Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Virulence ; 14(1): 2275493, 2023 12.
Article in English | MEDLINE | ID: mdl-37941391

ABSTRACT

We used Drosophila melanogaster to investigate how differences between Metarhizium species in growth rate and mechanisms of pathogenesis influence the outcome of infection. We found that the most rapid germinators and growers in vitro and on fly cuticle were the fastest killers, suggesting that pre-penetration competence is key to Metarhizium success. Virulent strains also induced the largest immune response, which did not depend on profuse growth within hosts as virulent toxin-producing strains only proliferated post-mortem while slow-killing strains that were specialized to other insects grew profusely pre-mortem. Metarhizium strains have apparently evolved resistance to widely distributed defenses such as the defensin Toll product drosomycin, but they were inhibited by Bomanins only found in Drosophila spp. Disrupting a gene (Dif), that mediates Toll immunity has little impact on the lethality of most Metarhizium strains (an exception being the early diverged M. frigidum and another insect pathogen Beauveria bassiana). However, disrupting the sensor of fungal proteases (Persephone) allowed rapid proliferation of strains within hosts (with the exception of M. album), and flies succumbed rapidly. Persephone also mediates gender differences in immune responses that determine whether male or female flies die sooner. We conclude that some strain differences in growth within hosts depend on immune-mediated interactions but intrinsic differences in pathogenic mechanisms are more important. Thus, Drosophila varies greatly in tolerance to different Metarhizium strains, in part because some of them produce toxins. Our results further develop D. melanogaster as a tractable model system for understanding insect-Metarhizium interactions.


Subject(s)
Beauveria , Drosophila Proteins , Metarhizium , Female , Male , Animals , Drosophila melanogaster , Metarhizium/genetics , Insecta/microbiology , Beauveria/genetics , Immunity , DNA-Binding Proteins , Transcription Factors
2.
Open Biol ; 10(12): 200307, 2020 12.
Article in English | MEDLINE | ID: mdl-33292103

ABSTRACT

The genus Metarhizium and Pochonia chlamydosporia comprise a monophyletic clade of highly abundant globally distributed fungi that can transition between long-term beneficial associations with plants to transitory pathogenic associations with frequently encountered protozoans, nematodes or insects. Some very common 'specialist generalist' species are adapted to particular soil and plant ecologies, but can overpower a wide spectrum of insects with numerous enzymes and toxins that result from extensive gene duplications made possible by loss of meiosis and associated genome defence mechanisms. These species use parasexuality instead of sex to combine beneficial mutations from separate clonal individuals into one genome (Vicar of Bray dynamics). More weakly endophytic species which kill a narrow range of insects retain sexuality to facilitate host-pathogen coevolution (Red Queen dynamics). Metarhizium species can fit into numerous environments because they are very flexible at the genetic, physiological and ecological levels, providing tractable models to address how new mechanisms for econutritional heterogeneity, host switching and virulence are acquired and relate to diverse sexual life histories and speciation. Many new molecules and functions have been discovered that underpin Metarhizium associations, and have furthered our understanding of the crucial ecology of these fungi in multiple habitats.


Subject(s)
Metarhizium/physiology , Animals , Biodiversity , Ecology , Environmental Microbiology , Genome, Fungal , Genomics/methods , Host Specificity , Host-Pathogen Interactions , Insecta/microbiology , Metarhizium/classification , Plant Diseases/microbiology
3.
Sci Rep ; 10(1): 14284, 2020 08 31.
Article in English | MEDLINE | ID: mdl-32868814

ABSTRACT

We found substantial variation in resistance to the fly-specific pathogen Entomophthora muscae 'Berkeley' (Entomophthoromycota), in 20 lines from the Drosophila melanogaster Genetic Reference Panel (DGRP). Resistance to E. muscae is positively (r = 0.55) correlated with resistance to the broad host range ascomycete entomopathogen Metarhizium anisopliae (Ma549), indicative of generalist (non-specific) defenses. Most of the lines showing above average resistance to Ma549 showed cross-resistance to E. muscae. However, lines that succumbed quickly to Ma549 exhibited the full range of resistance to E. muscae. This suggests fly populations differ in E. muscae-specific resistance mechanisms as well as generic defences effective against both Ma549 and E. muscae. We looked for trade-offs that could account for inter-line variation, but increases (decreases) in disease resistance to E. muscae are not consistently associated with increases (decreases) of resistance to oxidative stress, starvation stress and sleep indices. That these pathogens are dynamic agents of selection on hosts is reflected in this genetic variation for resistance in lines derived from wild populations.


Subject(s)
Disease Resistance/genetics , Drosophila melanogaster/microbiology , Entomophthora , Animals , Drosophila melanogaster/genetics , Drosophila melanogaster/immunology , Entomophthora/pathogenicity , Female , Genetic Variation/genetics , Male
4.
PLoS Pathog ; 13(3): e1006260, 2017 03.
Article in English | MEDLINE | ID: mdl-28257468

ABSTRACT

Individuals vary extensively in the way they respond to disease but the genetic basis of this variation is not fully understood. We found substantial individual variation in resistance and tolerance to the fungal pathogen Metarhizium anisopliae Ma549 using the Drosophila melanogaster Genetic Reference Panel (DGRP). In addition, we found that host defense to Ma549 was correlated with defense to the bacterium Pseudomonas aeruginosa Pa14, and several previously published DGRP phenotypes including oxidative stress sensitivity, starvation stress resistance, hemolymph glucose levels, and sleep indices. We identified polymorphisms associated with differences between lines in both their mean survival times and microenvironmental plasticity, suggesting that lines differ in their ability to adapt to variable pathogen exposures. The majority of polymorphisms increasing resistance to Ma549 were sex biased, located in non-coding regions, had moderately large effect and were rare, suggesting that there is a general cost to defense. Nevertheless, host defense was not negatively correlated with overall longevity and fecundity. In contrast to Ma549, minor alleles were concentrated in the most Pa14-susceptible as well as the most Pa14-resistant lines. A pathway based analysis revealed a network of Pa14 and Ma549-resistance genes that are functionally connected through processes that encompass phagocytosis and engulfment, cell mobility, intermediary metabolism, protein phosphorylation, axon guidance, response to DNA damage, and drug metabolism. Functional testing with insertional mutagenesis lines indicates that 12/13 candidate genes tested influence susceptibility to Ma549. Many candidate genes have homologs identified in studies of human disease, suggesting that genes affecting variation in susceptibility are conserved across species.


Subject(s)
Drosophila melanogaster/genetics , Pseudomonas aeruginosa , Animals , Drosophila melanogaster/microbiology , Genome-Wide Association Study , Metarhizium , Mutagenesis, Insertional , Mutagenesis, Site-Directed
5.
Sci Rep ; 5: 12350, 2015 Jul 23.
Article in English | MEDLINE | ID: mdl-26202798

ABSTRACT

Fungi cause the majority of insect disease. However, to date attempts to model host-fungal interactions with Drosophila have focused on opportunistic human pathogens. Here, we performed a screen of 2,613 mutant Drosophila lines to identify host genes affecting susceptibility to the natural insect pathogen Metarhizium anisopliae (Ma549). Overall, 241 (9.22%) mutant lines had altered resistance to Ma549. Life spans ranged from 3.0 to 6.2 days, with females being more susceptible than males in all lines. Speed of kill correlated with within-host growth and onset of sporulation, but total spore production is decoupled from host genotypes. Results showed that mutations affected the ability of Drosophila to restrain rather than tolerate infections and suggested trade-offs between antifungal and antibacterial genes affecting cuticle and gut structural barriers. Approximately, 13% of mutations where in genes previously associated with host pathogen interactions. These encoded fast-acting immune responses including coagulation, phagocytosis, encapsulation and melanization but not the slow-response induction of anti-fungal peptides. The non-immune genes impact a wide variety of biological functions, including behavioral traits. Many have human orthologs already implicated in human disorders; while others were mutations in protein and non-protein coding genes for which disease resistance was the first biological annotation.


Subject(s)
Disease Resistance/genetics , Drosophila Proteins/genetics , Drosophila/genetics , Drosophila/microbiology , Metarhizium/physiology , Animals , Drosophila/classification , Mutation/genetics , Survival
SELECTION OF CITATIONS
SEARCH DETAIL
...