators, respectively. Taken together, our findings elucidated the molecular mechanisms for adaptation to iron excess mediated by FgHapX and FgSreA during infection in F. graminearum and provide novel insights into regulation of iron homeostasis at the chromatin level in eukaryotes.


Subject(s)
Fusarium , Histones , Iron , Chromatin , Histones/genetics , Histones/metabolism , Iron/metabolism , Nucleosomes , Siderophores/genetics , Fusarium/metabolism
13.
Polymers (Basel) ; 15(10)2023 May 16.
Article in English | MEDLINE | ID: mdl-37242895

ABSTRACT

In order to improve the effectiveness of partial discharge detection in attached metal particle insulators, this paper proposes a partial discharge detection method for particle defects in insulators under high-frequency sinusoidal voltage excitation. In order to study the development process of partial discharge under high-frequency electrical stress, a two-dimensional plasma simulation model of partial discharge with particle defects at the epoxy interface is established under plate-plate electrode structure, which realizes the dynamic simulation of particulate defect partial discharge. By studying the microscopic mechanism of partial discharge, the spatial and temporal distribution characteristics of microscopic parameters such as electron density, electron temperature, and surface charge density are obtained. Based on this simulation model, this paper further studies the partial discharge characteristics of epoxy interface particle defects at different frequencies, and verifies the accuracy of the model from two aspects of discharge intensity and surface damages through experimental means. The results show that with the increase in the frequency of applied voltage, the amplitude of electron temperature shows an increasing trend. However, the surface charge density gradually decreases with the increase in frequency. These two factors make partial discharge severest when the frequency of the applied voltage is 15 kHz.

14.
World J Surg Oncol ; 21(1): 104, 2023 Mar 27.
Article in English | MEDLINE | ID: mdl-36967432

ABSTRACT

BACKGROUND: There is a lack of studies focusing on the benefit of liver transplantation (LT) in hepatocellular carcinoma (HCC) patients with > 3 tumors. This study aims to establish a model to effectively predict overall survival in Chinese HCC patients with multiple tumors (> 3 tumors) who undergo LT. METHODS: This retrospective study included 434 HCC liver transplant recipients from the China Liver Transplant Registry. All HCC patients had more than 3 tumor nodules. Three selection criteria systems (i.e., AFP, Metroticket 2.0, and Up-to-7) were compared regarding the prediction of HCC recurrence. The modified AFP model was established by univariate and multivariate competing risk analyses. RESULTS: The AFP score 2 and the AFP score ≥ 3 groups had 5-year recurrence rates of 19.6% and 40.5% in our cohort. The prediction of HCC recurrence based on the AFP model was associated with a c-statistic of 0.606, which was superior to the Up-to-7 and Metroticket 2.0 models. AFP level > 1000 ng/mL, largest tumor size ≥ 8 cm, vascular invasion, and MELD score ≥ 15 were associated with overall survival. The 5-year survival rate in the modified AFP score 0 group was 71.7%. CONCLUSIONS: The AFP model is superior in predicting tumor recurrence in HCC patients with > 3 tumors prior to LT. With the modified AFP model, patients likely to derive sufficient benefit from LT can be identified.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Liver Transplantation , Humans , alpha-Fetoproteins/analysis , Carcinoma, Hepatocellular/surgery , Liver Neoplasms/surgery , Neoplasm Recurrence, Local/pathology , Retrospective Studies , Risk Factors
15.
Microbiol Res ; 271: 127347, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36907072

ABSTRACT

Lipid rafts consisting of ergosterol and sphingolipids in the lipid membrane of cells play important roles in various cellular processes. However, the functions of sphingolipids and their synthetic genes in phytopathogenic fungi have not been well understood yet. In this study, we conducted genome-wide searches and carried out systematic gene deletion analysis of the sphingolipid synthesis pathway in Fusarium graminearum, a causal agent of Fusarium head blight of wheat and other cereal crops worldwide. Mycelial growth assays showed that deletion of FgBAR1, FgLAC1, FgSUR2 or FgSCS7 resulted in markedly reduced hyphal growth. Fungicide sensitivity tests showed that the sphinganine C4-hydroxylase gene FgSUR2 deletion mutant (ΔFgSUR2) exhibited significantly increased susceptibility to azole fungicides. In addition, this mutant displayed a remarkable increase in cell membrane permeability. Importantly, ΔFgSUR2 was defective in deoxynivalenol (DON) toxisome formation, leading to dramatically decreased DON biosynthesis. Moreover, the deletion of FgSUR2 resulted in dramatically decreased virulence of the pathogen on host plants. Taken together, these results indicate that FgSUR2 plays an important role in regulating the susceptibility to azoles and virulence of F. graminearum.


Subject(s)
Fungicides, Industrial , Fusarium , Virulence/genetics , Antifungal Agents/pharmacology , Antifungal Agents/metabolism , Mixed Function Oxygenases/genetics , Fungal Proteins/genetics , Fungal Proteins/metabolism , Azoles/pharmacology , Fungicides, Industrial/pharmacology , Fungicides, Industrial/metabolism , Sphingolipids/metabolism , Plant Diseases/microbiology
16.
Zhongguo Zhong Yao Za Zhi ; 48(2): 292-299, 2023 Jan.
Article in Chinese | MEDLINE | ID: mdl-36725218

ABSTRACT

Caused by endocrine disorder, hyperplasia of mammary glands(HMG) tends to occur in the young with increasing incidence, putting patients at the risk of cancer and threatening the health of women. Therefore, the prevention and treatment of HMG is attracting more and more attention. Amid the modernization of traditional Chinese medicine(TCM), many scholars have found that Chinese patent medicine has unique advantages and huge potential in treatment of endocrine disorder. Particularly, Chinese patent medicine with the function of blood-activating and mass-dissipating, such as Xiaojin Pills and Xiaozheng Pills, has been commonly used in clinical treatment of HMG, which features multiple targets, obvious efficacy, small side effect, and ease of taking and carrying around. Clinical studies have found that the combination of Chinese patent medicine with other medicine can not only improve the efficacy and relieve symptoms such as hyperplasia and pain but also reduce the toxic and side effects of western medicine. Therefore, based on precious pharmacological research and clinical research, this study reviewed the mechanisms of blood-activating mass-dissipating Chinese patent medicine alone and in combination with other medicine, such as regulating levels of in vivo hormones and receptors, promoting apoptosis, inhibiting angiogenesis, improving hemorheology indexes, enhancing immunity, and boosting antioxidant ability. In addition, limitations and problems were summarized. Thereby, this study is expected to lay a theoretical basis for the further study and clinical application of blood-activating mass-dissipating Chinese patent medicine alone or in combination with other medicine against HMG.


Subject(s)
Drugs, Chinese Herbal , Mammary Glands, Human , Humans , Female , Hyperplasia/drug therapy , Nonprescription Drugs , Mammary Glands, Human/pathology , Medicine, Chinese Traditional , Hemorheology , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use
17.
Blood ; 141(9): 1070-1086, 2023 03 02.
Article in English | MEDLINE | ID: mdl-36356302

ABSTRACT

Intestinal epithelial cells (IECs) are implicated in the propagation of T-cell-mediated inflammatory diseases, including graft-versus-host disease (GVHD), but the underlying mechanism remains poorly defined. Here, we report that IECs require receptor-interacting protein kinase-3 (RIPK3) to drive both gastrointestinal (GI) tract and systemic GVHD after allogeneic hematopoietic stem cell transplantation. Selectively inhibiting RIPK3 in IECs markedly reduces GVHD in murine intestine and liver. IEC RIPK3 cooperates with RIPK1 to trigger mixed lineage kinase domain-like protein-independent production of T-cell-recruiting chemokines and major histocompatibility complex (MHC) class II molecules, which amplify and sustain alloreactive T-cell responses. Alloreactive T-cell-produced interferon gamma enhances this RIPK1/RIPK3 action in IECs through a JAK/STAT1-dependent mechanism, creating a feed-forward inflammatory cascade. RIPK1/RIPK3 forms a complex with JAK1 to promote STAT1 activation in IECs. The RIPK1/RIPK3-mediated inflammatory cascade of alloreactive T-cell responses results in intestinal tissue damage, converting the local inflammation into a systemic syndrome. Human patients with severe GVHD showed highly activated RIPK1 in the colon epithelium. Finally, we discover a selective and potent RIPK1 inhibitor (Zharp1-211) that significantly reduces JAK/STAT1-mediated expression of chemokines and MHC class II molecules in IECs, restores intestinal homeostasis, and arrests GVHD without compromising the graft-versus-leukemia (GVL) effect. Thus, targeting RIPK1/RIPK3 in IECs represents an effective nonimmunosuppressive strategy for GVHD treatment and potentially for other diseases involving GI tract inflammation.


Subject(s)
Graft vs Host Disease , Intestines , Mice , Humans , Animals , Intestinal Mucosa/metabolism , Inflammation/metabolism , Histocompatibility Antigens Class II/metabolism , Graft vs Host Disease/prevention & control , Graft vs Host Disease/metabolism , Homeostasis , Receptor-Interacting Protein Serine-Threonine Kinases
18.
Zhongguo Zhong Yao Za Zhi ; 48(24): 6749-6764, 2023 Dec.
Article in Chinese | MEDLINE | ID: mdl-38212035

ABSTRACT

In this study, based on network pharmacology and molecular docking method, the mechanism of anti-hyperplasia of mammary glands of Xihuang Pills blood-entering components was explored, and the efficacy and key targets of Xihuang Pills blood-entering components were experimentally verified by MCF-10A proliferation model of human mammary epithelial cells. In order to clarify the material basis and mechanism of Xihuang Pills in realizing anti-hyperplasia of mammary glands, the blood-entering components of Xihuang Pills were qualitatively analyzed by UPLC-Q-TOF-MS, and 22 blood-entering components were identified. By taking the blood-entering components as the research object, the network pharmacology prediction and molecular docking verification were carried out, and finally, three key targets were screened out, namely JAK1, SRC, and CDK1. In vitro experiments show that Xihuang Pills can inhibit the proliferation of MCF-10A cells, promote the apoptosis of MCF-10A cells, and reduce the expression of JAK1, SRC, and CDK1 targets in cells. To sum up, Xihuang Pills can promote the apoptosis of mammary epithelial cells by regulating the expression of JAK1, SRC, and CDK1 and then play an anti-hyperplasia role, which provides an experimental basis for clarifying the material basis of Xihuang Pills for anti-hyperplasia effect.


Subject(s)
Drugs, Chinese Herbal , Network Pharmacology , Humans , Chromatography, High Pressure Liquid , Molecular Docking Simulation , Apoptosis , Hyperplasia , Drugs, Chinese Herbal/pharmacology
19.
Bioorg Med Chem Lett ; 75: 128968, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36058467

ABSTRACT

The NOD1/2 (nucleotide-binding oligomerization domain-containing protein 1/2) signaling pathways are involved in innate immune control and host defense. NOD dysfunction can result in a variety of autoimmune disorders. NOD-induced generation of inflammatory cytokines is mediated by receptor-interacting protein kinase 2 (RIPK2), which has been considered as a promising therapeutic target. Herein, we disclose the design, synthesis, and SAR study of a series of RIPK2 inhibitors. The lead compound 17 displayed a high affinity for RIPK2 (Kd = 5.9 nM) and was capable of inhibiting RIPK2 kinase function in an ADP-Glo assay. In vitro DMPK studies showed that compound 17 had good metabolic stability and no CYP inhibition. Compound 17 effectively suppressed inflammatory cytokine production in both cells and animal model.


Subject(s)
Cytokines , Iohexol , Adenosine Diphosphate , Animals , Cytokines/metabolism , Iohexol/analogs & derivatives , Structure-Activity Relationship
20.
Food Funct ; 13(19): 10023-10033, 2022 Oct 03.
Article in English | MEDLINE | ID: mdl-36069328

ABSTRACT

Research on probiotics assisting PD-1 inhibitors in anti-tumor therapy has attracted widespread attention. Therefore, it is important to find new probiotic strains with a PD-1 inhibitor promoting effect. This study aims to find a strain with a good promoting effect on PD-1 inhibitor treatment from 5 probiotic strains with the function of modulating the gut microbiota or enhancing immunity. A preclinical study on the effect of probiotics combined with PD-1 inhibitors in murine melanoma was designed. In this study, Lactobacillus kefiranofaciens ZW18 (ZW18) was found to have the best anti-melanoma effect among the probiotic candidates in PD-1 inhibitor treatment. ZW18 inhibited the tumor growth in PD-1-treated mice with an inhibition rate of 66.16% by activating the body's immunity and promoting the tumor CD8+ T cell infiltration. Moreover, the supplement of ZW18 optimized the composition of the gut microbiota in mice treated with PD-1 inhibitors, and significantly increased the abundance of Akkermansia, the Prevotellaceae_NK3B31_group and Muribaculum. Collectively, ZW18 could be regarded as a potential candidate strain for promoting tumor immunotherapy. ZW18 combined with PD-1 inhibitors has a possibility of serving as a functional food to assist tumor immunotherapy.


Subject(s)
Gastrointestinal Microbiome , Kefir , Neoplasms , Animals , Cell Death , Immune Checkpoint Inhibitors , Immunologic Factors/pharmacology , Immunotherapy , Lactobacillus , Mice , Programmed Cell Death 1 Receptor
SELECTION OF CITATIONS
SEARCH DETAIL
...