Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Cell Rep ; 42(11): 113352, 2023 11 28.
Article in English | MEDLINE | ID: mdl-37948180

ABSTRACT

By sorting receptor tyrosine kinases into endolysosomes, the endosomal sorting complexes required for transport (ESCRTs) are thought to attenuate oncogenic signaling in tumor cells. Paradoxically, ESCRT members are upregulated in tumors. Here, we show that disruption of hepatocyte growth factor-regulated tyrosine kinase substrate (HRS), a pivotal ESCRT component, inhibited tumor growth by promoting CD8+ T cell infiltration in melanoma and colon cancer mouse models. HRS ablation led to misfolded protein accumulation and triggered endoplasmic reticulum (ER) stress, resulting in the activation of the type I interferon pathway in an inositol-requiring enzyme-1α (IRE1α)/X-box binding protein 1 (XBP1)-dependent manner. HRS was upregulated in tumor cells with high tumor mutational burden (TMB). HRS expression associates with the response to PD-L1/PD-1 blockade therapy in melanoma patients with high TMB tumors. HRS ablation sensitized anti-PD-1 treatment in mouse melanoma models. Our study shows a mechanism by which tumor cells with high TMB evade immune surveillance and suggests HRS as a promising target to improve immunotherapy.


Subject(s)
Melanoma , Protein Serine-Threonine Kinases , Mice , Animals , Humans , Protein Serine-Threonine Kinases/metabolism , Endoribonucleases/metabolism , Proteostasis , Tumor Escape , Melanoma/pathology , Endosomal Sorting Complexes Required for Transport/metabolism , Interferons/metabolism
2.
Int J Mol Sci ; 24(17)2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37685910

ABSTRACT

Oral squamous cell carcinoma (OSCC) is the most prevalent subtype of head and neck tumors, highly prone to lymph node metastasis. This study aims to examine the expression pattern of Ras-related protein Rab-27A (RAB27A) and explore its potential implications in OSCC. The expression of RAB27A was assessed through immunohistochemical analysis utilizing tissue microarrays. In vitro experiments were conducted using RAB27A-knockdown cells to investigate its impact on OSCC tumor cells. Additionally, transcriptome sequencing was performed to elucidate potential underlying mechanisms. RAB27A was significantly overexpressed in OSCC, and particularly in metastatic lymph nodes. It was positively correlated with the clinical progression and poor survival prognosis. Silencing RAB27A notably decreased the proliferation, migration, and invasion abilities of OSCC cells in vitro. A Gene Ontology (GO) enrichment analysis indicated a strong association between RAB27A and the epidermal growth factor receptor (EGFR) signaling pathway. Further investigations revealed that RAB27A regulated the palmitoylation of EGFR via zinc finger DHHC-type containing 13 (ZDHHC13). These findings provide insights into OSCC progression and highlight RAB27A as a potential therapeutic target for combating this aggressive cancer.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Mouth Neoplasms , Humans , Carcinoma, Squamous Cell/genetics , Mouth Neoplasms/genetics , Squamous Cell Carcinoma of Head and Neck/genetics , ErbB Receptors/genetics , rab27 GTP-Binding Proteins
3.
Cancer Immunol Res ; 11(2): 228-240, 2023 02 03.
Article in English | MEDLINE | ID: mdl-36484721

ABSTRACT

PD-L1 localized to immunosuppressive small extracellular vesicles (sEV PD-L1) contributes to tumor progression and is associated with resistance to immune-checkpoint blockade (ICB) therapy. Here, by establishing a screening strategy with a combination of tissue microarray (TMA), IHC staining, and measurement of circulating sEV PD-L1, we found that the endosomal sorting complex required for transport (ESCRT) member protein hepatocyte growth factor-regulated tyrosine kinase substrate (HRS) was the key regulator of circulating sEV PD-L1 in head and neck squamous cell carcinoma (HNSCC) patients. Increased HRS expression was found in tumor tissues and positively correlated with elevated circulating sEV PD-L1 in patients with HNSCC. The expression of HRS was also negatively correlated to the infiltration of CD8+ T cells. Knockdown of HRS markedly reduced PD-L1 expression in HNSCC cell-derived sEVs, and these sEVs from HRS knockdown cells showed decreased immunosuppressive effects on CD8+ T cells. Knockout of HRS inhibited tumor growth in immunocompetent mice together with PD-1 blockade. Moreover, a higher HRS expression was associated with a lower response rate to anti-PD-1 therapy in patients with HNSCC. In summary, our study reveals HRS, the core component of ESCRT-0, regulates sEV PD-L1 secretion, and is associated with the response to ICB therapy in patients with HNSCC, suggesting HRS is a promising target to improve cancer immunotherapy.


Subject(s)
Extracellular Vesicles , Head and Neck Neoplasms , Animals , Mice , Squamous Cell Carcinoma of Head and Neck/drug therapy , Head and Neck Neoplasms/drug therapy , B7-H1 Antigen , Mice, Knockout , Treatment Outcome , Extracellular Vesicles/metabolism , Endosomal Sorting Complexes Required for Transport
4.
Exp Mol Med ; 54(9): 1379-1389, 2022 09.
Article in English | MEDLINE | ID: mdl-36117219

ABSTRACT

Mounting evidence indicates that tumor-derived exosomes (TDEs) play critical roles in tumor development and progression by regulating components in the tumor microenvironment (TME) in an autocrine or paracrine manner. Moreover, due to their delivery of critical molecules that react to chemotherapy and immunotherapy, TDEs also contribute to tumor drug resistance and impede the effective response of antitumor immunotherapy, thereby leading to poor clinical outcomes. There is a pressing need for the inhibition or removal of TDEs to facilitate the treatment and prognosis of cancer patients. Here, in the present review, we systematically overviewed the current strategies for TDE inhibition and clearance, providing novel insights for future tumor interventions in translational medicine. Moreover, existing challenges and potential prospects for TDE-targeted cancer therapy are also discussed to bridge the gaps between progress and promising applications.


Subject(s)
Exosomes , Neoplasms , Humans , Exosomes/pathology , Immunotherapy , Neoplasms/pathology , Tumor Microenvironment
5.
Cell Tissue Res ; 389(3): 517-530, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35786766

ABSTRACT

Venous malformations (VMs), featuring localized dilated veins, are the most common developmental vascular anomalies. Aberrantly organized perivascular extracellular matrix (ECM) is one of the prominent pathological hallmarks of VMs, accounting for vascular dysfunction. Although previous studies have revealed various proteins involved in ECM remodeling, the detailed pattern and molecular mechanisms underlying the endothelium-ECM interplay have not been fully elucidated. Our previous studies revealed drastically elevated extracellular vesicle (EV) secretion in VM lesions. Here, we identified increased EV-carried MMP14 in lesion fluids of VMs and culture medium of TIE2-L914F mutant endothelial cells (ECs), along with stronger ECM degradation. Knockdown of RAB27A, a required regulator for vesicle docking and fusion, led to decreased secretion of EV-carried MMP14 in vitro. Histochemical analysis further demonstrated a highly positive correlation between RAB27A in the endothelium and MMP14 in the perivascular environment. Therefore, our results proved that RAB27A-regulated secretion of EV-MMP14, as a new pattern of endothelium-ECM interplay, contributed to the development of VMs by promoting ECM degradation.


Subject(s)
Extracellular Vesicles , Matrix Metalloproteinase 14/metabolism , Vascular Malformations , Endothelial Cells/metabolism , Extracellular Matrix/metabolism , Extracellular Vesicles/metabolism , Humans , Vascular Malformations/metabolism , Vascular Malformations/pathology
6.
PLoS One ; 16(11): e0259809, 2021.
Article in English | MEDLINE | ID: mdl-34762700

ABSTRACT

A predicted metalloproteinase gene, HypZn, was cloned from Aspergillus niger CGMCC 3.7193 and expressed in Pichia pastoris GS115, and the physicochemical characteristics of recombinant HypZn were investigated after separation and purification. The results showed that the specific activity of the purified HypZn reached 1859.2 U/mg, and the optimum temperature and pH value of HypZn were 35°C and 7.0, respectively. HypZn remained stable both at 40°C and at pH values between 5.0 and 8.0. The preferred substrate of HypZn was soybean protein isolates, and the Km and Vmax values were 21.5 µmol/mL and 4926.6 µmol/(mL∙min), respectively. HypZn was activated by Co2+ and Zn2+ and inhibited by Cu2+ and Fe2+. The degree of soybean protein isolate hydrolysis reached 14.7%, and the hydrolysates were of uniform molecular weight. HypZn could tolerate 5000 mM NaCl and completely lost its activity after 30 min at 50°C. The enzymological characterizations indicated that HypZn has great application potential in the food industry, especially in fermented food processing.


Subject(s)
Aspergillus niger , Metalloproteases , Hydrolysis
7.
Article in English | MEDLINE | ID: mdl-34639253

ABSTRACT

Environmental pollution threatens public health and has become a social concern in recent years. Despite the conditions for public participation in environmental governance have improved considerably, the level of public engagement in government projects still falls short of expectations. Therefore, this article introduced two key variables, hoping to answer the following research question that how environmental concerns and governance performance affect public environmental participation. Through principal component analysis of the data from the "Survey of Chinese Urban Residents' Attitudes toward Environmental Protection", the findings of this article are as follows: First, public environmental concerns have no significant impact on their environmental engagement; second, the improvement of residents' confidence in the government performance of environmental management reduces their willingness to participate in official projects. The higher the confidence in the government's performance, the lower the level of public engagement is. Moreover, due to the consideration of self-interest or lack of environmental awareness, those who oppose waste incineration in waste terminal disposal tend to take a non-participatory role in waste sorting programs. Therefore, we suggest that the government have more diverse shareholders in environmental protection, so it should expand public participation through education, publicity, mobilization, and incentives.


Subject(s)
Conservation of Natural Resources , Refuse Disposal , China , Environmental Policy , Humans , Incineration
8.
Bioresour Technol ; 342: 125965, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34563820

ABSTRACT

Androstenone production is limited by low-efficiency substrate transport and dissolved oxygen levels during fermentation. In this study, the coexpression of the optimized Vitreoscilla hemoglobin (VHb) and sterol transporter ATPase (MceG) genes in Mycobacterium sp. LZ2 (Msp) was investigated to alleviate dissolved oxygen and mass transfer limitations. Results revealed that Msp-vgb/mceG effectively improved the growth, production, and adaptation to dissolved oxygen compared with those of Msp. The increased catalase activity and reduced intracellular ROS levels enhanced cell viability and promoted transcription of genes critical for phytosterol metabolism. Bagasse as an immobilization carrier increased the productivity of Msp-vgb/mceG by 56%. Immobilized repeat batch fermentation reduced the biotransformation period from 60 days to 37 days and improved the productivity from 0.039 g/L/h to 0.069 g/L/h. To the best of our knowledge, this work is the first study on the immobilization of recombinant mycobacteria on bagasse for androstenone production.


Subject(s)
Mycobacterium , Truncated Hemoglobins , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Fermentation , Mycobacterium/genetics , Mycobacterium/metabolism , Truncated Hemoglobins/genetics , Truncated Hemoglobins/metabolism
9.
Front Vet Sci ; 7: 585843, 2020.
Article in English | MEDLINE | ID: mdl-33330711

ABSTRACT

Substitution of feed protein source with defatted black soldier fly larvae meal (BSFM) has been evaluated intensively in poultry, but information about full-fatted BSFM is still very limited. The aim of the present study was to investigate the effect of dietary low inclusion of full-fatted BSFM on the growth performance, plasma antioxidant ability, nutrient digestibility, and gut health of layer chickens during 1-42 days of age. A total of 480 female 1-day-old Hy-Line Brown chickens were divided into four dietary treatments, with the inclusion of 0, 3, 6, and 9% of full-fatted BSFM. Each treatment included six replicates and 20 birds per replicate. As dietary full-fatted BSFM inclusion levels increased, there was a quadratic increase in final weight and average daily gain and a quadratic decrease in feed/gain ratio. Dietary full-fatted BSFM inclusion levels increased the digestibility of crude protein and ether extract quadratically as well as ileum mucosal sIgA concentration linearly, but these had no effect on intestinal morphology. Additionally, an increase in dietary full-fatted BSFM inclusion levels resulted in a linear increase in glutathione peroxidase and total superoxide dismutase activities and a linear decrease in malondialdehyde content in plasma. The encouraging results of the improvement of growth performance, nutrient digestibility, antioxidant ability, and gut health parameters suggested that partially full-fatted BSFM inclusion can be suitable protein ingredients for layer chickens' diets at the starter period.

10.
J Ind Microbiol Biotechnol ; 36(1): 139-47, 2009 Jan.
Article in English | MEDLINE | ID: mdl-18846398

ABSTRACT

Genome shuffling is a powerful strategy for rapid engineering of microbial strains for desirable industrial phenotypes. Here we improved the thermotolerance and ethanol tolerance of an industrial yeast strain SM-3 by genome shuffling while simultaneously enhancing the ethanol productivity. The starting population was generated by protoplast ultraviolet irradiation and then subjected for the recursive protoplast fusion. The positive colonies from the library, created by fusing the inactivated protoplasts were screened for growth at 35, 40, 45, 50 and 55 degrees C on YPD-agar plates containing different concentrations of ethanol. Characterization of all mutants and wild-type strain in the shake-flask indicated the compatibility of three phenotypes of thermotolerance, ethanol tolerance and ethanol yields enhancement. After three rounds of genome shuffling, the best performing strain, F34, which could grow on plate cultures up to 55 degrees C, was obtained. It was found capable of completely utilizing 20% (w/v) glucose at 45-48 degrees C, producing 9.95% (w/v) ethanol, and tolerating 25% (v/v) ethanol stress.


Subject(s)
DNA Shuffling , Drug Resistance , Ethanol/metabolism , Genome, Fungal , Industrial Microbiology , Saccharomyces cerevisiae/physiology , Hot Temperature , Mutation , Saccharomyces cerevisiae/genetics
SELECTION OF CITATIONS
SEARCH DETAIL