Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.308
Filter
1.
Adv Mater ; : e2407741, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39091050

ABSTRACT

The metal-catalyzed sulfur reaction in lithium-sulfur (Li-S) batteries usually suffers from the strong binding of sulfur species to the catalyst surface, which destroys the electric double layer (EDL) region there. This causes rapid catalyst deactivation because it prevents the desorption of sulfur species and mass transport through the EDL is hindered. This work introduces a competitive adsorption factor (fsulfur) as a new indicator to quantify the competitive adsorption of sulfur species in the EDL and proposes an alloying method to change it by strengthening the p-d hybridization of alloying metals with electrolyte solvents. A cobalt-zinc alloy catalyst with a moderate fsulfur lowers the activation energy of the rate-limiting step of the conversion of lithium polysulfides to lithium sulfide, giving a platform capacity proportion that is 96% of the theoretical value and has a greatly improved anti-passivation ability, especially at high sulfur loadings and lean electrolyte conditions (a low E/S ratio of 5 µL mgS -1). A pouch cell using this approach has a high energy density of up to 464 Wh kg-1. Such a competitive adsorption indicator and alloying strategy offer a new guideline for catalyst design and a practical electrocatalysis solution for Li-S batteries.

3.
Cancer Sci ; 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39119927

ABSTRACT

A precise radiotherapy plan is crucial to ensure accurate segmentation of glioblastomas (GBMs) for radiation therapy. However, the traditional manual segmentation process is labor-intensive and heavily reliant on the experience of radiation oncologists. In this retrospective study, a novel auto-segmentation method is proposed to address these problems. To assess the method's applicability across diverse scenarios, we conducted its development and evaluation using a cohort of 148 eligible patients drawn from four multicenter datasets and retrospective data collection including noncontrast CT, multisequence MRI scans, and corresponding medical records. All patients were diagnosed with histologically confirmed high-grade glioma (HGG). A deep learning-based method (PKMI-Net) for automatically segmenting gross tumor volume (GTV) and clinical target volumes (CTV1 and CTV2) of GBMs was proposed by leveraging prior knowledge from multimodal imaging. The proposed PKMI-Net demonstrated high accuracy in segmenting, respectively, GTV, CTV1, and CTV2 in an 11-patient test set, achieving Dice similarity coefficients (DSC) of 0.94, 0.95, and 0.92; 95% Hausdorff distances (HD95) of 2.07, 1.18, and 3.95 mm; average surface distances (ASD) of 0.69, 0.39, and 1.17 mm; and relative volume differences (RVD) of 5.50%, 9.68%, and 3.97%. Moreover, the vast majority of GTV, CTV1, and CTV2 produced by PKMI-Net are clinically acceptable and require no revision for clinical practice. In our multicenter evaluation, the PKMI-Net exhibited consistent and robust generalizability across the various datasets, demonstrating its effectiveness in automatically segmenting GBMs. The proposed method using prior knowledge in multimodal imaging can improve the contouring accuracy of GBMs, which holds the potential to improve the quality and efficiency of GBMs' radiotherapy.

4.
J Appl Clin Med Phys ; : e14480, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39120606

ABSTRACT

OBJECTIVE: This study aims to analyze setup errors in pelvic Volumetric Modulated Arc Therapy (VMAT) for patients with non-surgical primary cervical cancer, utilizing the onboard iterative kV cone beam CT (iCBCT) imaging system on the Varian Halcyon 2.0 ring gantry structure accelerator to enhance radiotherapy precision. METHOD: We selected 132 cervical cancer patients who underwent VMAT with daily iCBCT imaging guidance. Before each treatment session, a registration method based on the bony structure was employed to acquire iCBCT images with the corresponding planning CT images. Following verification and adjustment of image registration results along the three axes (but not rotational), setup errors in the lateral (X-axis), longitudinal (Y-axis), and vertical (Z-axis) directions were recorded for each patient. Subsequently, we analyzed 3642 iCBCT image setup errors. RESULTS: The mean setup errors for the X, Y, and Z axes were 4.50 ± 3.79 mm, 6.08 ± 6.30 mm, and 1.48 ± 2.23 mm, respectively. Before correction with iCBCT, setup margins based on the Van Herk formula for the X, Y, and Z axes were 6.28, 12.52, and 3.26 mm, respectively. In individuals aged 60 years and older, setup errors in the X and Y axes were significantly larger than those in the younger group (p < 0.05). Additionally, there is no significant linear correlation between setup errors and treatment fraction numbers. CONCLUSION: Data analysis underscores the importance of precise Y-axis setup for cervical cancer patients undergoing VMAT. Radiotherapy centers without daily iCBCT should appropriately extend the planning target volume (PTV) along the Y-axis for cervical cancer patients receiving pelvic VMAT. Elderly patients exhibit significantly larger setup errors compared to younger counterparts. In conclusion, iCBCT-guided radiotherapy is recommended for cervical cancer patients undergoing VMAT to improve setup precision.

5.
CNS Neurosci Ther ; 30(8): e14894, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39107957

ABSTRACT

BACKGROUND: Subarachnoid hemorrhage (SAH) represents a severe stroke subtype. Our study aims to develop gender-specific prognostic prediction models derived from distinct prognostic factors observed among different-gender patients. METHODS: Inclusion comprised SAH-diagnosed patients from January 2014 to March 2016 in our institution. Collected data encompassed patients' demographics, admission severity, treatments, imaging findings, and complications. Three-month post-discharge prognoses were obtained via follow-ups. Analyses assessed gender-based differences in patient information. Key factors underwent subgroup analysis, followed by univariate and multivariate analyses to identify gender-specific prognostic factors and establish/validate gender-specific prognostic models. RESULTS: A total of 929 patients, with a median age of 57 (16) years, were analyzed; 372 (40%) were male, and 557 (60%) were female. Differences in age, smoking history, hypertension, aneurysm presence, and treatment interventions existed between genders (p < 0.01), yet no disparity in prognosis was noted. Subgroup analysis explored hypertension history, aneurysm presence, and treatment impact, revealing gender-specific variations in these factors' influence on the disease. Screening identified independent prognostic factors: age, SEBES score, admission GCS score, and complications for males; and age, admission GCS score, intraventricular hemorrhage, treatment interventions, symptomatic vasospasm, hydrocephalus, delayed cerebral ischemia, and seizures for females. Evaluation and validation of gender-specific models yielded an AUC of 0.916 (95% CI: 0.878-0.954) for males and 0.914 (95% CI: 0.885-0.944) for females in the ROC curve. Gender-specific prognostic models didn't significantly differ from the overall population-based model (model 3) but exhibited robust discriminative ability and clinical utility. CONCLUSION: Variations in baseline and treatment-related factors among genders contribute partly to gender-based prognosis differences. Independent prognostic factors vary by gender. Gender-specific prognostic models exhibit favorable prognostic performance.


Subject(s)
Sex Characteristics , Subarachnoid Hemorrhage , Humans , Subarachnoid Hemorrhage/diagnosis , Male , Female , Middle Aged , Prognosis , Aged , Adult , Retrospective Studies
6.
J Biol Chem ; 300(9): 107623, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39098531

ABSTRACT

Single-domain antibodies ("nanobodies") derived from the variable region of camelid heavy-chain only antibody variants have proven to be widely useful tools for research, therapeutic, and diagnostic applications. In addition to traditional display techniques, methods to generate nanobodies using direct detection by mass spectrometry and DNA sequencing have been highly effective. However, certain technical challenges have limited widespread application. We have optimized a new pipeline for this approach that greatly improves screening sensitivity, depth of antibody coverage, antigen compatibility, and overall hit rate and affinity. We have applied this improved methodology to generate significantly higher affinity nanobody repertoires against widely used targets in biological research-i.e., GFP, tdTomato, GST, and mouse, rabbit, and goat immunoglobulin G. We have characterized these reagents in affinity isolations and tissue immunofluorescence microscopy, identifying those that are optimal for these particularly demanding applications, and engineering dimeric constructs for ultra-high affinity. This study thus provides new nanobody tools directly applicable to a wide variety of research problems, and improved techniques enabling future nanobody development against diverse targets.

7.
Article in English | MEDLINE | ID: mdl-39154933

ABSTRACT

BACKGROUND: Impaired gamma band oscillation, specifically 40-Hz auditory steady state response (ASSR) has been robustly found in schizophrenia, while there is relatively little evidence characterizing the ASSR before full-blown psychosis. OBJECTIVE: To characterize gamma-band ASSR in populations at clinical high-risk for psychosis (CHR). METHODS: One hundred and seven CHR subjects and sixty-five healthy control (HC) subjects were included and completed clinical assessments, the ASSR paradigm of electroencephalography (EEG) and cognitive assessments. Both indices of event-related spectrum perturbation (ERSP) and intertrial coherence (ITC) in response to 20-Hz, 30-Hz and 40-Hz click sounds were respectively qualified and compared between these two groups, as well as the relationship to clinical psychopathology and cognitive function was assessed. RESULTS: At 40-Hz click sounds, ERSP in HC group (1.042 ± 0.047) was statistical significantly increased than that in CHR group (0.873 ± 0.036) (p = 0.005);at 30-Hz, ERSP in HC group (0.536 ± 0.024) was increased than that in CHR group (0.483 ± 0.019), but the difference was trend statistical significance (p = 0.083);at 20-Hz, ERSP in HC group (0.452 ± 0.017) was not different significantly from CHR group (0.418 ± 0.013) (p = 0.104). ERSP of the HC group was the highest at 40-Hz click sounds, followed by 30-Hz, and the lowest at 20-Hz. The difference between any two of the three ERSP showed statistical significance (30-Hz vs. 40-Hz: p < 0.001; 20-Hz vs. 40-Hz: p < 0.001;20-Hz vs. 30-Hz: p = 0.003). Similarly, ERSP of the CHR group was the highest at 40-Hz click sounds, followed by 30-Hz, and the lowest at 20-Hz. The difference between any two of these three ERSP showed statistical significance (30-Hz vs. 40-Hz: p < 0.001; 20-Hz vs. 40-Hz: p < 0.001;20-Hz vs. 30-Hz: p = 0.002). A statistically significant small positive correlation of 40-Hz ERSP with signal processing speed score was observed in the HC group (ρ = 0.27, p = 0.029). A statistically significant small negative correlation of 40-Hz ERSP with visual learning score was observed in the CHR group (ρ = -0.22, p = 0.023). CONCLUSION: Impaired 40-Hz but undamaged hierarchical organization mode of auditory steady state presented in the CHR populations. Abnormal 40 Hz ASSR for CHR might be associated with cognitive functions, such as information processing speed and visual memory.

8.
Environ Res ; : 119820, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39181295

ABSTRACT

Accurately assessing the key factors influencing air pollution is crucial for effective air pollution control. To address this need, we propose a novel Hybrid Features Grey Incidence Model (HFGIM), which integrates geometric feature differences from both proximity and similarity perspectives. Firstly, we extract geometric feature difference vectors of proximity and similarity from time series data and measure the overall feature difference degree by calculating vector norms. Secondly, we calculate the relative feature differences and information contribution rates of proximity and similarity to derive the hybrid feature differences coefficient between sequences, thereby obtaining the hybrid features incidence degree. After detailing the model's properties and modeling steps, we introduce the Cross-sectional Data Hybrid Features Grey Incidence Model (C-HFGIM) and the Panel Data Hybrid Features Grey Incidence Model (P-HFGIM) for handling cross-sectional and panel data, respectively. Applying HFGIM, we identified the key pollutants and primary pollution source indicators of air pollution in Jiangsu Province. We also compared HFGIM with other classical grey incidence models to verify the proposed model's effectiveness. Based on the analysis results, we propose policy recommendations for air pollution control in Jiangsu Province.

9.
J Med Chem ; 67(16): 14329-14344, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39091011

ABSTRACT

As an oleanolic acid derivative, CDDO-Me lacks selectivity for tumors. Based on the high reactive oxygen species (ROS) level in cancer cells, compound 4 was selected from 17 new CDDO arylboronate ester derivatives. A preliminary study revealed that 4 displayed the highest selectivity for cancer cells. Furthermore, 4 could be transformed to 4H by ROS to increase its covalent binding ability and antiproliferation effect (IC50 of 2.11 vs 0.37 µM) in BGC-823 cells. Interestingly, 4 increased ROS levels to induce apoptosis in BGC-823 cells. Moreover, the LD50 of 4 (91.2 mg/kg) was much greater than that of CDDO-Me (61.7 mg/kg) in ICR mice. A pharmacokinetic study indicated that 4 could be transformed to 4H in vivo. In addition, 4 exhibited a greater tumor inhibition rate (86.2%) than CDDO-Me (51.7%). Overall, the design of 4 provided an effective modification strategy for CDDO to increase the selectivity for cancer cells.


Subject(s)
Antineoplastic Agents , Apoptosis , Cell Proliferation , Mice, Inbred ICR , Oleanolic Acid , Animals , Humans , Male , Mice , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Apoptosis/drug effects , Boronic Acids/chemistry , Boronic Acids/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Esters/chemistry , Esters/pharmacology , Esters/chemical synthesis , Molecular Structure , Oleanolic Acid/analogs & derivatives , Oleanolic Acid/chemistry , Oleanolic Acid/pharmacology , Oleanolic Acid/pharmacokinetics , Oleanolic Acid/chemical synthesis , Reactive Oxygen Species/metabolism , Structure-Activity Relationship , Formamides/chemistry , Formamides/pharmacology , Ethylamines/chemistry , Ethylamines/pharmacology
10.
Int J Food Microbiol ; 424: 110850, 2024 Nov 02.
Article in English | MEDLINE | ID: mdl-39094468

ABSTRACT

The emergence of carbapenem-resistant bacteria especially carbapenem-resistant Escherichia coli (CREC) in food animals poses a serious threat to food safety and public health. Reports about the dissemination of carbapenem-resistant bacteria along the food animal production chain are scattered and mainly focus on swine and chicken. Abuse of antibiotics in duck farms is common especially in China which has the largest duck production industry, however, the CREC transmission between farmed ducks and slaughtered meats remains unclear and the role of slaughterhouse in disseminating CREC among duck meats remains largely unknown. Herein, we collected 251 fecal samples from five typical duck farms along with 125 slaughtered meat samples (25 from each farm) in the corresponding slaughterhouse in Anhui Province, China, in December 2018. All samples were screened for CREC isolates which were analyzed for the presence of carbapenemase genes and colistin resistance gene mcr. The resistance profiles, transferability, pulsed-field gel electrophoresis (PFGE), whole-genome sequencing and phylogenetic analysis of the CREC isolates from both ducks and meats were further characterized. This is the first report presenting the high prevalence of blaNDM-positive CREC isolates in ducks from duck farms (57.8 %) and slaughtered meats (33.6 %) in the corresponding slaughterhouse. Among the 203 blaNDM-positive CREC isolates obtained in this study, 19.2 % harbored mcr-1 and all CREC isolates showed resistance to nearly all currently available antibiotics (except tigecycline). Of note, mcr-1 was found in 17.8 % of the meat-derived CREC carrying blaNDM. Based on the PFGE analysis, clonal spread of blaNDM-positive CREC including some also carrying mcr-1 was found between farmed ducks and slaughtered duck meats even from different farms. Special attention should be paid to the clonal dissemination of meat-derived CREC within the slaughterhouse, which contributed to the high prevalence of blaNDM in slaughtered meats. Additionally, horizontal transmission mainly mediated by transferable blaNDM-5-bearing IncX3 plasmids, untypable blaNDM-1-bearing plasmids and mcr-1-bearing IncHI2 plasmids further facilitated the rapid spread of such multidrug-resistant strains. Notably, the blaNDM-bearing plasmids and mcr-1-bearing plasmids in CREC from meats were highly similar to those from animals and humans. More worryingly, the phylogenomic analysis showed that CREC isolates from both ducks and corresponding meats clustered with previously reported human CREC isolates carrying mcr-1 in different geographical areas including China. These findings further prove that the CREC and resistance plasmids in farmed ducks could transmit to meats even from different farms via the slaughterhouse and then trigger infections in humans. The high prevalence and clonal transmission of CREC isolates including those also carrying mcr-1 between ducks and meats are alarming, and urgent control measures are required to reduce the dissemination of such organisms.


Subject(s)
Abattoirs , Anti-Bacterial Agents , Ducks , Escherichia coli , Meat , beta-Lactamases , Animals , Escherichia coli/genetics , Escherichia coli/isolation & purification , Escherichia coli/drug effects , Meat/microbiology , China/epidemiology , Prevalence , beta-Lactamases/genetics , Anti-Bacterial Agents/pharmacology , Food Safety , Farms , Escherichia coli Infections/transmission , Escherichia coli Infections/veterinary , Escherichia coli Infections/epidemiology , Escherichia coli Infections/microbiology , Phylogeny , Feces/microbiology , Food Microbiology , Drug Resistance, Multiple, Bacterial , Microbial Sensitivity Tests , Escherichia coli Proteins/genetics , Bacterial Proteins/genetics
11.
Cell ; 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39127037

ABSTRACT

The nuclear pore complex (NPC) is the sole mediator of nucleocytoplasmic transport. Despite great advances in understanding its conserved core architecture, the peripheral regions can exhibit considerable variation within and between species. One such structure is the cage-like nuclear basket. Despite its crucial roles in mRNA surveillance and chromatin organization, an architectural understanding has remained elusive. Using in-cell cryo-electron tomography and subtomogram analysis, we explored the NPC's structural variations and the nuclear basket across fungi (yeast; S. cerevisiae), mammals (mouse; M. musculus), and protozoa (T. gondii). Using integrative structural modeling, we computed a model of the basket in yeast and mammals that revealed how a hub of nucleoporins (Nups) in the nuclear ring binds to basket-forming Mlp/Tpr proteins: the coiled-coil domains of Mlp/Tpr form the struts of the basket, while their unstructured termini constitute the basket distal densities, which potentially serve as a docking site for mRNA preprocessing before nucleocytoplasmic transport.

12.
Nano Lett ; 24(32): 9832-9838, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39101565

ABSTRACT

The surface of three-dimensional materials provides an ideal and versatile platform to explore quantum-confined physics. Here, we systematically investigate the electronic structure of Na-intercalated CrTe2, a van der Waals antiferromagnet, using angle-resolved photoemission spectroscopy and ab initio calculations. The measured band structure deviates from the calculation of bulk NaCrTe2 but agrees with that of ferromagnetic monolayer CrTe2. Consistently, we observe unexpected exchange splitting of the band dispersions, persisting well above the Néel temperature of bulk NaCrTe2. We argue that NaCrTe2 features a quantum-confined 2D ferromagnetic state in the topmost surface layer due to strong ferromagnetic correlation in the CrTe2 layer. Moreover, the exchange splitting and the critical temperature can be controlled by surface doping of alkali-metal atoms, suggesting the feasibility of tuning the surface ferromagnetism. Our work not only presents a simple platform for exploring tunable 2D ferromagnetism but also provides important insights into the quantum-confined low-dimensional magnetic states.

13.
Nano Lett ; 24(32): 9953-9960, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39102284

ABSTRACT

An interesting question is whether chalcogen atoms can emulate the role of carbon or boron elements stabilized between two transition metal layers, as observed in MXenes or MBenes. Here, we predict a new family of two-dimensional ternary compounds M4XY2 (where M = Pd, Y, Zr, etc.; X = S, Se, Te; and Y = Cl, Br, I), named M-chalcogene. Through first-principles calculations, we reveal diverse physical properties in these compounds, including superconducting, topological, and magnetic characteristics, where the bilayer transition metals play crucial roles. Moreover, the expected helical edge states and superconducting transition temperatures in Pd4SCl2 can be finely tuned by strains. Additionally, the Ti4SCl2 is predicted to be a topological insulator and shows promise as a gas sensor candidate for certain exotic gases. Our findings expand two-dimensional material families and provide promising platforms for diverse physical phenomena with efficient tunability by external stimuli for various applications.

14.
J Am Chem Soc ; 146(33): 23054-23066, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39133788

ABSTRACT

To date, NH3 synthesis under mild conditions is largely confined to precious Ru catalysts, while nonprecious metal (NPM) catalysts are confronted with the challenge of low catalytic activity due to the inverse relationship between the N2 dissociation barrier and NHx (x = 1-3) desorption energy. Herein, we demonstrate NPM (Co, Ni, and Re)-mediated Mo2CTx MXene (where Tx denotes the OH group) to achieve efficient NH3 synthesis under mild conditions. In particular, the NH3 synthesis rate over Re/Mo2CTx and Ni/Mo2CTx can reach 22.4 and 21.5 mmol g-1 h-1 at 400 °C and 1 MPa, respectively, higher than that of NPM-based catalysts and Cs-Ru/MgO ever reported. Experimental and theoretical studies reveal that Mo4+ over Mo2CTx has a strong ability for N2 activation; thus, the rate-determining step is shifted from conventional N2 dissociation to NH2* formation. NPM is mainly responsible for H2 activation, and the high reactivity of spillover hydrogen and electron transfer from NPM to the N-rich Mo2CTx surface can efficiently facilitate nitrogen hydrogenation and the subsequent desorption of NH3. With the synergistic effect of the dual active sites bridged by H-spillover, the NPM-mediated Mo2CTx catalysts circumvent the major obstacle, making NH3 synthesis under mild conditions efficient.

15.
Rheumatol Int ; 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39136786

ABSTRACT

Magnetic resonance imaging (MRI) is increasingly used in the classification and evaluation of osteoarthritis (OA). Many studies have focused on knee OA, investigating the association between MRI-detected knee structural abnormalities and knee pain. Hip OA differs from knee OA in many aspects, but little is known about the role of hip structural abnormalities in hip pain. This study aimed to systematically evaluate the association of hip abnormalities on MRI, such as cartilage defects, bone marrow lesions (BMLs), osteophytes, paralabral cysts, effusion-synovitis, and subchondral cysts, with hip pain. We searched electronic databases from inception to February 2024, to identify publications that reported data on the association between MRI features in the hip joint and hip pain. The quality of the included studies was scored using the Newcastle-Ottawa Scale (NOS). The levels of evidence were evaluated according to the Cochrane Back Review Group Method Guidelines and classified into five levels: strong, moderate, limited, conflicting, and no evidence. A total of nine studies were included, comprising five cohort studies, three cross-sectional studies, and one case-control study. Moderate level of evidence suggested a positive association of the presence and change of BMLs with the severity and progress of hip pain, and evidence for the associations between other MRI features and hip pain were limited or even conflicting. Only a few studies with small to modest sample sizes evaluated the association between hip structural changes on MRI and hip pain. BMLs may contribute to the severity and progression of hip pain. Further studies are warranted to uncover the role of hip MRI abnormalities in hip pain. The protocol for the systematic review was registered with PROSPERO ( https://www.crd.york.ac.uk/PROSPERO/ , CRD42023401233).

16.
Am J Transl Res ; 16(7): 3139-3147, 2024.
Article in English | MEDLINE | ID: mdl-39114720

ABSTRACT

OBJECTIVE: To evaluate the efficacy of laparoscopic choledocholithotomy with either an indwelling T-tube or primary suture in treating cholecystolithiasis complicated by choledocholithiasis. METHODS: We conducted a retrospective analysis of 133 patients with cholecystolithiasis complicated by choledocholithiasis treated at Inner Mongolia Aerospace Medical Baogang Hospital from March 2020 to March 2023. Patients were divided into a control group (laparoscopic choledocholithotomy with T-tube placement) and an observation group (laparoscopic choledocholithotomy with primary suture). We compared general and surgery-related data between groups. Factors correlated with favorable postoperative outcomes were identified using univariate and multivariate logistic regression analyses. RESULTS: The observation group exhibited significantly shorter surgical times, faster intestinal function recovery, reduced postoperative hospital stays, and lower total hospitalization costs compared to the control group (all P < 0.05). No significant differences were observed in postoperative total bilirubin (TBIL), aspartate aminotransferase (AST), or alanine aminotransferase (ALT) levels between the groups (all P > 0.05). Both primary suture technique and the absence of postoperative complications were independent predictors of favorable outcomes. CONCLUSION: Laparoscopic choledocholithotomy with primary suture is associated with shorter operation times, reduced medical costs, decreased hospitalization duration, and quicker gastrointestinal recovery compared to the traditional T-tube approach. This method is safe and feasible, provided clinicians are well-versed in its indications.

17.
FASEB J ; 38(15): e23855, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39096134

ABSTRACT

Astrocytes and microglia undergo dynamic and complex morphological and functional changes following ischemic stroke, which are instrumental in both inflammatory responses and neural repair. While gene expression alterations poststroke have been extensively studied, investigations into posttranscriptional regulatory mechanisms, specifically alternative splicing (AS), remain limited. Utilizing previously reported Ribo-Tag-seq data, this study analyzed AS alterations in poststroke astrocytes and microglia from young adult male and female mice. Our findings reveal that in astrocytes, compared to the sham group, 109 differential alternative splicing (DAS) events were observed at 4 h poststroke, which increased to 320 at day 3. In microglia, these numbers were 316 and 266, respectively. Interestingly, the disparity between DAS genes and differentially expressed genes is substantial, with fewer than 10 genes shared at both poststroke time points in astrocytes and microglia. Gene ontology enrichment analysis revealed the involvement of these DAS genes in diverse functions, encompassing immune response (Adam8, Ccr1), metabolism (Acsl6, Pcyt2, Myo5a), and developmental cell growth (App), among others. Selective DAS events were further validated by semiquantitative RT-PCR. Overall, this study comprehensively describes the AS alterations in astrocytes and microglia during the hyperacute and acute phases of ischemic stroke and underscores the significance of certain hub DAS events in neuroinflammatory processes.


Subject(s)
Alternative Splicing , Astrocytes , Ischemic Stroke , Microglia , Animals , Astrocytes/metabolism , Astrocytes/pathology , Microglia/metabolism , Microglia/pathology , Mice , Ischemic Stroke/genetics , Ischemic Stroke/metabolism , Ischemic Stroke/pathology , Male , Female , Mice, Inbred C57BL
19.
Sci Rep ; 14(1): 17212, 2024 07 26.
Article in English | MEDLINE | ID: mdl-39060315

ABSTRACT

Alternative splicing is a crucial process in multicellular eukaryote, facilitated by the assembly of spliceosomal complexes comprising numerous small ribonucleoproteins. At an early stage, U1C is thought to be required for 5' splice site recognition and base pairing. However, a systematic analysis of the U1C gene family in response to developmental cues and stress conditions has not yet been conducted in plants. This study identified 114 U1C genes in 72 plant species using basic bioinformatics analyses. Phylogenetic analysis was used to compare gene and protein structures, promoter motifs, and tissue- and stress-specific expression levels, revealing their functional commonalities or diversity in response to developmental cues, such as embryonic expression, or stress treatments, including drought and heat. Fluorescence quantitative expression analysis showed that U1C gene expression changed under salt, low temperature, drought, and Cd stress in rice seedlings. However, gene expression in shoots and roots was not consistent under different stress conditions, suggesting a complex regulatory mechanism. This research provides foundational insights into the U1C gene family's role in plant development and stress responses, highlighting potential targets for future studies.


Subject(s)
Gene Expression Regulation, Plant , Phylogeny , Plant Proteins , Stress, Physiological , Stress, Physiological/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Evolution, Molecular , Oryza/genetics , Oryza/metabolism , Alternative Splicing , Droughts , Promoter Regions, Genetic
20.
Sci Total Environ ; 948: 174921, 2024 Oct 20.
Article in English | MEDLINE | ID: mdl-39038687

ABSTRACT

This study explores the conservation of historic flyway corridors for egret in the Greater Bay Area (GBA), with a focus on habitat connectivity and dynamic corridors. To address the gaps in previous research, we used field observations, bio-climatic data and landcover information spanning three decades. Our approach involves MaxENT modeling and the Linkage Mapper method. The results showed that the MaxENT model effectively simulated the egret habitats at different levels, with coastlines and riverbanks emerging as primary habitat zones. Moreover, bio-climatic factors, particularly Bio 19 and Bio 8, played a dominant role, accounting for 90 % of the habitat suitability in 2020. Other factors contributed rather minimally. Through the utilization of resistance surface and corridor extraction methods, noteworthy alterations in the flyway networks emerged post-2000, followed by a gradual return to normal. Connectivity analyses highlighted a critical 30 km threshold for the egret preservation. Corridor widths should be determined based on cost-effective considerations. We conclude that combining MaxENT with the Linkage Mapper method, even with limited egret observations and integrating multi-source data, such as land cover, might simulate potential suitable habitats and flyway dynamics for waterbirds such as egrets. This study provides valuable insights for the egret conservation and the preservation of their habitats in the GBA, contributing to a global waterbird diversity and habitat quality.


Subject(s)
Birds , Conservation of Natural Resources , Ecosystem , Urbanization , Animals , China , Bays , Environmental Monitoring
SELECTION OF CITATIONS
SEARCH DETAIL