Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
2.
Exp Ther Med ; 14(2): 1582-1588, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28810624

ABSTRACT

The present study aimed to determine the effects of high mobility group box 1 protein (HMGB1) on myocardial ischemia reperfusion (I/R) injury in rats following acute myocardial ischemia and investigate the underlying molecular mechanisms of these effects. Male Wistar rats were randomly divided into the following groups (n=10/group): Sham operation; I/R; HMGB50 (50 ng/kg HMGB1 before I/R); HMGB100 (100 ng/kg HMGB1 before I/R); and HMGB200 (200 ng/kg HMGB1 before I/R). Serum cardiac troponin I (cTnI), interleukin (IL)-6 and tumor necrosis factor (TNF)-α levels were subsequently measured. Myocardial levels of malondialdehyde (MDA) and superoxide dismutase (SOD) were also determined. Myocardial infarction size (IS) was determined by 2,3,5-triphenyltetrazolium chloride staining. Myocardial expression of hypoxia inducible factor (HIF)-1α and phosphorylated p38 mitogen-activated protein kinase (P-p38 MAPK) protein was measured using western blotting. The results demonstrated that HMGB1 significantly decreased serum levels of cTnI, IL-6 and TNF-α and myocardial IS in I/R rats compared with the sham group (all P<0.05). HMGB1 also significantly decreased and increased myocardial levels of MDA and SOD, respectively (both P<0.05). HMGB1 significantly increased myocardial expression of HIF-1α and decreased expression of P-p38 MAPK following I/R (both P<0.05). These effects of HMGB1 occurred in a dose-dependent manner. The results of the current study indicate that the cardioprotective effects of intravenous HMGB1 are associated with increased myocardial expression of HIF-1α via inhibition of P-p38 MAPK expression, leading to inhibition of the P-p38 MAPK signaling pathway.

8.
Mol Med Rep ; 13(2): 1211-9, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26648172

ABSTRACT

The effects of intravenous high mobility group box 1 (HMGB1) on myocardial ischemia/reperfusion (I/R) injury remains to be elucidated. The purpose of the present study was to investigate the effects of intravenous HMGB1 on the expression of hypoxia inducible factor-1α (HIF-1α) in the myocardium of rats following acute myocardial ischemia, and to examine the effects of intravenous HMGB1 on myocardial I/R injury. Male Wistar rats were divided into the following groups: Sham operation group (n=10), a group exposed to ischemia for 30 min and reperfusion for 4 h (I/R group) as a control (n=10), an HMGB group, in which 100 ng/kg HMGB was administered intravenously 30 min prior to ischemia (n=10), an LY group, in which LY294002, an inhibitor of phosphoinositide 3-kinase (PI3K), was administered intravenously (0.3 mg/kg) 40 min prior to ischemia (n=10), and the HMGB1+LY group, in which HMGB1 (100 ng/kg) and LY294002 (0.3 mg/kg) were administered intravenously 30 min and 40 min prior to ischemia, respectively (n=10). The serum levels of cardiac troponin I (cTnI) and tumor necrosis factor-α (TNF-α), and myocardial infarct size were measured. The expression levels of phosphorylated Akt and HIF-1α were investigated using western blot analyses. The results showed that pre-treatment with HMGB1 significantly decreased serum levels of cTnI, and TNF-α, and reduced myocardial infarct size following 4 h reperfusion (all P<0.05). HMGB1 also increased the expression levels of HIF-1α and p-Akt induced by I/R (P<0.05). LY294002 was found to eliminate the effects of intravenous HMGB1 on myocardial I/R injury (P<0.05). These results suggest that intravenous pre-treatment with HMGB1 may exert its cardioprotective effects via the upregulation of the myocardial expression of HIF-1α, which may be regulated by the PI3K/Akt signaling pathway, in rats following acute myocardial I/R.


Subject(s)
HMGB1 Protein/administration & dosage , Hypoxia-Inducible Factor 1, alpha Subunit/biosynthesis , Myocardial Reperfusion Injury/drug therapy , Proto-Oncogene Proteins c-akt/metabolism , Animals , Chromones/administration & dosage , Gene Expression Regulation , HMGB1 Protein/genetics , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Morpholines/administration & dosage , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Myocardium/metabolism , Myocardium/pathology , Oncogene Protein v-akt/genetics , Oncogene Protein v-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors , Rats , Signal Transduction/drug effects , Troponin I/blood , Tumor Necrosis Factor-alpha/blood
10.
Phys Chem Chem Phys ; 17(19): 13112-6, 2015 May 21.
Article in English | MEDLINE | ID: mdl-25917200

ABSTRACT

Hydrogen behavior in oxides has triggered much interest for its scientific and technological importance in a wide range of research fields from novel ion conductors to astrochemistry. Here, we report a giant conductivity enhancement in ZnFe2O4 ferrite insulators to the metallic state by over eleven orders of magnitude induced by electrochemically generated atomic hydrogen at room temperature. The conductivity and the amount of incorporated hydrogen increased in an exponential function with time. An activation energy for the atomic hydrogen chemisorption was measured to be 8.23 kJ mol(-1). Quantitative kinetics correlations among the adsorption of atomic hydrogen, hydrogen incorporation and conductivity enhancement are established, based on which hydrogen incorporation process is clarified herein. We demonstrate that the hydrogen incorporation in oxides can be adjusted by manipulating the kinetic factors. These findings have implications for research into hydrogen behavior in oxides in environments containing hydrogen atoms and offer possibilities for utilizing and controlling the modifications of oxide materials induced by atomic hydrogen.

12.
Exp Ther Med ; 9(4): 1166-1170, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25780404

ABSTRACT

The aim of the present study was to investigate whether postconditioning with simvastatin attenuated myocardial ischemia reperfusion injury by inhibiting the expression of high mobility group box 1 (HMGB1) in rat myocardium following acute myocardial ischemia. In total, 30 male Sprague-Dawley rats were divided into sham operation (sham; n=10), acute myocardial infarction (AMI; n=10) and simvastatin (sim; n=10) groups. The AMI and sim groups were subjected to ischemia for 30 min, followed by reperfusion for 180 min. The rats in the sim group were administered 20 mg/kg simvastatin intravenously 5 min prior to reperfusion. Subsequently, the infarct size, serum cardiac troponin (c-TnI), tumor necrosis factor (TNF)-α and myocardial malondialdehyde (MDA) levels and superoxide dismutase (SOD) activity were measured. Western blot analysis was used to detect the protein expression of HMGB1. Postconditioning with simvastatin was shown to decrease the infarct size and HMGB1 expression levels in the myocardium following AMI (P<0.05). In addition, postconditioning with simvastatin not only decreased the serum levels of c-TnI and TNF-α (P<0.05), but also inhibited the increase in MDA levels and the reduction in SOD activity (P<0.05). Therefore, postconditioning with simvastatin was shown to attenuate myocardial injury. The underlying mechanism may be associated with the downregulation of HMGB1 expression in the ischemic myocardium.

SELECTION OF CITATIONS
SEARCH DETAIL
...