Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816747

ABSTRACT

Lithium metal batteries face problems from sluggish charge transfer at interfaces, as well as parasitic reactions between lithium metal anodes and electrolytes, due to the strong electronegativity of oxygen donor solvents. These factors constrain the reversibility and kinetics of lithium metal batteries at low temperatures. Here, a nonsolvating cosolvent is applied to weaken the electronegativity of donor oxygen in ether solvents, enabling the participation of anionic donors in the solvation structure of Li+. This strategy significantly accelerates the desolvation process of Li+ and reduces the side effects of solvents on interfacial transport and stability. The designed anion-aggregated electrolyte has a unique temperature-insensitive solvation structure and enables lithium metal anodes to achieve a high average Coulombic efficiency at room temperature and -20 °C. A high-loading LiFePO4||Li cell exhibited high reversibility with a 100% capacity retention after 150 cycles at room temperature, -20, and -40 °C. The practical 1 Ah-level LiFePO4||Li pouch-cell delivered 81% and 61% of the capacity at room temperature when charged and discharged at -20 and -40 °C, respectively. This strategy of constructing temperature-insensitive solvation by electronegativity regulation offers a novel approach for developing electrolytes of low-temperature batteries.

2.
Sci Total Environ ; 933: 173080, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38735320

ABSTRACT

In light of the pressing need to reduce carbon emissions, the biomass power generation industry has gained significant attention and has increasingly become a crucial focus in China. However, there are still considerable gaps in the historical background, status, and prospects of biomass power generation. Herein, the historical and current status of biomass power generation in China are systematically reviewed, with a particular emphasis on supportive policies, environmental impacts, and future projections. By 2022, the newly installed capacity for biomass power generation reached 3.34 MW with a total installed capacity of 41 MW. The power produced from biomass power generation is 182.4 billion kWh in China. The total installed capacity and generated power in 2022 were 1652 and 1139 folds higher than in 2006 when the first biomass generation plant was established. However, disparities in the distribution of biomass resources and power generation were observed. Key drivers of the industry development include tax, finance, and subsidy policies. Under the implementation of the 14th Five-Year Plan for renewable energy development and the goal of carbon neutrality, biomass power generation may achieve great success through more targeted policy support and advanced technologies that reduce air pollutant emissions. If combined with Bioenergy with Carbon Capture and Storage (BECCS) technology, biomass power generation will make its contribution to carbon neutrality in China.


Subject(s)
Biomass , China , Carbon/analysis , Power Plants , Air Pollution/prevention & control , Air Pollution/statistics & numerical data , Air Pollutants/analysis , Renewable Energy
3.
Adv Mater ; : e2402324, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38696823

ABSTRACT

Rechargeable all-solid-state lithium metal batteries (ASSLMBs) utilizing inorganic solid-state electrolytes (SSEs) are promising for electric vehicles and large-scale grid energy storage. However, the Li dendrite growth in SSEs still constrains the practical utility of ASSLMBs. To achieve a high dendrite-suppression capability, SSEs must be chemically stable with Li, possess fast Li transfer kinetics, and exhibit high interface energy. Herein, a class of low-cost, eco-friendly, and sustainable oxyhalide-nitride solid electrolytes (ONSEs), denoted as LixNyIz-qLiOH (where x = 3y + z, 0 ≤ q ≤ 0.75), is designed to fulfill all the requirements. As-prepared ONSEs demonstrate chemically stable against Li and high interface energy (>43.08 meV Å-2), effectively restraining Li dendrite growth and the self-degradation at electrode interfaces. Furthermore, improved thermodynamic oxidation stability of ONSEs (>3 V vs Li+/Li, 0.45 V for pure Li3N), arising from the increased ionicity of Li─N bonds, contributes to the stability in ASSLMBs. As a proof-of-concept, the optimized ONSEs possess high ionic conductivity of 0.52 mS cm-1 and achieve long-term cycling of Li||Li symmetric cell for over 500 h. When coupled with the Li3InCl6 SSE for high-voltage cathodes, the bilayer oxyhalide-nitride/Li3InCl6 electrolyte imparts 90% capacity retention over 500 cycles for Li||1 mAh cm-2 LiCoO2 cells.

4.
Adv Mater ; : e2401965, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38631703

ABSTRACT

Tailorable lithium (Li) nucleation and uniform early-stage plating is essential for long-lifespan Li metal batteries. Among factors influencing the early plating of Li anode, the substrate is critical, but a fine control of the substrate structure on a scale of ≈10 nm has been rarely achieved. Herein, a carbon consisting of ordered grids is prepared, as a model to investigate the effect of substrate structure on the Li nucleation. In contrast to the individual spherical Li nuclei formed on the flat graphene, an ultrauniform and nuclei-free Li plating is obtained on the ordered carbon with a grid size smaller than the thermodynamical critical radius of Li nucleation (≈26 nm). Simultaneously, an inorganic-rich solid-electrolyte-interphase is promoted by the cross-sectional carbon layers of such ordered grids which are exposed to the electrolyte. Consequently, the carbon grids with a grid size of ≈10 nm show a favorable cycling stability for more than 1100 cycles measured at 2 mA cm-2 in a half cell. With LiNi0.8Co0.1Mn0.1O2 as cathode, the assembled full cell with a cathode capacity of 3 mAh cm-2 and a negative/positive ratio of 1.67 demonstrates a stable cycling for over 130 cycles with a capacity retention of 88%.

5.
Int J Biol Macromol ; 268(Pt 1): 131582, 2024 May.
Article in English | MEDLINE | ID: mdl-38631589

ABSTRACT

Matrix metalloproteinase 9 (MMP-9) plays an important role in wound healing. However, overexpression of MMP-9 leads to the degradation of the newly formed extracellular matrix, which delays wound healing, ultimately leading to chronic wounds. Therefore, timely monitoring of the MMP-9 activity using simple, cost-effective methods is important to prevent the formation of chronic wounds. In this work, ferrocene-modified MMP-9 cleavage peptide (Fc-MG) modified carboxymethyl chitosan hydrogels were prepared as electrochemical biosensors. In the presence of MMP-9, the peptide chain is sheared, and the electrochemically active ferrocene segment is released. Therefore, analyzing the electrochemical activity of hydrogels using differential pulse voltammetry (DPV) can be used to determine MMP-9 activity. The results showed that the DPV peaks were correlated with the MMP-9 concentration in phosphate-buffered saline (PBS, pH 7.4) and Dulbecco's modified Eagle's medium (DMEM). Specifically, the corresponding coefficient of determination (R2) were 0.918 and 0.993. The limit of detections were 73.08 ng/mL and 131.71 ng/mL, respectively. Compared with the enzyme-linked immunosorbent assay, the hydrogel biosensor determined the concentration of MMP-9 in solution with simpler steps. This study demonstrates a novel strategy based on Fc-MG-modified hydrogels to monitor MMP-9 activity in cell secretion samples and shows the potential application in chronic wounds.


Subject(s)
Biosensing Techniques , Chitosan , Electrochemical Techniques , Ferrous Compounds , Hydrogels , Matrix Metalloproteinase 9 , Metallocenes , Chitosan/chemistry , Chitosan/analogs & derivatives , Matrix Metalloproteinase 9/metabolism , Matrix Metalloproteinase 9/analysis , Metallocenes/chemistry , Hydrogels/chemistry , Ferrous Compounds/chemistry , Biosensing Techniques/methods , Electrochemical Techniques/methods , Humans
6.
Environ Int ; 186: 108641, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38621323

ABSTRACT

People generally spend most of their time indoors, making a comprehensive evaluation of air pollution characteristics in various indoor microenvironments of great significance for accurate exposure estimation. In this study, field measurements were conducted in Kunming City, Southwest China, using real-time PM2.5 sensors to characterize indoor PM2.5 in ten different microenvironments including three restaurants, four public places, and three household settings. Results showed that the daily average PM2.5 concentrations in restaurants, public spaces, and households were 78.4 ± 24.3, 20.1 ± 6.6, and 18.0 ± 4.3 µg/m3, respectively. The highest levels of indoor PM2.5 in restaurants were owing to strong internal emissions from cooking activities. Dynamic changes showed that indoor PM2.5 levels increased during business time in restaurants and public places, and cooking time in residential kitchens. Compared with public places, restaurants generally exhibit more rapid increases in indoor PM2.5 due to cooking activities, which can elevate indoor PM2.5 to high levels (5.1 times higher than the baseline) in a short time. Furthermore, indoor PM2.5 in restaurants were dominated by internal emissions, while outdoor penetration contributed mostly to indoor PM2.5 in public places and household settings. Results from this study revealed large variations in indoor PM2.5 in different microenvironments, and suggested site-specific measures for indoor PM2.5 pollution alleviation.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Environmental Monitoring , Particulate Matter , Air Pollution, Indoor/analysis , Air Pollution, Indoor/statistics & numerical data , Particulate Matter/analysis , China , Air Pollutants/analysis , Humans , Cities , Cooking , Restaurants/statistics & numerical data , Particle Size
7.
J Hazard Mater ; 470: 134238, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38608586

ABSTRACT

China, as one of the largest global producers and consumers of per- and poly-fluoroalkyl substances (PFASs), faces concerning levels of PFAS pollution in soil. However, knowledge of their occurrence in agricultural soils of China on the national scale remains unknown. Herein, the first nationwide survey was done by collecting 352 soil samples from 31 provinces in mainland China. The results indicated that the Σ24PFASs concentrations were 74.3 - 24880.0 pg/g, with mean concentrations of PFASs in decreasing order of legacy PFASs > emerging PFASs > PFAS precursors (640.2 pg/g, 340.7 pg/g, and 154.9 pg/g, respectively). The concentrations in coastal eastern China were distinctly higher than those in inland regions. Tianjin was the most severely PFASs-contaminated province because of rapid urban industrialization. This study further compared the PFAS content in monoculture and multiple cropping farmland soils, finding the concentrations of PFASs were high in soils planted with vegetable and fruit monocultures. Moreover, a positive matrix factorization (PMF) model was employed to identify different sources of PFASs. Fluoropolymer industries and aqueous film-forming foams were the primary contributors. The contributions from different emission sources varied across the seven geographical regions. This study provides new baseline data for prevention and control policies for reducing pollution.

8.
J Hazard Mater ; 470: 134284, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38615648

ABSTRACT

Neonicotinoid insecticide (NEO) residues in agricultural soils have concerning and adverse effects on agroecosystems. Previous studies on the effects of farmland type on NEOs are limited to comparing greenhouses with open fields. On the other hand, both NEOs and microplastics (MPs) are commonly found in agricultural fields, but their co-occurrence characteristics under realistic fields have not been reported. This study grouped farmlands into three types according to the covering degree of the film, collected 391 soil samples in mainland China, and found significant differences in NEO residues in the soils of the three different farmlands, with greenhouse having the highest NEO residue, followed by farmland with film mulching and farmland without film mulching (both open fields). Furthermore, this study found that MPs were significantly and positively correlated with NEOs. As far as we know this is the first report to disclose the association of film mulching and MPs with NEOs under realistic fields. Moreover, multiple linear regression and random forest models were used to comprehensively evaluate the factors influencing NEOs (including climatic, soil, and agricultural indicators). The results indicated that the random forest model was more reliable, with MPs, farmland type, and total nitrogen having higher relative contributions.

9.
Animals (Basel) ; 14(3)2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38338043

ABSTRACT

Guanidinoacetic acid (GAA) functions as a precursor for creatine synthesis in the animal body, and maintaining ample creatine reserves is essential for fostering rapid growth. This study aimed to explore the impact of GAA supplementation on growth performance, rumen fermentation, blood indices, nutrient digestion, and nitrogen metabolism in Angus steers through two experiments: a feeding experiment (Experiment 1) and a digestive metabolism experiment (Experiment 2). In Experiment 1, thirty-six Angus steers (485.64 ± 39.41 kg of BW) at 16 months of age were randomly assigned to three groups: control (CON), a conventional dose of GAA (CGAA, 0.8 g/kg), and a high dose of GAA (HGAA, 1.6 g/kg), each with twelve steers. The adaptation period lasted 14 days, and the test period was 130 days. Weighing occurred before morning feeding on days 0, 65, and 130, with rumen fluid and blood collected before morning feeding on day 130. Experiment 2 involved fifteen 18-month-old Angus steers (575.60 ± 7.78 kg of BW) randomly assigned to the same three groups as in Experiment 1, with a 7-day adaptation period and a 3-day test period. Fecal and urine samples were collected from all steers during this period. Results showed a significantly higher average daily gain (ADG) in the CGAA and HGAA groups compared to the CON group (p = 0.043). Additionally, the feed conversion efficiency (FCE) was significantly higher in the CGAA and HGAA groups than in the CON group (p = 0.018). The concentrations of acetate and the acetate:propionate ratio were significantly lower in the CGAA and HGAA groups, while propionate concentration was significantly higher (p < 0.01). Serum concentration of urea (UREA), blood ammonia (BA), GAA, creatine, and catalase (CAT) in the CGAA and HGAA groups were significantly higher than in the CON group, whereas malondialdehyde (MDA) concentrations were significantly lower (p < 0.05). Digestibility of dry matter (DM) and crude protein (CP) and the nitrogen retention ratio were significantly higher in the CGAA and HGAA groups than in the CON group (p < 0.05). In conclusion, dietary addition of both 0.8 g/kg and 1.6 g/kg of GAA increased growth performance, regulated rumen fermentation and blood indices, and improved digestibility and nitrogen metabolism in Angus steers. However, higher doses of GAA did not demonstrate a linear stacking effect.

10.
Biosens Bioelectron ; 248: 115997, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38183792

ABSTRACT

Real-time sensing of reactive oxygen species (ROS) and timely scavenging of excessive ROS in physiological environments are critically important in the diagnosis and prevention of ROS-related diseases. To solve the mismatch problem between conventional rigid ROS biosensors and biological tissues in terms of both modulus and composition, here, we present a flexible ferrocene-based hydrogel biosensor designed for oxidative stress detection and antioxidation treatment. The hydrogel was fabricated through a supramolecular assembly of ferrocene-grafted polyethylenimine (PEI-Fc), sodium alginate (SA), and polyvinyl alcohol (PVA). Multiple non-covalent interactions, including electrostatic interactions between PEI-Fc and SA, hydrophobic interactions and π-π stacking among ferrocene groups, and the PVA crystalline domain, synergistically improve the mechanical properties of the PVA/SA/PEI-Fc hydrogel. The flexible PVA/SA/PEI-Fc hydrogel biosensor exhibited a broad detection range for hydrogen peroxide (H2O2), from 0 to 120 µM, using the differential pulse voltammetry method. Furthermore, the hydrogel demonstrated effective ROS scavenging and oxygen generation performance, desirable biocompatibility, and satisfactory antibacterial activity, making it suitable for biological interfaces. In vitro studies revealed that the PVA/SA/PEI-Fc hydrogel could monitor H2O2 concentration in the proximity of inflammatory cells, and effectively scavenge ROS to protect cells from oxidative stress damage. This all-in-one multifunctional hydrogel, integrating both sensing and treatment functions, holds great promise for clinical applications in the diagnosis and management of ROS-related diseases.


Subject(s)
Biosensing Techniques , Ferrous Compounds , Hydrogels , Hydrogels/chemistry , Antioxidants , Hydrogen Peroxide , Metallocenes , Reactive Oxygen Species , Biosensing Techniques/methods , Oxidative Stress , Alginates/chemistry
11.
Small ; 20(2): e2305464, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37658520

ABSTRACT

The utilization of layered oxides as cathode materials has significantly contributed to the advancement of the lithium-ion batteries (LIBs) with high energy density and reliability. However, the structural and interfacial instability triggered by side reactions when charged to high voltage has plagued their practical applications. Here, this work reports a novel multifunctional additive, id est, 7-Anilino-3-diethylamino-6-methyl fluoran (ADMF), which exhibits unique characteristics such as preferential adsorption, oxygen scavenging, and electropolymerization protection for high-voltage cathodes. The ADMF demonstrates the capability to ameliorate the growth of cathode-electrolyte interphase (CEI), effectively diminishing the dissolution of transition metal (TM) ions, reducing the interface impedance, and facilitating the Li+ transport. As a result, ADMF additive with side reaction-blocking ability significantly enhances the cycling stability of MCMB||NCM811 full-cells at 4.4 V and MCMB||LCO full-cells at 4.55 V, as evidenced by the 80% retention over 600 cycles and 87% retention after 750 cycles, respectively. These findings highlight the potential of the additive design strategy to modulate the CEI chemistry, representing a new paradigm with profound implications for the development of next-generation high-voltage LIBs.

12.
Gels ; 9(12)2023 Nov 21.
Article in English | MEDLINE | ID: mdl-38131906

ABSTRACT

Chitosan (CS) is widely used in biomedical hydrogels due to their similarity to extracellular matrix. However, the preparation method of CS-based hydrogel suffers the drawbacks of tedious operation, time-consuming and energy consumption. Thus, there is an urgent need to develop a rapid synthesis pathway towards hydrogels. In this work, we used a modified CS as a cross-linking agent and acrylic acid (AA) as monomer to prepare a hydrogel through frontal polymerization (FP), which facilitates a facile and rapid method achieved in several minutes. The occurrence of pure FP was confirmed via the frontal velocity and temperature profile measurement. In addition, the as-prepared hydrogel shows excellent mechanical strength up to 1.76 MPa, and the Young's modulus (ranging from 0.16 to 0.56 MPa) is comparable to human skin. The degradation mechanism is revealed by the micro-IR images through the distribution of the functional groups, which is attributed to the breakage of the ether bond. Moreover, the hydrogel exhibits excellent degradability, biocompatibility and antibacterial properties, offering great potentials in tissue engineering. We believe this work not only offers a facile and rapid FP method to fabricate a robust degradable hydrogel, but also provides an effective pathway for the investigation of the degradation mechanism at the chemical bond analysis level.

13.
Materials (Basel) ; 16(18)2023 Sep 07.
Article in English | MEDLINE | ID: mdl-37763393

ABSTRACT

Process simulation is frequently adopted to facilitate the optimization of the resin transfer molding process. However, it is computationally costly to simulate the multi-physical, multi-scale process, making it infeasible for applications involving huge datasets. In this study, the application of K-nearest neighbors and artificial neural network metamodels is proposed to build predictive surrogate models capable of relating the mold-filling process input-output correlations to assist mold designing. The input features considered are the resin injection location and resin viscosity. The corresponding output features investigated are the number of vents required and the resultant maximum injection pressure. Upon training, both investigated metamodels demonstrated desirable prediction accuracies, with a low prediction error range of 5.0% to 15.7% for KNN metamodels and 6.7% to 17.5% for ANN metamodels. The good prediction results convincingly indicate that metamodeling is a promising option for composite molding applications, with encouraging prospects for data-intensive applications such as process digital twinning.

14.
Environ Int ; 175: 107934, 2023 05.
Article in English | MEDLINE | ID: mdl-37086491

ABSTRACT

People generally spend most of their time indoors, making indoor air quality be of great significance to human health. Large spatiotemporal heterogeneity of indoor air pollution can be hardly captured by conventional filter-based monitoring but real-time monitoring. Real-time monitoring is conducive to change air assessment mode from static and sparse analysis to dynamic and massive analysis, and has made remarkable strides in indoor air evaluation. In this review, the state of art, strengths, challenges, and further development of real-time sensors used in indoor air evaluation are focused on. Researches using real-time sensors for indoor air evaluation have increased rapidly since 2018, and are mainly conducted in China and the USA, with the most frequently investigated air pollutants of PM2.5. In addition to high spatiotemporal resolution, real-time sensors for indoor air evaluation have prominent advantages in 3-dimensional monitoring, pollution peak and source identification, and short-term health effect evaluation. Huge amounts of data from real-time sensors also facilitate the modeling and prediction of indoor air pollution. However, challenges still remain in extensive deployment of real-time sensors indoors, including the selection, performance, stability, as well as calibration of sensors. In future, sensors with high performance, long-term stability, low price, and low energy consumption are welcomed. Furthermore, more target air pollutants are also expected to be detected simultaneously by real-time sensors in indoor air monitoring.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Air Pollution , Humans , Air Pollution, Indoor/analysis , Environmental Monitoring/methods , Air Pollutants/analysis , Calibration , China , Air Pollution/analysis , Particulate Matter/analysis
15.
Sci Total Environ ; 884: 163749, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37120026

ABSTRACT

High blood pressure associated with PM2.5 exposure is of great concern, especially for rural residents exposed to high PM2.5 levels. However, the impact of short-term exposure to high PM2.5 on blood pressure (BP) has not been well elucidated. Thus, this study aims to focus on the association between short-term PM2.5 exposure with BP of rural residents and its variation between summer and winter. Our results showed that the summertime PM2.5 exposure concentration was 49.3 ± 20.6 µg/m3, among which, mosquito coil users had 1.5-folds higher PM2.5 exposure than non-mosquito coil users (63.6 ± 21.7 vs 43.0 ± 16.7 µg/m3, p < 0.05). The mean systolic and diastolic BP (SBP and DBP, respectively) of rural participants were 122 ± 18.2 and 76.2 ± 11.2 mmHg in summer, respectively. The PM2.5 exposure, SBP, and DBP in summer were 70.7 µg/m3, 9.0 mmHg, and 2.8 mmHg lower than that in winter, respectively. Furthermore, the correlation between PM2.5 exposure and SBP was stronger in winter than that in summer, possibly due to higher PM2.5 exposure levels in winter. The transition of household energy from solid fuels in winter to clean fuels in summer would be benefit to the decline of PM2.5 exposure as well as BP. Results from this study suggested that the reduction of PM2.5 exposure would have positive effect on human health.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Air Pollution , Humans , Blood Pressure , Air Pollutants/analysis , Particulate Matter/analysis , Air Pollution/analysis , Air Pollution, Indoor/analysis , Environmental Exposure/analysis
16.
Front Nutr ; 9: 1024309, 2022.
Article in English | MEDLINE | ID: mdl-36451740

ABSTRACT

Sturgeons are a type of subcold water fish distributed in eastern Europe, on both sides of the North Pacific, in eastern Asia, in western North America, and on the east coast of North America. Its production capacity is strong, and it is easy to breed. However, the sturgeon industry has the problems of a single product structure, a short industrial chain and poor market sales. In this context, developing the sturgeon industry is crucial to research the nutritional value of sturgeon processing byproducts and developing diversified products. Therefore, this paper summarizes the research on the nutritional value of sturgeon processing byproducts and the current situation of processing and utilization over the past 10 years. First, CiteSpace visual analysis software and the bibliometric analysis platform were used to analyze the status of sturgeon research. The Web of Science (WOS) database was used as the literature source to fit the keywords of sturgeon literature in the past ten years. After excluding the two keywords sturgeon and sturgeon meat, the relevant literature is analyzed and sorted, focusing on the literature in the last five years. Second, a comprehensive and in-depth review (sturgeon, processing, byproducts as the keywords to search Google Scholar and Web of Science) was conducted on the research of the nutritional components contained in sturgeon and the processing of nutritional components in byproducts to provide a reliable reference for the research and processing of the sturgeon industry.

17.
Ecotoxicol Environ Saf ; 247: 114274, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36356530

ABSTRACT

Inhalation exposure to polycyclic aromatic hydrocarbons (PAHs) from indoor solid fuel combustion poses a high health risk, and PAHs bound to particles with smaller sizes (e.g., PM1.0, aerodynamic diameter ≤ 1.0 µm) should be of particular concern since they can penetrate deep into pulmonary alveoli. However, PAHs bound to PM1.0 was less studied compared with PAHs in total suspended particles or PM2.5. In this study, multiple provincial field measurements were conducted to investigate 28 PAHs bound to PM1.0 in rural Chinese homes. Daily averaged PM1.0-PAH28 concentrations ranged from 27 ng/m3 to 3795 ng/m3 (median: 233 ng/m3) and from 10 ng/m3 to 2978 ng/m3 (median: 87 ng/m3) in indoor and outdoor air, respectively. Higher concentrations were found in northern China in winter due to increased solid fuels consumption for space heating. The ambient pollution was lower during the non-heating season in Eastern China, where clean energy was preferred. Highly toxic congeners were more abundant in indoor air compared with outdoor air. The results of source apportionment revealed that solid fuel combustion was the primary contributor to rural household PM1.0-PAHs, but other sources such as vehicles cannot be overlooked. The transition to cleaner energy can reduce the indoor PM1.0-PAH28 and BaPeq-28 concentrations by 87% and 98%, respectively, and more efficient reduction was observed for highly toxic congeners. The estimated Incremental Lifetime Cancer Risk (ILCR) based on PM1.0-PAH28 ranged from 4.6 × 10-5 to 3.4 × 10-2, far exceeding the acceptable level of 10-6. Over 60% of the ILCR could be attributed to inhalation exposure during childhood and adolescence.


Subject(s)
Polycyclic Aromatic Hydrocarbons , Adolescent , Humans , Accidents , Asian People , Inhalation Exposure/adverse effects , China
18.
Sci Total Environ ; 852: 158501, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36063949

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) derivatives such as oxygenated PAHs (oPAHs) and nitrated PAHs (nPAHs), are receiving raising concerns due to their high toxic potential. Incomplete solid fuel combustion can release large quantities of PAHs derivatives, especially in low-efficiency domestic stoves. In this study, field measurements were conducted in rural Chinese homes to determine emissions of nPAHs and oPAHs from solid fuel combustion. A total of 12 fuel-stove combinations including cooking and space heating activities were investigated. Emission factors (EFs) of total nPAHs and oPAHs were in the range of 1.0-682.1 µg/kg and 0.01-131.7 mg/kg, respectively, with arithmetic means and stand deviations of 53.5 ± 72.5 µg/kg and 13.9 ± 24.4 mg/kg, respectively. The EFs of nPAHs and oPAHs for coal combustion (including honeycomb briquette, coal chunk, and peat tested in this study) were 30.2 ± 28.1 µg/kg and 1.5 ± 2.9 mg/kg, respectively, much lower than that for biomass burning (p < 0.05). The combustion phase could significantly affect the PAHs derivative emissions with higher emissions at initial phase than that at stable phase. Fuel type was found to affect the EFs, composition profiles, and ratios of PAHs derivatives to parent PAHs. This study tries to have an insight of PAHs derivative emissions from various solid fuel combustion, which would be useful in understanding the atmospheric PAHs derivative pollutions in China.


Subject(s)
Air Pollutants , Polycyclic Aromatic Hydrocarbons , Polycyclic Aromatic Hydrocarbons/analysis , Heating , Air Pollutants/analysis , Nitrates , Cooking , Coal/analysis , China , Nitrogen Oxides , Soil , Environmental Monitoring , Particulate Matter/analysis
19.
Front Chem ; 10: 894759, 2022.
Article in English | MEDLINE | ID: mdl-35864869

ABSTRACT

Graphene and its derivatives have been a burning issue in the last 10 years. Although many reviews described its application in electrochemical detection, few were focused on food detection. Herein, we reviewed the recent progress in applying graphene and composite materials in food detection during the past 10 years. We pay attention to food coloring materials, pesticides, antibiotics, heavy metal ion residues, and other common hazards. The advantages of graphene composites in electrochemical detection are described in detail. The differences between electrochemical detection involving graphene and traditional inherent food detection are analyzed and compared in depth. The results proved that electrochemical food detection based on graphene composites is more beneficial. The current defects and deficiencies in graphene composite modified electrode development are discussed, and the application prospects and direction of graphene in future food detection are forecasted.

20.
Molecules ; 27(7)2022 Mar 23.
Article in English | MEDLINE | ID: mdl-35408465

ABSTRACT

Lactic acid bacteria (LAB) produce antimicrobial substances that could potentially inhibit the growth of pathogenic and food spoilage microorganisms. Lacticaseibacillus rhamnosus XN2, isolated from yak yoghurt, demonstrated antibacterial activity against Bacillus subtilis, B. cereus, Micrococcus luteus, Brochothrix thermosphacta, Clostridium butyricum, S. aureus, Listeria innocua CICC 10416, L. monocytogenes, and Escherichia coli. The antibacterial activity was estimated to be 3200 AU/mL after 30 h cultivation. Time-kill kinetics curve showed that the semi-purified cell-free supernatants (CFS) of strain XN2 possessed bactericidal activity. Flow cytometry analysis indicated disruption of the sensitive bacteria membrane by semi-purified CFS, which ultimately caused cell death. Interestingly, sub-lethal concentrations of semi-purified CFS were observed to reduce the production of α-haemolysin and biofilm formation. We further investigated the changes in the transcriptional level of luxS gene, which encodes signal molecule synthase (Al-2) induced by semi-purified CFS from strain XN2. In conclusion, L. rhamnosus XN2 and its bacteriocin showed antagonistic activity at both cellular and quorum sensing (QS) levels. Finally, bacteriocin was further purified by reversed-phase high-performance liquid chromatography (RP-HPLC), named bacteriocin XN2. The amino acid sequence was Met-Lue-Lys-Lys-Phe-Ser-Thr-Ala-Tyr-Val.


Subject(s)
Bacteriocins , Lacticaseibacillus rhamnosus , Animals , Anti-Bacterial Agents , Cattle , Staphylococcus aureus , Yogurt
SELECTION OF CITATIONS
SEARCH DETAIL
...