ABSTRACT
Peanut stem rot caused by Sclerotium rolfsii Sacc. is the most common disease of peanut worldwide and has become increasingly serious in recent years. This study is aimed at obtaining peanut endophytic bacteria with high antagonistic/protective effects against peanut stem rot. In total, 45 bacterial strains were isolated from healthy peanut plants from a severely impacted area. Of these, 6 exhibited antagonistic activity against S. rolfsii, including F-1 and R-11 with the most robust activity with an inhibition zone width of 20.25 and 15.49 mm, respectively. These two were identified as Bacillus sp. and Burkholderia sp., respectively, based on morphological, physiological, and biochemical characteristics and 16S rDNA sequencing. To the best of our knowledge, this is the first study to report the Burkholderia sp. antagonistic effect on S. rolfsii as a biological control agent for peanut stem rot. Their culture filtrates potently inhibited the hyphal growth, sclerotial formation, and germination of S. rolfsii. Also, the strain-produced volatile compounds inhibited the fungal growth. Pot experiments showed that F-1 and R-11 significantly reduced the peanut stem rot disease with the efficacy of 77.13 and 64.78%, respectively, which was significantly higher compared with carbendazim medicament (35.22%; P < 0.05). Meanwhile, F-1 and R-11 improved the activity of plant defense enzymes such as phenylalaninase (PAL), polyphenol oxidase (PPO), and peroxidase (POD) enhancing the systemic resistance of the peanut plants. This study demonstrated that Bacillus sp. F-1 and Burkholderia sp. R-11, with a strong antagonistic effect on S. rolfsii, can be potential biocontrol agents for peanut stem rot.
Subject(s)
Ascomycota , Bacillus , Basidiomycota , Arachis/microbiology , Ascomycota/physiology , Bacillus/geneticsABSTRACT
PURPOSE:: To evaluate the effects of HBO (Hyperbaric oxygen) and NGF (Nerve growth factor) on the long-term neural behavior of neonatal rats with HIBD (Neonatal hypoxic ischemic brain damage). METHODS:: The HIBD model was produced by ligating the right common carotid artery of 7 days old SD (Sprague-Dawley) rats followed by 8% O2 + 92% N2 for 2h. Totally 40 rats were randomly divided into 5 groups including sham-operated group, HIBD control group, HBO treated group, NGF treated group and NGF + HBO treated group. The learning and memory ability of these rats was evaluated by Morris water maze at 30 days after birth, and sensory motor function was assessed by experiments of foot error and limb placement at 42 days after birth. RESULTS:: The escape latency of HBO treated group, NGF treated group and NGF + HBO treated group was shorter than that of HIBD control group (p<0.01) and longer than that of sham-operated group. The piercing indexes of 3 treated groups were higher than that of HIBD control group (p<0.01). CONCLUSION:: Hyperbaric oxygen and nerve growth factor treatments may improve learning and memory ability and sensory motor function in neonatal rats after hypoxic ischemic brain damage.
Subject(s)
Hyperbaric Oxygenation , Hypoxia-Ischemia, Brain/therapy , Nerve Growth Factor , Animals , Animals, Newborn , Disease Models, Animal , Female , Hippocampus/pathology , Hypoxia-Ischemia, Brain/pathology , Male , Maze Learning , Random Allocation , Rats , Rats, Sprague-DawleyABSTRACT
Purpose: To evaluate the effects of HBO (Hyperbaric oxygen) and NGF (Nerve growth factor) on the long-term neural behavior of neonatal rats with HIBD (Neonatal hypoxic ischemic brain damage). Methods: The HIBD model was produced by ligating the right common carotid artery of 7 days old SD (Sprague-Dawley) rats followed by 8% O2 + 92% N2 for 2h. Totally 40 rats were randomly divided into 5 groups including sham-operated group, HIBD control group, HBO treated group, NGF treated group and NGF + HBO treated group. The learning and memory ability of these rats was evaluated by Morris water maze at 30 days after birth, and sensory motor function was assessed by experiments of foot error and limb placement at 42 days after birth. Results: The escape latency of HBO treated group, NGF treated group and NGF + HBO treated group was shorter than that of HIBD control group (p 0.01) and longer than that of sham-operated group. The piercing indexes of 3 treated groups were higher than that of HIBD control group (p 0.01). Conclusion: Hyperbaric oxygen and nerve growth factor treatments may improve learning and memory ability and sensory motor function in neonatal rats after hypoxic ischemic brain damage.(AU)
Subject(s)
Animals , Male , Female , Infant, Newborn , Rats , Hyperbaric Oxygenation , Hypoxia-Ischemia, Brain/therapy , Nerve Growth Factor/therapeutic useABSTRACT
Abstract Purpose: To evaluate the effects of HBO (Hyperbaric oxygen) and NGF (Nerve growth factor) on the long-term neural behavior of neonatal rats with HIBD (Neonatal hypoxic ischemic brain damage). Methods: The HIBD model was produced by ligating the right common carotid artery of 7 days old SD (Sprague-Dawley) rats followed by 8% O2 + 92% N2 for 2h. Totally 40 rats were randomly divided into 5 groups including sham-operated group, HIBD control group, HBO treated group, NGF treated group and NGF + HBO treated group. The learning and memory ability of these rats was evaluated by Morris water maze at 30 days after birth, and sensory motor function was assessed by experiments of foot error and limb placement at 42 days after birth. Results: The escape latency of HBO treated group, NGF treated group and NGF + HBO treated group was shorter than that of HIBD control group (p<0.01) and longer than that of sham-operated group. The piercing indexes of 3 treated groups were higher than that of HIBD control group (p<0.01). Conclusion: Hyperbaric oxygen and nerve growth factor treatments may improve learning and memory ability and sensory motor function in neonatal rats after hypoxic ischemic brain damage.
Subject(s)
Animals , Male , Female , Rats , Hypoxia-Ischemia, Brain/therapy , Nerve Growth Factor , Hyperbaric Oxygenation , Random Allocation , Rats, Sprague-Dawley , Maze Learning , Hypoxia-Ischemia, Brain/pathology , Disease Models, Animal , Hippocampus/pathology , Animals, NewbornABSTRACT
As a critical transcription factor, Six1 plays an important role in the regulation of myogenesis and muscle development. However, little is known about its regulatory mechanism associated with muscular protein synthesis. The objective of this study was to investigate the effects of overexpression ofSix1 on the expression of key protein metabolism-related genes in duck myoblasts. Through an experimental model where duck myoblasts were transfected with a pEGFP-duSix1 construct, we found that overexpression of duckSix1 could enhance cell proliferation activity and increase mRNA expression levels of key genes involved in the PI3K/Akt/mTOR signaling pathway, while the expression of FOXO1, MuRF1and MAFbx was not significantly altered, indicating thatSix1 could promote protein synthesis in myoblasts through up-regulating the expression of several related genes. Additionally, in duck myoblasts treated with LY294002 and rapamycin, the specific inhibitors ofPI3K and mTOR, respectively, the overexpression of Six1 could significantly ameliorate inhibitive effects of these inhibitors on protein synthesis. Especially, the mRNA expression levels of mTOR and S6K1 were observed to undergo a visible change, and a significant increase in protein expression of S6K1 was seen. These data suggested that Six1plays an important role in protein synthesis, which may be mainly due to activation of the mTOR signaling pathway.
ABSTRACT
Background Fatty acid synthase (FAS) is a key enzyme of de novo lipogenesis (DNL), which has been cloned from several species: Gallus gallus, Mus musculus, Homo sapiens, but not from Anas platyrhynchos. The current study was conducted to obtain the full-length coding sequence of Peking duck FAS and investigate its expression during adipocyte differentiation. Results We have isolated a 7654 bp fragment from Peking duck adipocytes that corresponds to the FAS gene. The cloned fragment contains an open reading frame of 7545 bp, encodes a 2515 amino acid protein, and displays high nucleotide and amino acid homology to avian FAS orthologs. Twelve hour treatment of oleic acid significantly up-regulated the expression of FAS in duck preadipocytes (P < 0.05). However, 1000 µM treatment of oleic acid exhibited lipotoxic effect on cell viability (P < 0.05). In addition, during the first 24 h of duck adipocyte differentiation FAS was induced; however, after 24 h its expression level declined (P < 0.05). Conclusion We have successfully cloned and characterized Peking duck FAS. FAS was induced during adipocyte differentiation and by oleic acid treatment. These findings suggest that Peking duck FAS plays a similar role to mammalian FAS during adipocyte differentiation.
Subject(s)
Animals , Adipose Tissue/metabolism , Ducks , Fatty Acid Synthases/genetics , Fatty Acid Synthases/metabolism , Phylogeny , RNA/analysis , Gene Expression , Cell Differentiation , Cell Survival , Cloning, Molecular , Sequence Analysis , DNA, Complementary/chemical synthesis , Oleic Acid , Computational Biology , LipogenesisABSTRACT
Background Follistatin (FST), a secreted glycoprotein, is intrinsically linked to muscle hypertrophy. To explore the function of duck FST in myoblast proliferation and differentiation, the pEGFP-FST eukaryotic expression vector was constructed and identified. The biological activities of this vector were analyzed by transfecting pEGFP-FST into cultured duck myoblasts using Lipofectamine 2000 and subsequently determining the mRNA expression profiles of FST and myostatin (MSTN). Results The duck pEGFP-FST vector was successfully constructed and was confirmed to have high liposome-mediated transfection efficiency in duck myoblasts. Additionally, myoblasts transfected with pEGFP-FST had a higher biological activity. Significantly, the overexpression of FST in these cells significantly inhibited the mRNA expression of MSTN (a target gene that is negatively regulated by FST). Conclusions The duck pEGFP-FST vector has been constructed successfully and exhibits biological activity by promoting myoblast proliferation and differentiation in vitro.
Subject(s)
Animals , Transfection , Myoblasts/metabolism , Follistatin/metabolism , Hypertrophy , Muscular Diseases/pathology , Biological Assay , In Vitro Techniques , RNA, Messenger , Cell Differentiation , Cell Proliferation , Ducks , Eukaryotic Cells/metabolism , Real-Time Polymerase Chain ReactionABSTRACT
The role of myogenic enhancer transcription factor 2a (MEF2A) in avian muscle during fetal development is unknown. In this work, we cloned the duck MEF2A cDNA sequence (GenBank accession no. HM460752) and examined its developmental expression profiles in cardiac muscle, non-vascular smooth muscle and skeletal muscle. Duck MEF2A cDNA comprised 1479 bp encoding 492 amino acid residues. In silico analysis showed that MEF2A contained MADS (MCM1, AGAMOUS, DEFICIENS and SRF - serum response factor), MEF2 and mitogen-activated protein kinase (MAPK) transcription domains with high homology to related proteins in other species. Modified sites in these domains were conserved among species and several variants were found. Quantitative PCR showed that MEF2A was expressed in all three muscles at each developmental stage examined, with the expression in smooth muscle being higher than in the other muscles. These results indicate that the conserved domains of duck MEF2A, including the MADS and MEF2 domains, are important for MEF2A transcription factor function. The expression of MEF2A in duck smooth muscle and cardiac muscle suggests that MEF2A plays a role in these two tissues.
ABSTRACT
The role of myogenic enhancer transcription factor 2a (MEF2A) in avian muscle during fetal development is unknown. In this work, we cloned the duck MEF2A cDNA sequence (GenBank accession no. HM460752) and examined its developmental expression profiles in cardiac muscle, non-vascular smooth muscle and skeletal muscle. Duck MEF2A cDNA comprised 1479 bp encoding 492 amino acid residues. In silico analysis showed that MEF2A contained MADS (MCM1, AGAMOUS, DEFICIENS and SRF -serum response factor), MEF2 and mitogen-activated protein kinase (MAPK) transcription domains with high homology to related proteins in other species. Modified sites in these domains were conserved among species and several variants were found. Quantitative PCR showed that MEF2A was expressed in all three muscles at each developmental stage examined, with the expression in smooth muscle being higher than in the other muscles. These results indicate that the conserved domains of duck MEF2A, including the MADS and MEF2 domains, are important for MEF2A transcription factor function. The expression of MEF2A in duck smooth muscle and cardiac muscle suggests that MEF2A plays a role in these two tissues.