Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Plants (Basel) ; 12(15)2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37570925

ABSTRACT

Pin nematodes (Paratylenchus spp.) are root parasites found worldwide. They have different life cycles and feeding habits and can damage a wide range of plants. A remarkable diversity of pin nematode species was found in soil samples from Florida and other states of the USA, Canada, and Spain. Using integrative taxonomy, two new species (Paratylenchus hawaiiensis sp. n. and P. roboris sp. n.), six valid species (Paratylenchulus acti, P. aquaticus, P. goldeni, P. paralatescens, P. minutus (=P. shenzhenensis syn. n.), and P. straeleni), and two undescribed species were identified from Florida; P. goldeni, P. hamatus, P. hamicaudatus, P. holdemani, and P. pedrami were found in California, P. minutus in Hawaii, P. goldeni in Oregon and Washington, and one new species, Paratylenchus borealis sp. n., in Alaska. Outside the USA, Paratylenchus projectus was detected in samples from Canada and Spain as well as P. holdemani and Paratylenchus sp. from Spain. The pin nematode species from Belgium and Russia identified in former studies as Paratylenchus sp. F was herein described as a new species with the name of P. borealis sp. n., using a population from Alaska. Previously reported molecular type A of P. aquaticus from Hawaii was reclassified as P. hawaiiensis sp. n., using a population from Florida. Paratylenchus roboris sp. n. from Florida has obese sedentary females with a stylet 63-71 µm long. The results of the molecular analysis of P. shenzhenensis from Florida and China indicated that it was conspecific with P. minutus from Hawaii and considered here as its junior synonym. New 26 D2-D3 expansion segments of 28S rRNA, 17 ITS rRNA, and 20 COI gene sequences were obtained in this study. Phylogenetic relationships of Paratylenchus are reconstructed using the D2-D3 of 28S rRNA, ITS rRNA, and COI gene sequences. Congruence of molecular and morphological evolution and species identification problems are discussed. Obese females were found in two major clades of Paratylenchus. The problem of reference materials is discussed, and it is proposed to make more efforts to collect topotype materials of known Paratylenchus species for molecular study.

2.
Plant Dis ; 107(10): 3106-3112, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37102725

ABSTRACT

Sunn hemp (Crotalaria juncea L.) cultivar Tropic Sun plants, stunted and displaying mottle and mosaic symptoms on foliage, were observed at a seed farm in Maui County, Hawaii. Lateral flow assays indicated the presence of either tobacco mosaic virus or a serologically related virus. High-throughput sequencing results coupled with real-time PCR experiments recovered the 6,455-nucleotide genome of a virus with an organization typical of tobamoviruses. Nucleotide and amino acid sequence comparisons and phylogenetic analyses indicated that this virus was most closely related to sunn-hemp mosaic virus but represents a distinct species. Sunn-hemp mottle virus (SHMoV) is being proposed as the common name of this virus. Transmission electron microscopy of virus extracts purified from symptomatic leaves revealed rod-shaped particles approximately 320 by 22 nm in size. In inoculation studies, the experimental host range of SHMoV appeared limited to members of the plant families Fabaceae and Solanaceae. Greenhouse experiments demonstrated plant-to-plant transmission of SHMoV that increased with ambient wind speed. Seeds from SHMoV-infected Tropic Sun were collected and were either surface disinfested or directly planted. A total of 924 seedlings germinated; 2 were positive for the virus, resulting in a seed transmission rate of 0.2%. Both infected plants came from the surface disinfestation treatment, suggesting that the virus might be unaffected by the treatment.


Subject(s)
Cannabis , Crotalaria , Tobamovirus , Crotalaria/chemistry , Hawaii , Tobamovirus/genetics , Phylogeny , Nucleotides
3.
Front Microbiol ; 14: 1039292, 2023.
Article in English | MEDLINE | ID: mdl-36876060

ABSTRACT

Irrigation water is a common source of contamination that carries plant and foodborne human pathogens and provides a niche for proliferation and survival of microbes in agricultural settings. Bacterial communities and their functions in irrigation water were investigated by analyzing samples from wetland taro farms on Oahu, Hawaii using different DNA sequencing platforms. Irrigation water samples (stream, spring, and storage tank water) were collected from North, East, and West sides of Oahu and subjected to high quality DNA isolation, library preparation and sequencing of the V3-V4 region, full length 16S rRNA, and shotgun metagenome sequencing using Illumina iSeq100, Oxford Nanopore MinION and Illumina NovaSeq, respectively. Illumina reads provided the most comprehensive taxonomic classification at the phylum level where Proteobacteria was identified as the most abundant phylum in the stream source and associated water samples from wetland taro fields. Cyanobacteria was also a dominant phylum in samples from tank and spring water, whereas Bacteroidetes were most abundant in wetland taro fields irrigated with spring water. However, over 50% of the valid short amplicon reads remained unclassified and inconclusive at the species level. In contrast, Oxford Nanopore MinION was a better choice for microbe classification at the genus and species levels as indicated by samples sequenced for full length 16S rRNA. No reliable taxonomic classification results were obtained while using shotgun metagenome data. In functional analyzes, only 12% of the genes were shared by two consortia and 95 antibiotic resistant genes (ARGs) were detected with variable relative abundance. Full descriptions of microbial communities and their functions are essential for the development of better water management strategies aimed to produce safer fresh produce and to protect plant, animal, human and environmental health. Quantitative comparisons illustrated the importance of selecting the appropriate analytical method depending on the level of taxonomic delineation sought in each microbiome.

4.
Viruses ; 14(7)2022 06 28.
Article in English | MEDLINE | ID: mdl-35891390

ABSTRACT

Alomae-bobone virus complex (ABVC) is a lethal but still understudied disease that is limited to the Solomon Islands and Papua New Guinea. The only virus clearly associated to ABVC is Colocasia bobone disease-associated virus (CBDaV). Taro (Colocasia esculenta) plants with and without symptoms of ABVC disease were sampled from two locations in Papua New Guinea and examined for viruses using high-throughput sequencing (HTS). Similar to previous reports, isolates of CBDaV were present only in symptomatic plants, further supporting its role in the disease. The only other viruses consistently present in symptomatic plants were badnaviruses: taro bacilliform virus (TaBV) and/or taro bacilliform CH virus (TaBCHV). If ABVC requires co-infection by multiple viruses, CBDaV and badnavirus infection appears to be the most likely combination. The complete genomes of two isolates of CBDaV and TaBCHV, and single isolates of TaBV and dasheen mosaic virus, were obtained in this study, furthering our knowledge of the genetic diversity of these relatively understudied taro viruses. HTS data also provided evidence for an agent similar to umbra-like viruses that we are tentatively designating it as Colocasia umbra-like virus (CULV).


Subject(s)
Badnavirus , Colocasia , Badnavirus/genetics , Colocasia/genetics , Papua New Guinea , Sequence Analysis, DNA , Virome
5.
Microorganisms ; 9(9)2021 Aug 29.
Article in English | MEDLINE | ID: mdl-34576726

ABSTRACT

Sorghum/sorghum-sudangrass hybrids (SSgH) have been used as a cover crop to improve soil health by adding soil organic matter, enhancing microbial activities, and suppressing soil-borne pathogens in various cropping systems. A series of SSgH were screened for (1) allelopathic suppression and (2) improvement of soil edaphic factors and soil microbial profile against plant-parasitic nematode (PPNs). The allelopathic potential of SSgH against PPNs is hypothesized to vary by variety and age. In two greenhouse bioassays, 'NX-D-61' sorghum and the 'Latte' SSgH amendment provided the most suppressive allelopathic effect against the female formation of Meloidogyne incognita on mustard green seedlings when using 1-, 2-, or 3-month-old SSgH tissue, though most varieties showed a decrease in allelopathic effect as SSgH mature. A field trial was conducted where seven SSgH varieties were grown for 2.5 months and terminated using a flail mower, and eggplant was planted in a no-till system. Multivariate analysis of measured parameters revealed that increase in soil moisture, microbial biomass, respiration rate, nematode enrichment index, and sorghum biomass were negatively related to the initial abundance of PPNs and the root-gall index at 5 months after planting eggplant in a no-till system. These results suggested that improvement of soil health by SSgH could lead to suppression of PPN infection.

6.
Arch Virol ; 166(9): 2563-2567, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34117534

ABSTRACT

Taro reovirus (TaRV) has been reported infecting taro (Colocasia esculenta) in the South Pacific, but information on the virus is limited. Here, we report the genome sequence of a reovirus infecting taro in Papua New Guinea that had 10 genomic segments ranging from 1.1 to 3.9 kilobase pairs (kbp) in length with a total genome length of 26.3 kbp. TaRV was most closely related to rice ragged stunt virus (RRSV) but did not cross-react with RRSV polyclonal antisera. TaRV was not detected in 82 germplasm accessions of taro in Hawaii, or samples collected in American Samoa, Fiji, Guam, Palau, or Vanuatu.


Subject(s)
Colocasia/virology , Orthoreovirus/classification , Orthoreovirus/genetics , Amino Acid Sequence , Base Sequence , Genome, Viral , Hawaii , High-Throughput Nucleotide Sequencing , Orthoreovirus/isolation & purification , Phylogeny , Reoviridae/classification , Reoviridae/genetics
7.
J Nematol ; 532021.
Article in English | MEDLINE | ID: mdl-33860266

ABSTRACT

Fluopyram (Velum® One) is a synthetic nematicide and azadirachtin (Molt-X®) is a biological nematicide. Both have shown promise against plant-parasitic nematodes on several agriculturally important crops. There is a lack of information on integration of pre-plant sunn hemp (Crotalaria juncea) cover crop with these post-plant nematicides, aiming to improve plant-parasitic nematodes management and mitigate any detrimental effects on free-living nematodes. Three field trials were conducted to investigate the effects of fluopyram alone or in combination with pre-plant sunn hemp cover crop, and azadirachtin combined with pre-plant sunn hemp on Rotylenchulus reniformis and Meloidogyne spp., and free-living nematodes. Zucchini (Cucurbita pepo) and tomato (Solanum lycopersicum) were grown in Trials I and II, and sweet potato (Ipomoea batatas) only was grown in Trial III. In all three trials, early applications of fluopyram at crop planting were effective in suppressing the abundance of Meloidogyne spp. (M. incognita and M. javanica) but it was not effective in reducing R. reniformis in the soil. Combining sunn hemp with fluopyram was suppressive to R. reniformis on short-term zucchini crop, but not on longer term tomato and sweet potato crops. In addition, application of fluopyram at transplanting was the key to successful suppression of Meloidogyne spp. as later fluopyram chemigation (at 2 weeks after planting in Trial II or 1 month after planting in Trial III) had no effect against Meloidogyne spp. On the other hand, planting of sunn hemp followed by monthly post-plant azadirachtin application consistently suppressed R. reniformis, but this treatment did not suppress Meloidogyne spp. Integrating sunn hemp with fluopyram increased zucchini yield by >2.3 folds and that with azadirachtin increased the zucchini yield by >1.7 folds. Although no yield improvement was observed on tomato in Trial II, integrating sunn hemp with azadirachtin and fluopyram increased tomato yield by 0.23 and 1.12 folds, respectively, in Trial I. Marketable yield of sweet potato was increased by 4.5-6.4 folds in all the fluopyram treatments but was only increased 61.5% by sunn hemp plus azadirachtin treatment. While fluopyram alone often reduced the abundance of free-living nematodes, integrating with sunn hemp mitigated the negative impacts of fluopyram on soil health.

8.
J Nematol ; 50(4): 569-578, 2018.
Article in English | MEDLINE | ID: mdl-31094159

ABSTRACT

A series of experiments in laboratory, greenhouse, and field were conducted to compare the nematode suppressive effect of vermicompost tea (VCT) prepared from vermicompost with moso-bamboo (Phyllostachys edulis (Carrière) J. Houz.) and kudzu (Pueraria lobata (Willd) Ohwi) as feed stock (weed VCT) to that prepared from vegetable food waste (vegetable VCT) against Meloidogyne incognita and Rotylenchulus reniformis. Two laboratory trials were conducted by incubating eggs of M. incognita and R. reniformis in weed VCT or vegetable VCT over 1 wk. These trials revealed that although both VCTs suppressed M. incognita egg hatching compared to water control, only weed VCT suppressed R. reniformis egg hatching. In addition, both VCTs suppressed the mobility of second stage juveniles (J2s) of M. incognita equally compared to water control though suppression from weed VCT performed inconsistently between the trials. When root penetration of M. incognita on cucumber drenched with VCT on one side of a split-root system in a greenhouse sterile sand-soil mix was examined, weed VCT suppressed root penetration of M. incognita on the other side of the root in two trials, but vegetable VCT was only effective in one trial. However, both VCTs did not suppress R. reniformis root penetration. When the effect of the VCTs was examined in two cowpea (Vigna unguiculata) field trials, drenching of VCTs did not affect cowpea growth and yield, but weed VCT reduced root-gall index compared to the water control in both trials. Although both VCTs did not reduce the number of M. incognita and R. reniformis in soil, weed VCT did increase omnivorous nematodes in the second trial, indicating a gradual improvement of soil food web structure through VCT drenching over time. Overall, performance of weed VCT was more consistent than vegetable VCT for plant-parasitic nematodes suppression.A series of experiments in laboratory, greenhouse, and field were conducted to compare the nematode suppressive effect of vermicompost tea (VCT) prepared from vermicompost with moso-bamboo (Phyllostachys edulis (Carrière) J. Houz.) and kudzu (Pueraria lobata (Willd) Ohwi) as feed stock (weed VCT) to that prepared from vegetable food waste (vegetable VCT) against Meloidogyne incognita and Rotylenchulus reniformis. Two laboratory trials were conducted by incubating eggs of M. incognita and R. reniformis in weed VCT or vegetable VCT over 1 wk. These trials revealed that although both VCTs suppressed M. incognita egg hatching compared to water control, only weed VCT suppressed R. reniformis egg hatching. In addition, both VCTs suppressed the mobility of second stage juveniles (J2s) of M. incognita equally compared to water control though suppression from weed VCT performed inconsistently between the trials. When root penetration of M. incognita on cucumber drenched with VCT on one side of a split-root system in a greenhouse sterile sand-soil mix was examined, weed VCT suppressed root penetration of M. incognita on the other side of the root in two trials, but vegetable VCT was only effective in one trial. However, both VCTs did not suppress R. reniformis root penetration. When the effect of the VCTs was examined in two cowpea (Vigna unguiculata) field trials, drenching of VCTs did not affect cowpea growth and yield, but weed VCT reduced root-gall index compared to the water control in both trials. Although both VCTs did not reduce the number of M. incognita and R. reniformis in soil, weed VCT did increase omnivorous nematodes in the second trial, indicating a gradual improvement of soil food web structure through VCT drenching over time. Overall, performance of weed VCT was more consistent than vegetable VCT for plant-parasitic nematodes suppression.

9.
Plant Dis ; 101(5): 734-737, 2017 May.
Article in English | MEDLINE | ID: mdl-30678558

ABSTRACT

Suppression of root-knot nematodes (Meloidogyne spp.) by vermicompost tea (VCT) has been inconsistent. Greenhouse and laboratory trials were conducted to compare the effects of VCT prepared from different curing ages of vermicompost (VC) on root penetration, reproduction, and hatching of M. incognita. In the penetration experiment, zucchini (Cucurbita pepo) seedlings were drenched with VCT prepared from (i) uncured (UVC), (ii) partially cured (PVC), (iii) completely cured (CVC) vermicompost, and (iv) water or no vermicompost (NVC) 3 days prior to M. incognita inoculation. The experiment was repeated twice on cucumber (Cucumis sativus) and terminated one week after nematode inoculation. All three trials showed that UVC and PVC reduced (P ≤ 0.05) penetration of M. incognita compared with CVC and NVC. Two greenhouse trials showed that VCT from different curing ages of VC did not reduce the abundance of M. incognita juveniles in soil and eggs in roots 2.5 months after nematode inoculation. Two laboratory trials to examine hatching consistently showed that VCT from UVC and PVC suppressed hatching (P ≤ 0.05) compared with NVC, achieving 83.1% hatch reduction by UVC. Overall, VCT from UVC and PVC suppressed root penetration and hatching, but not the reproduction of M. incognita over time.

10.
J Nematol ; 45(4): 265-71, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24379485

ABSTRACT

Field experiments were conducted in Maryland to investigate the influence of sunn hemp cover cropping in conjunction with organic and synthetic fertilizers on the nematode community in a zucchini cropping system. Two field treatments, zucchini planted into a sunn hemp living and surface mulch (SH) and zucchini planted into bare-ground (BG) were established during three field seasons from 2009 to 2011. In 2009, although SH slightly increased nematode richness compared with BG by the first harvest (P < 0.10), it reduced nematode diversity and enrichment indices (P < 0.01 and P < 0.10, respectively) and increased the channel index (P < 0.01) compared to BG at the final harvest. This suggests a negative impact of SH on nematode community structure. The experiment was modified in 2010 and 2011 where the SH and BG main plots were further split into two subplots to investigate the added influence of an organic vs. synthetic fertilizer. In 2010, when used as a living and surface mulch in a no-till system, SH increased bacterivorous, fungivorous, and total nematodes (P < 0.05) by the final zucchini harvest, but fertilizer type did not influence nematode community structure. In 2011, when incorporated into the soil before zucchini planting, SH increased the abundance of bacterivorous and fungivorous nematodes early in the cropping season. SH increased species richness also at the end of the season (P < 0.05). Fertilizer application did not appear to influence nematodes early in the season. However, in late season, organic fertilizers increased enrichment and structure indices and decreased channel index by the end of the zucchini cropping cycle.

11.
PLoS Pathog ; 8(10): e1002974, 2012.
Article in English | MEDLINE | ID: mdl-23133370

ABSTRACT

Alternaria brassicicola is a successful saprophyte and necrotrophic plant pathogen. Several A. brassicicola genes have been characterized as affecting pathogenesis of Brassica species. To study regulatory mechanisms of pathogenesis, we mined 421 genes in silico encoding putative transcription factors in a machine-annotated, draft genome sequence of A. brassicicola. In this study, targeted gene disruption mutants for 117 of the transcription factor genes were produced and screened. Three of these genes were associated with pathogenesis. Disruption mutants of one gene (AbPacC) were nonpathogenic and another gene (AbVf8) caused lesions less than half the diameter of wild-type lesions. Unexpectedly, mutants of the third gene, Amr1, caused lesions with a two-fold larger diameter than the wild type and complementation mutants. Amr1 is a homolog of Cmr1, a transcription factor that regulates melanin biosynthesis in several fungi. We created gene deletion mutants of Δamr1 and characterized their phenotypes. The Δamr1 mutants used pectin as a carbon source more efficiently than the wild type, were melanin-deficient, and more sensitive to UV light and glucanase digestion. The AMR1 protein was localized in the nuclei of hyphae and in highly melanized conidia during the late stage of plant pathogenesis. RNA-seq analysis revealed that three genes in the melanin biosynthesis pathway, along with the deleted Amr1 gene, were expressed at low levels in the mutants. In contrast, many hydrolytic enzyme-coding genes were expressed at higher levels in the mutants than in the wild type during pathogenesis. The results of this study suggested that a gene important for survival in nature negatively affected virulence, probably by a less efficient use of plant cell-wall materials. We speculate that the functions of the Amr1 gene are important to the success of A. brassicicola as a competitive saprophyte and plant parasite.


Subject(s)
Alternaria/metabolism , Alternaria/pathogenicity , Fungal Proteins/biosynthesis , Gene Expression Regulation, Fungal , Melanins/biosynthesis , Transcription Factors/metabolism , Alternaria/genetics , Brassica/microbiology , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Deletion , Genes, Fungal , Melanins/genetics , Mutation , Pectins/metabolism , Phenotype , Plant Diseases/microbiology , Transcription Factors/genetics
12.
J Nematol ; 44(1): 72-9, 2012 Mar.
Article in English | MEDLINE | ID: mdl-23482700

ABSTRACT

Sunn hemp (SH), Crotolaria juncea, is known to suppress Rotylenchulus reniformis and weeds while enhancing free-living nematodes involved in nutrient cycling. Field trials were conducted in 2009 (Trial I) and 2010 (Trial II) to examine if SH cover cropping could suppress R. reniformis and weeds while enhancing free-living nematodes if integrated with soil solarization (SOL). Cover cropping of SH, soil solarization, and SH followed by SOL (SHSOL) were compared to weedy fallow control (C). Rotylenchulus reniformis population was suppressed by SHSOL at the end of cover cropping or solarization period (Pi) in Trial I, but not in Trial II. However, SOL and SHSOL did not suppress R. reniformis compared to SH in either trial. SH enhanced abundance of bacterivores and suppressed the % herbivores only at Pi in Trial II. At termination of the experiment, SH resulted in a higher enrichment index indicating greater soil nutrient availability, and a higher structure index indicating a less disturbed nematode community compared to C. SOL suppressed bacterivores and fungivores only in Trial II but not in Trial I. On the other hand, SHSOL enhanced bacterivores and fungivores only at Pi in Trial I. Weeds were suppressed by SH, SOL and SHSOL throughout the experiment. SHSOL suppressed R. reniformis and enhanced free-living nematodes better than SOL, and suppressed weeds better than SH.

13.
J Nematol ; 44(1): 26-30, 2012 Mar.
Article in English | MEDLINE | ID: mdl-23482862

ABSTRACT

Although marigold (Tagetes patula) is known to produce allelopathic compounds toxic to plant-parasitic nematodes, suppression of Meloidogyne incognita can be inconsistent. Two greenhouse experiments were conducted to test whether marigold is more effective in suppressing Meloidogyne spp. when it is active rather than dormant. Soils infested with Meloidogyne spp. were collected and conditioned in the greenhouse either by 1) keeping the soil dry (DRY), 2) irrigating with water (IRR), or 3) drenching with cucumber (Cucumis sativus) leachate (CL) for 5 wk. These soils were then either planted with cucumber, marigold or remained bare for 10 wk. Suppression of nematode by marigold was then assayed using cucumber. DRY conditioning resulted in the highest number of inactive nematodes, whereas CL and IRR had higher numbers of active nematodes than DRY. At the end of the cucumber bioassay, marigold suppressed the numbers of Meloidogyne females in cucumber roots if the soil was conditioned in IRR or CL, but not in DRY. However, in separate laboratory assays, marigold root leachate slightly reduced M. incognita J2 activity but did not reduce egg hatch (P > 0.05). These finding suggest that marigold can only suppress Meloidogyne spp. when marigold is actively growing. This further suggests that marigold will more efficiently suppress Meloidogyne spp. if planted when these nematodes are in active stage.

14.
J Nematol ; 44(2): 115-26, 2012 Jun.
Article in English | MEDLINE | ID: mdl-23482864

ABSTRACT

The purpose of this review is to highlight key developments in nematode ecology from its beginnings to where it stands today as a discipline within nematology. Emerging areas of research appear to be driven by crop production constraints, environmental health concerns, and advances in technology. In contrast to past ecological studies which mainly focused on management of plant-parasitic nematodes, current studies reflect differential sensitivity of nematode faunae. These differences, identified in both aquatic and terrestrial environments include response to stressors, environmental conditions, and management practices. Methodological advances will continue to influence the role nematodes have in addressing the nature of interactions between organisms, and of organisms with their environments. In particular, the C. elegans genetic model, nematode faunal analysis and nematode metagenetic analysis can be used by ecologists generally and not restricted to nematologists.

15.
J Econ Entomol ; 104(3): 947-55, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21735915

ABSTRACT

The banana aphid, Pentalonia nigronervosa Coquerel (Hemiptera: Aphididae), is the most economically important pest of banana (Musa spp.) fields in Hawaii. Recently, there has been a concerted effort in Hawaii to learn more about the biology and ecology of this pest. However, limited work has been directed at determining the distribution of P. nigronervosa in banana fields and developing an integrated pest management plan. Therefore, a survey was conducted in banana fields throughout the Hawaiian Islands to determine the distribution and density of P. nigronervosa within banana mats from plants of different stages. Another aim was to determine whether the presence of ants on banana plants could be used as a reliable indicator of aphid infestations. Results of the survey showed that plants < or = 1.5 m (small sucker) in height contain the highest aphid populations per meter in plant height and that mother plants (> or = 2.5 m) had the lowest aphid counts and rate of infestation compared with small and intermediate suckers (> 1.5 < 2.5 m). More specifically, aphid population was reduced by approximately 12 aphids for every meter increase in plant height and that aphids are rarely found > or = 2.5 m within the plant canopy. Although there was an increase likelihood of finding ants on banana plants with higher aphid densities, results suggest that ants would be present on plants in the absence of aphids. Implications of these and other findings with respect to sampling and managing P. nigronervosa and associated Banana bunchy top virus are discussed.


Subject(s)
Aphids/physiology , Musa/physiology , Animals , Ants/physiology , Aphids/growth & development , Babuvirus/physiology , Disease Vectors , Hawaii , Insect Control , Musa/growth & development , Musa/virology , Plant Viruses/physiology , Population Density
16.
J Nematol ; 43(3-4): 172-81, 2011 Sep.
Article in English | MEDLINE | ID: mdl-23430284

ABSTRACT

Two field trials were conducted between 2008 and 2010 in Maryland to evaluate the ability of an Italian ryegrass (IR) (Lolium multiflorum) cover crop to reduce populations of plant-parasitic nematodes while enhancing beneficial nematodes, soil mites and arthropods in the foliage of a no-till soybean (Glycine max) planting. Preplant treatments were: 1) previous year soybean stubble (SBS); and 2) herbicide-killed IR cover crop + previous year soybean stubble (referred to as IR). Heterodera glycines population densities were very low and no significant difference in population densities of H. glycines or Pratylenchus spp. were observed between IR and SBS. Planting of IR increased abundance of bacterivorous nematodes in 2009. A reverse trend was observed in 2010 where SBS had higher abundance of bacterivorous nematodes and nematode richness at the end of the cover cropping period. Italian ryegrass also did not affect insect pests on soybean foliage. However, greater populations of spiders were found on soybean foliage in IR treatments during both field trials. Potential causes of these findings are discussed.

17.
J Nematol ; 42(2): 111-9, 2010 Jun.
Article in English | MEDLINE | ID: mdl-22736847

ABSTRACT

A field trial was conducted to examine whether strip-tilled cover cropping followed by living mulch practice could suppress root-knot nematode (Meloidogyne incognita) and enhance beneficial nematodes and other soil mesofauna, while suppressing weeds throughout two vegetable cropping seasons. Sunn hemp (SH), Crotalaria juncea, and French marigold (MG), Tagetes patula, were grown for three months, strip-tilled, and bitter melon (Momordica charantia) seedlings were transplanted into the tilled strips; the experiment was conducted twice (Season I and II). Strip-tilled cover cropping with SH prolonged M. incognita suppression in Season I but not in Season II where suppression was counteracted with enhanced crop growth. Sunn hemp also consistently enhanced bacterivorous and fungivorous nematode population densities prior to cash crop planting, prolonged enhancement of the Enrichment Index towards the end of both cash crop cycles, and increased numbers of soil mesoarthropods. Strip-tilled cover cropping of SH followed by clipping of the living mulch as surface mulch also reduced broadleaf weed populations up to 3 to 4 weeks after cash crop planting. However, SH failed to reduce soil disturbance as indicated by the Structure Index. Marigold suppressed M. incognita efficiently when planted immediately following a M. incognita-susceptible crop, but did not enhance beneficial soil mesofauna including free-living nematodes and soil mesoarthropods. Strip-tilled cover cropping of MG reduced broadleaf weed populations prior to cash crop planting in Season II, but this weed suppression did not last beyond the initial cash crop cycle.

18.
J Econ Entomol ; 102(2): 493-9, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19449627

ABSTRACT

Field and laboratory studies were conducted to determine the impact of using a herbicide as a bananacide on aphid transmission of Banana bunchy top virus (family Nanoviridae, genus Babuvirus, BBTV) to healthy banana (Musa spp.) plants. BBTV-infected banana plants in a commercial orchard were treated with Roundup Weathermax herbicide. Using polymerase chain reaction, the time after herbicide treatment that BBTV could no longer be detected in the infected plants was determined. The impact of the herbicide treatment on Pentalonia nigronervosa Coquerel (Hemiptera: Aphididae) virus acquisition and ability to inoculate healthy banana plants with BBTV also were determined. Generally, banana plants were dead beyond 42 d after herbicide injection (DAI), and BBTV was detected in a similar high percentage of treated plants from 0 up to 21 DAI. During two field trials, 0 and 32% of P. nigronervosa acquired the virus from treated plants at 42 DAI, respectively, but none successfully inoculated a healthy banana plant beyond 35 DAI. Finally, 22% of P. nigronervosa colonies collected directly from the pseudostem of injected plants at the final sample date (42 DAI) tested positive for BBTV and infected 9.5% of the healthy banana plants. The findings indicate that banana plants may remain a potential source of virus inoculum 6 wk after injection with a bananacide. The implications of these findings with respect to BBTV management are discussed.


Subject(s)
Aphids/virology , Babuvirus/physiology , Herbicides/pharmacology , Musa/drug effects , Plant Diseases/virology , Animals , Host-Pathogen Interactions , Musa/virology , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...