Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Chin Med Sci J ; 38(4): 286-296, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38097345

ABSTRACT

Metabolic associated fatty liver disease (MAFLD) has become a prevalent chronic liver disease worldwide because of lifestyle and dietary changes. Gut microbiota and its metabolites have been shown to play a critical role in the pathogenesis of MAFLD. Understanding of the function of gut microbiota and its metabolites in MAFLD may help to elucidate pathological mechanisms, identify diagnostic markers, and develop drugs or probiotics for the treatment of MAFLD. Here we review the pathogenesis of MAFLD by gut microbiota and its metabolites and discuss the feasibility of treating MAFLD from the perspective of gut microbes.


Subject(s)
Fatty Liver , Gastrointestinal Microbiome , Fatty Liver/microbiology , Humans
2.
Article in English | MEDLINE | ID: mdl-35982994

ABSTRACT

Colon adenocarcinoma (COAD) is one of the most common malignant tumors in clinics. It is often found at an advanced stage, with high incidence and poor prognosis; early diagnosis is difficult and treatment methods are limited. In order to find new methods for diagnosis and treatment of COAD, people pay more and more attention to the discovery and functional research of new oncogenes and tumor suppressor genes of COAD. ß2-microglobulin (B2M) plays different physiological and pathological roles in tumor cells and nontumor cells. At present, there is no public report on the expression of B2M in COAD. In this study, the expression of B2M mRNA in COAD tissues was compared with that in normal tissues. The relationship between the expression of B2M mRNA and the stage, histological subtype, lymph node metastasis, TP53 mutation, and survival time of COAD was discussed. It was found that B2M is a potential tumor suppressor gene in COAD. The decreased expression of B2M after mutation can cause immune escape of COAD cells, thus affecting the therapeutic effect and prognosis. This study provides a new idea for the prevention and treatment of COAD.

3.
Article in English | MEDLINE | ID: mdl-34484401

ABSTRACT

Angiotensin-converting enzyme 2 (ACE2) has been identified as the key receptor of SARS coronavirus that plays a key role in the pathogenesis of SARS. It is known that ACE2 mRNA can be expressed in most organs. However, the protein expression of ACE2 is not clear yet. To explore the role of ACE2 as a precipitating factor in digestive organ damage in COVID-19, this study investigated the expression of ACE2 protein in the human liver, esophagus, stomach, and colon. The result showed that ACE2 can be expressed in the liver, esophagus, stomach, and colon, which suggests SARS-CoV-2 may enter the digestive system through ACE2 and cause liver damage and gastrointestinal damage. It is hoped that the result of the study will provide a new strategy for the prevention and treatment of digestive organ damage under COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL