Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 14(6): 7814-7825, 2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35129350

ABSTRACT

Zinc ion batteries have been extensively studied with an aqueous electrolyte system. However, the batteries suffer from a limited potential window, gas evolution, cathode dissolution, and dendrite formation on the anode. Considering these limitations, we developed an alternative electrolyte system based on deep eutectic solvents (DESs) because of their low cost, high stability, biodegradability, and non-flammability, making them optimal candidates for sustainable batteries. The DES electrolyte enables reversible Zn plating/stripping and effectively suppresses zinc dendrite formation. Furthermore, in-depth characterizations reveal that the energy storage mechanism can be attributed to [ZnCl]+ ion intercalation and the intermediate complex ion plays a pivotal role in electrochemical reactions, which deliver a high reversible capacity of 310 mAh g-1 at 0.1 A g-1and long-term stability (167 mAh g-1 at a current density of 0.3 A g-1 after 300 cycles, Coulombic efficiency: ∼98%). Overall, this work represents our new finding in rechargeable batteries with the DES electrolyte.

2.
Nanoscale ; 13(36): 15431-15444, 2021 Sep 23.
Article in English | MEDLINE | ID: mdl-34505618

ABSTRACT

Three-dimensional (3D) hybrid networks consisting of reduced graphene oxide (rGO) sheets interconnected by Co3O4 nanowires (rGO/Co3O4), followed by the decoration of Fe2O3 nanospheres (NSs) (rGO/Co3O4@Fe2O3), were demonstrated by a facile hydrothermal method, with which the rGO/Co3O4 networks acted as nucleation sites for the in situ synthesis of Fe2O3 NSs. The intimate contacts between rGO, Co3O4 NWs and Fe2O3 NSs, which result in an excellent conductive behavior, provide a unique structure with huge potential for electrochemical property promoted electrochemical supercapacitors. The rGO/Co3O4@Fe2O3 hybrid networks as electrodes exhibit a high capacitance of 784 F g-1 at 1 A g-1 with 83% retention of the initial capacitance as the current density increases from 1 to 10 A g-1, which is explained by the graphene-based interconnected structure owing to the advantages of accommodating the volume expansion between Co3O4 NWs and Fe2O3 NSs. The supercapacitor was assembled by applying a nickel aluminum layered double hydroxide (NiAl-LDH) structure and rGO/Co3O4@Fe2O3 as the electrode materials and yields an energy density of 70.78 W h kg-1 at a power density of 0.29 kW kg-1. The energy density can maintain 24.24 W h kg-1 with 9.94 kW kg-1.

3.
ACS Nano ; 14(7): 8539-8550, 2020 Jul 28.
Article in English | MEDLINE | ID: mdl-32520534

ABSTRACT

The rechargeable aluminum-ion battery (AIB) is a promising candidate for next-generation high-performance batteries, but its cathode materials require more development to improve their capacity and cycling life. We have demonstrated the growth of MoSe2 three-dimensional helical nanorod arrays on a polyimide substrate by the deposition of Mo helical nanorod arrays followed by a low-temperature plasma-assisted selenization process to form novel cathodes for AIBs. The binder-free 3D MoSe2-based AIB shows a high specific capacity of 753 mAh g-1 at a current density of 0.3 A g-1 and can maintain a high specific capacity of 138 mAh g-1 at a current density of 5 A g-1 with 10 000 cycles. Ex situ Raman, XPS, and TEM characterization results of the electrodes under different states confirm the reversible alloying conversion and intercalation hybrid mechanism during the discharge and charge cycles. All possible chemical reactions were proposed by the electrochemical curves and characterization. Further exploratory works on interdigital flexible AIBs and stretchable AIBs were demonstrated, exhibiting a steady output capacity under different bending and stretching states. This method provides a controllable strategy for selenide nanostructure-based AIBs for use in future applications of energy-storage devices in flexible and wearable electronics.

4.
ACS Appl Mater Interfaces ; 12(24): 27064-27073, 2020 Jun 17.
Article in English | MEDLINE | ID: mdl-32364367

ABSTRACT

Aluminum-sulfur batteries (ASBs) have attracted substantial interest due to their high theoretical specific energy density, low cost, and environmental friendliness, while the traditional sulfur cathode and ionic liquid have very fast capacity decay, limiting cycling performance because of the sluggishly electrochemical reaction and side reactions with the electrolyte. Herein, we demonstrate, for the first time, excellent rechargeable aluminum-selenium batteries (ASeBs) using a new deep eutectic solvent, thiourea-AlCl3, as an electrolyte and Se nanowires grown directly on a flexible carbon cloth substrate (Se NWs@CC) by a low-temperature selenization process as a cathode. Selenium (Se) is a chemical analogue of sulfur with higher electronic conductivity and lower ionization potential that can improve the battery kinetics on the sluggishly electrochemical reaction and the reduction of the polarization where the thiourea-AlCl3 electrolyte can stabilize the side reaction during the reversible conversion reaction of Al-Se alloying processes during the charge-discharge process, yielding a high specific capacity of 260 mAh g-1 at 50 mA g-1 and a long cycling life of 100 times with a high Coulombic efficiency of nearly 93% at 100 mA g-1. The working mechanism based on the reversible conversion reaction of the Al-Se alloying processes, confirmed by the ex situ Raman, XRD, and XPS measurements, was proposed. This work provides new insights into the development of rechargeable aluminum-chalcogenide (S, Se, and Te) batteries.

5.
Nanoscale Res Lett ; 15(1): 45, 2020 Feb 18.
Article in English | MEDLINE | ID: mdl-32072311

ABSTRACT

Three-dimensional (3D) CuO/TiO2 hybrid heterostructure nanorod arrays (NRs) with noble-metal-free composition, fabricated by template-assisted low-cost processes, were used as the photo-Fenton-like catalyst for dye degradation. Here, CuO NRs were deposited into anodic aluminum oxide templates by electrodeposition method annealed at various temperatures, followed by deposition of TiO2 thin films through E-gun evaporation, resulting in the formation of CuO/TiO2 p-n heterojunction. The distribution of elements and compositions of the CuO/TiO2 p-n heterojunction were analyzed by EDS mapping and EELS profiles, respectively. In the presence of H2O2, CuO/TiO2 hybrid structure performed more efficiently than CuO NRs for Rhodamine B degradation under the irradiation of 500-W mercury-xenon arc lamp. This study demonstrated the effect of length of CuO NRs, on the photo-degradation performance of CuO NRs as well as CuO/TiO2 heterostructure. The optimized CuO/TiO2 hybrid NR array structure exhibited the highest photo-degradation activity, and the mechanism and role of photo-Fenton acting as the catalyst in photo-degradation of dye was also investigated.

6.
Small ; 14(22): e1704052, 2018 May.
Article in English | MEDLINE | ID: mdl-29707890

ABSTRACT

Phase-engineered type-II metal-selenide heterostructures are demonstrated by directly selenizing indium-tin oxide to form multimetal selenides in a single step. The utilization of a plasma system to assist the selenization facilitates a low-temperature process, which results in large-area films with high uniformity. Compared to single-metal-selenide-based photodetectors, the multimetal-selenide photodetectors exhibit obviously improved performance, which can be attributed to the Schottky contact at the interface for tuning the carrier transport, as well as the type-II heterostructure that is beneficial for the separation of the electron-hole pairs. The multimetal-selenide photodetectors exhibit a response to light over a broad spectrum from UV to visible light with a high responsivity of 0.8 A W-1 and an on/off current ratio of up to 102 . Interestingly, all-transparent photodetectors are successfully produced in this work. Moreover, the possibility of fabricating devices on flexible substrates is also demonstrated with sustainable performance, high strain tolerance, and high durability during bending tests.

7.
Adv Mater ; 28(44): 9831-9838, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27717140

ABSTRACT

The necessity for new sources for greener and cleaner energy production to replace the existing ones has been increasingly growing in recent years. Of those new sources, the hydrogen evolution reaction has a large potential. In this work, for the first time, MoSe2 /Mo core-shell 3D-hierarchical nanostructures are created, which are derived from the Mo 3D-hierarchical nanostructures through a low-temperature plasma-assisted selenization process with controlled shapes grown by a glancing angle deposition system.

SELECTION OF CITATIONS
SEARCH DETAIL
...