Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 265
Filter
3.
Sci Rep ; 14(1): 2401, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38287099

ABSTRACT

The epitaxial growth of silicene has been the subject of many investigations, controversies and non-classical results. In particular, the initially promising deposition of Si on a metallic substrate such as Ag(111) has revealed unexpected growth modes where Si is inserted at the beginning of the growth in the first atomic plane of the substrate. In order to rationalize this anomalous growth mode, we develop an out-of-equilibrium description of a lattice-based epitaxial growth model, which growth dynamics are analyzed via kinetic Monte-Carlo simulations. This model incorporates several effects revealed by the experiments such as the intermixing between Si and Ag, and surface effects. It is parametrized thanks to an approach in which we show that relatively precise estimates of energy barriers can be deduced by meticulous analysis of atomic microscopy images. This analysis enables us to reproduce both qualitatively and quantitatively the anomalous growth patterns of Si on Ag(111). We show that the dynamics results in two modes, a classical sub-monolayer growth mode at low temperature, and an inserted growth mode at higher temperatures, where the deposited Si atoms insert in the first layer of the substrate by replacing Ag atoms. Furthermore, we reproduce the non-standard [Formula: see text] shape of the experimental plot of the island density as a function of temperature, with a shift in island density variation during the transition between the submonoloyer and inserted growth modes.

4.
CNS Neurosci Ther ; 30(2): e14409, 2024 02.
Article in English | MEDLINE | ID: mdl-37602891

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) is one of the most common neurodegenerative diseases leading to dementia in elderly people. Microglia-mediated neuroinflammation plays an important role in AD pathogenesis, so modulation of neuroinflammation has emerged as an essential therapeutic method to improve AD. The current study aims to investigate whether MKP-1 can regulate microglia phenotype and inflammatory factor release in AD and explore its possible mechanisms. METHODS: Amyloid precursor protein/PS1 double transgenic mice and wild-type mice were selected to study the locations of microglia and amyloid-ß (Aß) plaques in different regions of mice brains. Changes in MKP-1 of microglia were detected using AD model mice and AD model cells. Changes in phenotype and the release of inflammatory factors within immortalized BV2 murine microglia were investigated by regulating the expression of MKP-1. RESULTS: The distribution of microglia and Aß plaques in the AD brain was region-specific. MKP-1 expression was downregulated in AD mice, and in vitro, with increasing Aß concentrations, MKP-1 expression was reduced. MKP-1 over-expression increased M2 microglia but decreased M1 microglia accompanied by changes in inflammatory factors and inhibition of MKP-1 yielded the opposite result. CONCLUSION: MKP-1 regulated microglia phenotype and inflammatory factor release in AD through modulation of the p38 signaling pathway.


Subject(s)
Alzheimer Disease , Animals , Mice , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Disease Models, Animal , Mice, Transgenic , Microglia/pathology , Neuroinflammatory Diseases
5.
Trends Plant Sci ; 29(2): 114-116, 2024 02.
Article in English | MEDLINE | ID: mdl-37838519

ABSTRACT

Application of disease-resistant varieties is the most effective and environmentally friendly way to control crop diseases. However, there is often a trade-off between disease resistance and yield. Several recent studies have demonstrated that genome-editing technology brings a new strategy for generating disease-resistant crops without yield penalties.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Genome, Plant/genetics , Plant Breeding , Crops, Agricultural/genetics , Plants, Genetically Modified/genetics
7.
Biochem Pharmacol ; 218: 115917, 2023 12.
Article in English | MEDLINE | ID: mdl-37952897

ABSTRACT

Antimicrobial resistance (AMR) constitutes a significant global threat to human health. In recent years, there has been a concerning surge in infections caused by multidrug-resistant bacteria, highlighting the pressing need to urgently explore novel and effective alternatives to conventional antibiotics. Antimicrobial peptides (AMPs) have emerged as a focal point of research, capturing significant attention as promising antimicrobial agents. In this study, we have identified a novel cationic antimicrobial peptide (AMP) named Scyreptin1-30, derived from the marine invertebrate Scylla paramamosain. The results showed that Scyreptin1-30 exhibits a broad-spectrum antimicrobial activity, demonstrating significant potency against both bacteria and fungi, and even against the clinically isolated multidrug-resistant bacteria Pseudomonas aeruginosa. Moreover, Scyreptin1-30 exhibited rapid bactericidal kinetic. The results of antibacterial mechanism showed that Scyreptin1-30 destroyed the integrity of bacterial membranes, leading to bacterial death and exhibited potent anti-biofilm activity against P. aeruginosa. The activity of Scyreptin1-30 against bacteria had a favorable thermal stability, displayed a certain ion tolerance, and showed no discernible cytotoxicity when assessed against both the mammalian cell line HEK293T and the fish cell lines ZF4. In an In vivo study, Scyreptin1-30 exhibited a remarkably reduction in the bacterial load caused by multidrug-resistant P. aeruginosa at the site of infection, and promoted wound healing in a mouse model of burn infection. This study indicated that Scyreptin1-30 holds promise as an effective antibacterial agent, potentially serving as a topical skin treatment against multidrug-resistant bacterial infections, including those caused by P. aeruginosa.


Subject(s)
Anti-Infective Agents , Burns , Pseudomonas Infections , Animals , Mice , Humans , Pseudomonas aeruginosa , Antimicrobial Peptides , HEK293 Cells , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Anti-Infective Agents/pharmacology , Pseudomonas Infections/drug therapy , Bacteria , Burns/drug therapy , Burns/microbiology , Microbial Sensitivity Tests , Mammals
9.
Pharmacol Res ; 196: 106933, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37729957

ABSTRACT

Both environmental and genetic factors contribute to the etiology of autoimmune thyroid disease (AITD) including Graves' disease (GD) and Hashimoto's thyroiditis (HT). However, the exact pathogenesis and interactions that occur between environmental factors and genes remain unclear, and therapeutic targets require further investigation due to limited therapeutic options. To solve such problems, this study utilized single-cell transcriptome, whole transcriptome, full-length transcriptome (Oxford nanopore technology), and metabolome sequencing to examine thyroid lesion tissues from 2 HT patients and 2 GD patients as well as healthy thyroid tissue from 1 control subject. HT patients had increased ATF4-positive thyroid follicular epithelial (ThyFoEp) cells, which significantly increased endoplasmic reticulum stress. The enhanced sustained stress resulted in cell death mainly including apoptosis and necroptosis. The ATF4-based global gene regulatory network and experimental validation revealed that N6-methyladenosine (m6A) reader hnRNPC promoted the transcriptional activity, synthesis, and translation of ATF4 through mediating m6A modification of ATF4. Increased ATF4 expression initiated endoplasmic reticulum stress signaling, which when sustained, caused apoptosis and necroptosis in ThyFoEp cells, and mediated HT development. Targeting hnRNPC and ATF4 notably decreased ThyFoEp cell death, thus ameliorating disease progression. Collectively, this study reveals the mechanisms by which microenvironmental cells in HT and GD patients trigger and amplify the thyroid autoimmune cascade response. Furthermore, we identify new therapeutic targets for the treatment of autoimmune thyroid disease, hoping to provide a potential way for targeted therapy.

10.
Med Oncol ; 40(8): 217, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37393403

ABSTRACT

FAM50A encodes a nuclear protein involved in mRNA processing; however, its role in cancer development remains unclear. Herein, we conducted an integrative pan-cancer analysis using The Cancer Genome Atlas, Genotype-Tissue Expression, and the Clinical Proteomic Tumor Analysis Consortium databases. Based on the gene expression data from TCGA and GTEx databases, we compared FAM50A mRNA levels in 33 types of human cancer tissues to those in corresponding normal tissues and found that FAM50A mRNA level was upregulated in 20 of the 33 types of common cancer tissues. Then, we compared the DNA methylation status of the FAM50A promoter in tumor tissues to that in corresponding normal tissues. FAM50A upregulation was accompanied by promoter hypomethylation in 8 of the 20 types of tumor tissues, suggesting that promoter hypomethylation contributes to the upregulation of FAM50A in these cancer tissues. Elevated FAM50A expression in 10 types of cancer tissues was associated with poor prognosis in patients with cancer. FAM50A expression was positively correlated with CD4+ T-lymphocyte and dendritic cell infiltration in cancer tissues but was negatively correlated with CD8+ T-cell infiltration in cancer tissues. FAM50A knockdown caused DNA damage, induced interferon beta and interleukin-6 expression, and repressed the proliferation, invasion, and migration of cancer cells. Our findings indicate that FAM50A might be useful in cancer detection, reveal insights into its role in cancer development, and may contribute to the development of cancer diagnostics and treatments.


Subject(s)
Neoplasms , Proteomics , Humans , Up-Regulation , Transcriptional Activation , Neoplasms/genetics , CD4-Positive T-Lymphocytes , DNA-Binding Proteins , RNA-Binding Proteins
11.
Inflammation ; 46(6): 2165-2177, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37462885

ABSTRACT

Kawasaki disease (KD) is an autoimmune disease of unknown etiology and has become a main cause of childhood acquired heart disease. KD is more prevalent in males than in females. The reason for this sex bias is unknown. Here, we used whole-exome sequencing (WES) to identify significantly different variants between male and female KD patients. From WES result, a total of 19,500 shared genetic variants in 8421 genes were captured via a series of filters. Further comparisons based on sex were performed to obtain 34 potential sex-biased variants in 34 genes for GO and Reactome Gene Sets enrichment analyses. Moreover, we selected 6 variants associated with immune, cells adhesion, platelet function, homeostasis, and ion channel signaling and expanded the sample size (1247 KD patients containing 713 males and 534 females, 803 healthy population containing 481 males and 322 females) for genotyping validation. From the results, USH2A/rs148135241, LMO7/rs142687160, CEMIP/rs12441101, and EFCC1/rs142391828 presented significant differences of alleles/genotypes frequency distributions between male and female only in KD patients (which were consistent with the result of WES analysis) but not in healthy population. In addition, the result also found that only EFCC1/rs142391828 polymorphism was associated with KD susceptibility. This result suggested that those four variants might play critical roles in sex bias in KD. The study would be in favor of a sex-specific genome atlas establishing and novel sex-specific precision therapies development for KD.


Subject(s)
Mucocutaneous Lymph Node Syndrome , Usher Syndromes , Humans , Male , Female , Exome Sequencing , Mucocutaneous Lymph Node Syndrome/diagnosis , Mucocutaneous Lymph Node Syndrome/genetics , Polymorphism, Single Nucleotide , Signal Transduction , Genetic Predisposition to Disease
12.
Int J Mol Sci ; 24(12)2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37373118

ABSTRACT

In recent years, there has been a growing interest in changes in dynamic mechanical properties of mixed rubber during dynamic shear, yet the influence of vulcanized characteristics on the dynamic shear behavior of vulcanized rubber, particularly the effect of cross-linking density, has received little attention. This study focuses on styrene-butadiene rubber (SBR) and aims to investigate the impact of different cross-linking densities (Dc) on dynamic shear behavior using molecular dynamics (MD) simulations. The results reveal a remarkable Payne effect, where the storage modulus experiences a significant drop when the strain amplitude (γ0) exceeds 0.1, which can be attributed to the fracture of the polymer bond and the decrease in the molecular chain's flexibility. The influence of various Dc values mainly resides at the level of molecular aggregation in the system, where higher Dc values impede molecular chain motion and lead to an increase in the storage modulus of SBR. The MD simulation results are verified through comparisons with existing literature.


Subject(s)
Gastropoda , Rubber , Animals , Molecular Dynamics Simulation , Elastomers , Butadienes
13.
Mol Cancer ; 22(1): 99, 2023 06 23.
Article in English | MEDLINE | ID: mdl-37353784

ABSTRACT

BACKGROUND: Lung adenocarcinoma (LUAD) is a common type of lung cancer with a high risk of metastasis, but the exact molecular mechanisms of metastasis are not yet understood. METHODS: This study acquired single-cell transcriptomics profiling of 11 distal normal lung tissues, 11 primary LUAD tissues, and 4 metastatic LUAD tissues from the GSE131907 dataset. The lung multicellular ecosystems were characterized at a single-cell resolution, and the potential mechanisms underlying angiogenesis and metastasis of LUAD were explored. RESULTS: We constructed a global single-cell landscape of 93,610 cells from primary and metastatic LUAD and found that IGF2BP2 was specifically expressed both in a LUAD cell subpopulation (termed as LUAD_IGF2BP2), and an endothelial cell subpopulation (termed as En_IGF2BP2). The LUAD_IGF2BP2 subpopulation progressively formed and dominated the ecology of metastatic LUAD during metastatic evolution. IGF2BP2 was preferentially secreted by exosomes in the LUAD_IGF2BP2 subpopulation, which was absorbed by the En_IGF2BP2 subpopulation in the tumor microenvironment. Subsequently, IGF2BP2 improved the RNA stability of FLT4 through m6A modification, thereby activating the PI3K-Akt signaling pathway, and eventually promoting angiogenesis and metastasis. Analysis of clinical data showed that IGF2BP2 was linked with poor overall survival and relapse-free survival for LUAD patients. CONCLUSIONS: Overall, these findings provide a novel insight into the multicellular ecosystems of primary and metastatic LUAD, and demonstrate that a specific LUAD_IGF2BP2 subpopulation is a key orchestrator promoting angiogenesis and metastasis, with implications for the gene regulatory mechanisms of LUAD metastatic evolution, representing themselves as potential antiangiogenic targets.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Humans , Methylation , Ecosystem , Endothelial Cells , Phosphatidylinositol 3-Kinases , Neoplasm Recurrence, Local , Adenocarcinoma of Lung/genetics , Lung Neoplasms/genetics , Tumor Microenvironment , RNA-Binding Proteins/genetics
14.
Antimicrob Agents Chemother ; 67(6): e0002223, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37162345

ABSTRACT

The emergence of azole-resistant and biofilm-forming Candida spp. contributes to the constantly increasing incidence of vulvovaginal candidiasis. It is imperative to explore new antifungal drugs or potential substituents, such as antimicrobial peptides, to alleviate the serious crisis caused by resistant fungi. In this study, a novel antimicrobial peptide named Scyampcin44-63 was identified in the mud crab Scylla paramamosain. Scyampcin44-63 exhibited broad-spectrum antimicrobial activity against bacteria and fungi, was particularly effective against planktonic and biofilm cells of Candida albicans, and exhibited no cytotoxicity to mammalian cells (HaCaT and RAW264.7) or mouse erythrocytes. Transcriptomic analysis revealed four potential candidacidal modes of Scyampcin44-63, including promotion of apoptosis and autophagy and inhibition of ergosterol biosynthesis and the cell cycle. Further study showed that Scyampcin44-63 caused damage to the plasma membrane and induced apoptosis and cell cycle arrest at G2/M in C. albicans. Scanning and transmission electron microscopy demonstrated that Scyampcin44-63-treated C. albicans cells were deformed with vacuolar expansion and destruction of organelles. In addition, C. albicans cells pretreated with the autophagy inhibitor 3-methyladenine significantly delayed the candidacidal effect of Scyampcin44-63, suggesting that Scyampcin44-63 might contribute to autophagic cell death. In a murine model of vulvovaginal candidiasis, the fungal burden of vaginal lavage was significantly decreased after treatment with Scyampcin44-63.


Subject(s)
Brachyura , Candidiasis, Vulvovaginal , Humans , Female , Mice , Animals , Candidiasis, Vulvovaginal/drug therapy , Candidiasis, Vulvovaginal/microbiology , Antimicrobial Peptides , Disease Models, Animal , Candida albicans , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Mammals
15.
Front Microbiol ; 14: 1129568, 2023.
Article in English | MEDLINE | ID: mdl-37180261

ABSTRACT

In recent years, new emerging pathogenic microorganisms have frequently appeared in animals, including marine fish, possibly due to climate change, anthropogenic activities, and even cross-species transmission of pathogenic microorganisms among animals or between animals and humans, which poses a serious issue for preventive medicine. In this study, a bacterium was clearly characterized among 64 isolates from the gills of diseased large yellow croaker Larimichthys crocea that were raised in marine aquaculture. This strain was identified as K. kristinae by biochemical tests with a VITEK 2.0 analysis system and 16S rRNA sequencing and named K. kristinae_LC. The potential genes that might encode virulence-factors were widely screened through sequence analysis of the whole genome of K. kristinae_LC. Many genes involved in the two-component system and drug-resistance were also annotated. In addition, 104 unique genes in K. kristinae_LC were identified by pan genome analysis with the genomes of this strain from five different origins (woodpecker, medical resource, environment, and marine sponge reef) and the analysis results demonstrated that their predicted functions might be associated with adaptation to living conditions such as higher salinity, complex marine biomes, and low temperature. A significant difference in genomic organization was found among the K. kristinae strains that might be related to their hosts living in different environments. The animal regression test for this new bacterial isolate was carried out using L. crocea, and the results showed that this bacterium could cause the death of L. crocea and that the fish mortality was dose-dependent within 5 days post infection, indicating the pathogenicity of K. kristinae_LC to marine fish. Since K. kristinae has been reported as a pathogen for humans and bovines, in our study, we revealed a new isolate of K. kristinae_LC from marine fish for the first time, suggesting the potentiality of cross-species transmission among animals or from marine animals to humans, from which we would gain insight to help in future public prevention strategies for new emerging pathogens.

16.
Genes Dis ; 10(1): 284-300, 2023 Jan.
Article in English | MEDLINE | ID: mdl-37013063

ABSTRACT

Osteoporosis (OP) is a debilitating skeletal abnormality involving bone remodeling and bone cell homeostasis characterized by decreased bone strength and high fracture risk. A novel therapeutic intervention for OP by manipulating cellular autophagy-apoptosis processes to promote skeletal homeostasis is presented. Protective effects of the naturally occurring plant extract Liquiritigenin (LG) were demonstrated in an ovariectomy (OVX)-OP mouse model and preosteoblast MC3T3-E1 cells. Micro-CT and histological staining assessments of skeletal phenotype were applied alongside detection of autophagy activity in osteocytes and MC3T3-E1 cells by transmission electron microscopy (TEM). The effects of LG on chloroquine (CQ)- and the apoptosis-inducing TS-treated osteogenic differentiations and status of lysosomes within MC3T3-E1 cells were analyzed by Neutral red, Alizarin red S and alkaline phosphatase (ALP) staining and Western blot assays. Treatment with LG prevented bone loss, increased osteogenic differentiation in vivo and in vitro, and inhibited osteoclast formation to some extent. TEM analyses revealed that LG can improve auto-lysosomal degradation within osteocytes from OVX mice and MC3T3-E1 cells. The abnormal status of lysosomes associated with CQ and TS treatments was notably alleviated by LG which also reduced levels of apoptosis-induced inhibition of osteogenic differentiation and averted abnormal osteogenic differentiation as a consequence of a blockage in autolysosome degradation. Overall, LG stimulates bone growth in OVX mice through increased osteogenic differentiation and regulation of autophagy-apoptosis mechanisms, presenting an auspicious natural therapy for OP.

17.
Methods Mol Biol ; 2653: 107-114, 2023.
Article in English | MEDLINE | ID: mdl-36995622

ABSTRACT

Multiplex genome editing (MGE) technologies constitute essential tools for rapid genome modification of multiple targets in one gene or multiple genes simultaneously. However, the vector construction process is complicated, and the number of mutation targets is constrained using the conventional binary vectors. Here, we describe a simple CRISPR/Cas9 MGE system based on classical isocaudomer technique in rice, which is comprised of only two simple vectors, and can theoretically be used to edit an unlimited number of genes simultaneously.


Subject(s)
Gene Editing , Oryza , Gene Editing/methods , CRISPR-Cas Systems/genetics , Oryza/genetics , Mutation
18.
Int J Mol Sci ; 24(6)2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36982761

ABSTRACT

In the study, a new gene homologous to the known antimicrobial peptide Scygonadin was identified in mud crab Scylla paramamosain and named SCY3. The full-length sequences of cDNA and genomic DNA were determined. Similar to Scygonadin, SCY3 was dominantly expressed in the ejaculatory ducts of male crab and the spermatheca of post-mating females at mating. The mRNA expression was significantly up-regulated after stimulation by Vibrio alginolyticus, but not by Staphylococcus aureus. The recombinant protein rSCY3 had a killing effect on Micrococcus luteus and could improve the survival rate of mud crabs infected with V. alginolyticus. Further analysis showed that rSCY3 interacted with rSCY1 or rSCY2 using Surface Plasmon Resonance (SPR, a technology for detecting interactions between biomolecules using biosensor chips) and Mammalian Two-Hybrid (M2H, a way of detecting interactions between proteins in vivo). Moreover, the rSCY3 could significantly improve the sperm acrosome reaction (AR) of S. paramamosain and the results demonstrated that the binding of rSCY3, rSCY4, and rSCY5 to progesterone was a potential factor affecting the sperm AR by SCYs on. This study lays the foundation for further investigation on the molecular mechanism of SCYs involved in both immunity and physiological effects of S. paramamosain.


Subject(s)
Brachyura , Animals , Female , Male , Brachyura/genetics , Brachyura/metabolism , Acrosome Reaction , Semen , Spermatozoa , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Arthropod Proteins/genetics , Arthropod Proteins/pharmacology , Arthropod Proteins/chemistry , Immunity, Innate/genetics , Phylogeny , Mammals
19.
20.
Metab Brain Dis ; 38(4): 1143-1153, 2023 04.
Article in English | MEDLINE | ID: mdl-36745250

ABSTRACT

Glioma is the most common malignant tumor of the central nervous system. The urea cycle (UC) is an essential pathway to convert excess nitrogen and ammonia into the less toxic urea in humans. However, less is known about the functional significance of the urea cycle in glioma. p53 functions as a tumor suppressor and modulates several cellular functions and disease processes. In the present study, we aimed to explore whether p53 influences glioma progression by regulating the urea cycle. Here, we demonstrated the inhibitory impact of p53 on the expression of urea cycle enzymes and urea genesis in glioma cells. The level of polyamine, a urea cycle metabolite, was also regulated by p53 in glioma cells. Carbamoyl phosphate synthetase-1 (CPS1) is the first key enzyme involved in the urea cycle. Functionally, we demonstrated that CPS1 knockdown suppressed glioma cell proliferation, migration and invasion. Mechanistically, we demonstrated that the expression of ornithine decarboxylase (ODC), which determines the generation of polyamine, was regulated by CPS1. In addition, the impacts of p53 knockdown on ODC expression, glioma cell growth and aggressive phenotypes were significantly reversed by CPS1 inhibition. In conclusion, these results demonstrated that p53 inhibits polyamine metabolism by suppressing the urea cycle, which inhibits glioma progression.


Subject(s)
Glioma , Tumor Suppressor Protein p53 , Humans , Tumor Suppressor Protein p53/metabolism , Cell Line , Carbamoyl-Phosphate Synthase (Ammonia)/genetics , Carbamoyl-Phosphate Synthase (Ammonia)/metabolism , Polyamines/metabolism , Ornithine Decarboxylase/genetics , Ornithine Decarboxylase/metabolism , Urea/pharmacology , Urea/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...