Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 14(8): e0221348, 2019.
Article in English | MEDLINE | ID: mdl-31412081

ABSTRACT

[This corrects the article DOI: 10.1371/journal.pone.0220479.].

2.
PLoS One ; 14(7): e0220479, 2019.
Article in English | MEDLINE | ID: mdl-31356635

ABSTRACT

Histone acetylation is one of the most important posttranslational modifications that contribute to transcriptional initiation and chromatin remodeling. In the present study, we aimed to investigate the effect of sodium butyrate (NaBu), a natural histone deacetylase inhibitor (HDACi), on the maturation of oocytes, preimplantation embryonic development, and expression of important developmental genes. The results indicated that NaBu decreased the rates of GVBD and the first polar body extrusion (PBE) in vitro in a dose-dependent manner. Meanwhile, NaBu treatment led to an abnormality in the spindle apparatus in oocytes in MI. However, the ratio of phosphor-extracellular signal-regulated kinases (p-ERK)/ERK significantly decreased in oocytes treated with 2.0 mM NaBu for 8 h. Furthermore, NaBu treatment at 2.0 mM improved the quality of embryos and the mRNA expression levels of important developmental genes such as HDAC1, Sox2, and Pou5f1. These data suggest that although a high concentration NaBu will impede the meiosis of oocytes, 2.0 mM NaBu will promote the development of embryos in vitro. Further investigation is needed to clarify the direct/indirect effects of NaBu on the regulation of important developmental genes and their subsequent impacts on full-term development in mammals.


Subject(s)
Blastocyst/drug effects , Butyric Acid/pharmacology , Embryo, Mammalian/cytology , Embryonic Development/drug effects , In Vitro Oocyte Maturation Techniques/methods , Oocytes/cytology , Animals , Embryo, Mammalian/drug effects , Female , Fertilization in Vitro , Histamine Antagonists/pharmacology , Histones/metabolism , Male , Mice , Oocytes/drug effects , Parthenogenesis , Pregnancy
SELECTION OF CITATIONS
SEARCH DETAIL
...