Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 301
Filter
1.
J Exp Med ; 221(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38771260

ABSTRACT

The majority of cancer patients receive radiotherapy during the course of treatment, delivered with curative intent for local tumor control or as part of a multimodality regimen aimed at eliminating distant metastasis. A major focus of research has been DNA damage; however, in the past two decades, emphasis has shifted to the important role the immune system plays in radiotherapy-induced anti-tumor effects. Radiotherapy reprograms the tumor microenvironment, triggering DNA and RNA sensing cascades that activate innate immunity and ultimately enhance adaptive immunity. In opposition, radiotherapy also induces suppression of anti-tumor immunity, including recruitment of regulatory T cells, myeloid-derived suppressor cells, and suppressive macrophages. The balance of pro- and anti-tumor immunity is regulated in part by radiotherapy-induced chemokines and cytokines. Microbiota can also influence radiotherapy outcomes and is under clinical investigation. Blockade of the PD-1/PD-L1 axis and CTLA-4 has been extensively investigated in combination with radiotherapy; we include a review of clinical trials involving inhibition of these immune checkpoints and radiotherapy.


Subject(s)
Neoplasms , Radiotherapy , Tumor Microenvironment , Humans , Neoplasms/radiotherapy , Neoplasms/immunology , Neoplasms/therapy , Tumor Microenvironment/immunology , Tumor Microenvironment/radiation effects , Animals , Radiotherapy/methods , Immunity, Innate/radiation effects , CTLA-4 Antigen/immunology , CTLA-4 Antigen/metabolism , Immune Checkpoint Inhibitors/therapeutic use , Programmed Cell Death 1 Receptor/metabolism , Programmed Cell Death 1 Receptor/immunology , B7-H1 Antigen/metabolism , B7-H1 Antigen/immunology , Adaptive Immunity
2.
J Vasc Surg Venous Lymphat Disord ; : 101905, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38761979

ABSTRACT

OBJECTIVE: Gynecological cancer-related lower extremity lymphedema (GC-LEL), a chronic, progressive condition, lacks a standardized treatment. Currently, Supraclavicular vascularized lymph node transfer (SC-VLNT) is a favoured approach in the treatment of lymphedema, and there is a trend toward combination technology. This study conducts a comparative analysis of three techniques for treating GC-LEL with simultaneous SC-VLNT and liposuction. METHODS: A cohort of 35 patients with GC-LEL was examined, comprising thirteen patients underwent single lymph nodes flap with a skin paddle (SLNF+P), twelve received single lymph nodes flap without a skin paddle (SLNF), and ten accepted dual lymph nodes flap without a skin paddle (DLNF). Patient demographics and outcomes were meticulously documented, covering intra- and post-operative variables. RESULTS: The median limb volume reduction were 56.4% (SLNF+P), 60.8% (SLNF), and 50.5% (DLNF) in stage II, and 54.0% (SLNF+P), 59.8% (SLNF), and 54.4% (DLNF) in stage III. DLNF group procedures entailed longer flap harvesting and transplantation times. The SLNF+P group, on average, had an 8-day postoperative hospitalization, longer than others. All patient noted subjective improvements in Lymphedema Quality of Life (LYMQOL) scores, with lymphoscintigraphy revealing enhanced lymphatic flow in 29 of the 35 cases. A notable decrease in cellulitis incidence was observed. Additionally, the occurrence of cellulitis decreased significantly, except for DLNF (Stage Ⅱ). The median follow-up time was 16 months (range, 12 to 36 months), with no reported severe postoperative complications. CONCLUSION: For advanced GC-LEL, SLNF combined with liposuction is a preferred treatment, offering fewer complications, shorter operative time, and hospitalization.

3.
Clin Cancer Res ; 2024 May 01.
Article in English | MEDLINE | ID: mdl-38691100

ABSTRACT

PURPOSE: Radiation-mediated immune suppression limits efficacy and is a barrier in cancer therapy. Radiation induces negative regulators of tumor immunity including regulatory T cells (Treg). Mechanisms underlying Treg infiltration after radiotherapy (RT) are poorly defined. Given that dendritic cells (cDC) maintain Treg we sought to identify and target cDC signaling to block Treg infiltration after radiation. EXPERIMENTAL DESIGN: Transcriptomics and high dimensional flow cytometry revealed changes in murine tumor cDC that not only mediate Treg infiltration after RT, but associate with worse survival in human cancer datasets. Antibodies perturbing a cDC-CCL22-Treg axis were tested in syngeneic murine tumors. A prototype interferon-anti-epidermal growth factor receptor fusion protein (αEGFR-IFNα) was examined to block Treg infiltration and promote a CD8+ T cell response after RT. RESULTS: Radiation expands a population of mature cDC1 enriched in immunoregulatory markers that mediates Treg infiltration via the Treg-recruiting chemokine CCL22. Blocking CCL22 or Treg depletion both enhanced RT efficacy. αEGFR-IFNα blocked cDC1 CCL22 production while simultaneously inducing an antitumor CD8+ T cell response to enhance RT efficacy in multiple EGFR-expressing murine tumor models, including following systemic administration. CONCLUSIONS: We identify a previously unappreciated cDC mechanism mediating Treg tumor infiltration after RT. Our findings suggest blocking the cDC1-CCL22-Treg axis augments RT efficacy. αEGFR-IFNα added to RT provided robust antitumor responses better than systemic free interferon administration, and may overcome clinical limitations to interferon therapy. Our findings highlight the complex behavior of cDC after RT and provide novel therapeutic strategies for overcoming RT-driven immunosuppression to improve RT efficacy.

4.
Vet Microbiol ; 293: 110083, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38593623

ABSTRACT

Campylobacter spp., such as Campylobacter jejuni and Campylobacter coli, are important zoonotic Gram-negative pathogens that cause acute intestinal diseases in humans. In this study, a retrospective analysis was conducted on previously collected Campylobacter isolates from antimicrobial resistance surveillance. A total of 29 optrA-positive C. coli strains were identified and subjected to second-generation sequencing. Multilocus sequence typing and single nucleotide polymorphism analyses demonstrated that the 29 optrA-positive isolates were genetically homogeneous. Notably, among the 29 isolated strains, the ΔoptrA variants exhibit a nonsense mutation at position 979 where the base C is substituted by T, leading to the formation of a premature termination codon. The alignment of sequences and genetic environmental characteristics suggested that ΔoptrA located on a chromosomally carried multidrug-resistant genomic island. There are other resistant genes on the multidrug resistance genomic island, such as aph(2'')-If, aph(3')-III, aadE, tet(O), tet(L), cat, erm(A), optrA and blaOXA-61. As a result, the 29 ΔoptrA-positive strains displayed susceptibility to both florfenicol and linezolid. The ΔoptrA gene is linked to the erm(A) gene, resulting in the formation of translocatable unit (TU) that are encompassed by two copies of IS1216 mobile elements. Multiple occurrences of similar TUs have been documented in numerous C. coli and provided evidence for the significance of TUs in facilitating the transfer of drug resistance genes in C. coli.


Subject(s)
Anti-Bacterial Agents , Campylobacter Infections , Campylobacter coli , Chickens , Drug Resistance, Multiple, Bacterial , Genomic Islands , Campylobacter coli/genetics , Campylobacter coli/drug effects , Genomic Islands/genetics , Chickens/microbiology , Animals , Drug Resistance, Multiple, Bacterial/genetics , Anti-Bacterial Agents/pharmacology , Campylobacter Infections/microbiology , Campylobacter Infections/veterinary , Retrospective Studies , Bacterial Proteins/genetics , Microbial Sensitivity Tests , Multilocus Sequence Typing , Poultry Diseases/microbiology , Polymorphism, Single Nucleotide
5.
J Cheminform ; 16(1): 48, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38685101

ABSTRACT

Previous studies have shown that the three-dimensional (3D) geometric and electronic structure of molecules play a crucial role in determining their key properties and intermolecular interactions. Therefore, it is necessary to establish a quantum chemical (QC) property database containing the most stable 3D geometric conformations and electronic structures of molecules. In this study, a high-quality QC property database, called QuanDB, was developed, which included structurally diverse molecular entities and featured a user-friendly interface. Currently, QuanDB contains 154,610 compounds sourced from public databases and scientific literature, with 10,125 scaffolds. The elemental composition comprises nine elements: H, C, O, N, P, S, F, Cl, and Br. For each molecule, QuanDB provides 53 global and 5 local QC properties and the most stable 3D conformation. These properties are divided into three categories: geometric structure, electronic structure, and thermodynamics. Geometric structure optimization and single point energy calculation at the theoretical level of B3LYP-D3(BJ)/6-311G(d)/SMD/water and B3LYP-D3(BJ)/def2-TZVP/SMD/water, respectively, were applied to ensure highly accurate calculations of QC properties, with the computational cost exceeding 107 core-hours. QuanDB provides high-value geometric and electronic structure information for use in molecular representation models, which are critical for machine-learning-based molecular design, thereby contributing to a comprehensive description of the chemical compound space. As a new high-quality dataset for QC properties, QuanDB is expected to become a benchmark tool for the training and optimization of machine learning models, thus further advancing the development of novel drugs and materials. QuanDB is freely available, without registration, at https://quandb.cmdrg.com/ .

6.
Int J Biol Macromol ; 265(Pt 1): 130709, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38462120

ABSTRACT

Versatile nanoplatform equipped with chemo-photodynamic therapeutic attributes play an important role in improving the effectiveness of tumor treatments. Herein, we developed multifunctional nanoparticles based on chondroitin sulfate A (CSA) for the targeted delivery of chlorin e6 (Ce6) and doxorubicin (DOX), in a combined chemo-photodynamic therapy against triple-negative breast cancer. CSA was chosen for its hydrophilic properties and its affinity to CD44 receptor-overexpressed tumor cells. The CSA-ss-Ce6 (CSSC) conjugate was synthesized utilizing a disulfide linker. Subsequently, DOX-loaded CSSC (CSSC-D) nanoparticles were fabricated, showcasing a nearly spherical shape with an average particle size of 267 nm. In the CSSC-D nanoparticles, the chemically attached Ce6 constituted 1.53 %, while the physically encapsulated DOX accounted for 8.11 %. Both CSSC-D and CSSC nanoparticles demonstrated a reduction-sensitive release of DOX or Ce6 in vitro. Under near-infrared (NIR) laser irradiation, CSSC-D showed the enhanced generation of reactive oxygen species (ROS), improving cytotoxic effects against triple-negative breast cancer 4T1 and MDA-MB-231 cells. Remarkably, the CSSC-D with NIR exhibited the most potent tumor growth inhibition in comparison to other groups in the 4T1-bearing Balb/c mice model. Overall, this CSSC-D nanoplatform shows significant promise as a powerful tool for a synergetic approach in chemo-photodynamic therapy in triple-negative breast cancer.


Subject(s)
Nanoparticles , Photochemotherapy , Porphyrins , Triple Negative Breast Neoplasms , Humans , Animals , Mice , Chondroitin Sulfates , Triple Negative Breast Neoplasms/drug therapy , Doxorubicin/pharmacology , Doxorubicin/chemistry , Nanoparticles/chemistry , Porphyrins/pharmacology , Porphyrins/chemistry , Cell Line, Tumor , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry
7.
Cell Rep ; 43(3): 113873, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38427557

ABSTRACT

Craniofacial microsomia (CFM) is a congenital defect that usually results from aberrant development of embryonic pharyngeal arches. However, the molecular basis of CFM pathogenesis is largely unknown. Here, we employ the zebrafish model to investigate mechanisms of CFM pathogenesis. In early embryos, tet2 and tet3 are essential for pharyngeal cartilage development. Single-cell RNA sequencing reveals that loss of Tet2/3 impairs chondrocyte differentiation due to insufficient BMP signaling. Moreover, biochemical and genetic evidence reveals that the sequence-specific 5mC/5hmC-binding protein, Sall4, binds the promoter of bmp4 to activate bmp4 expression and control pharyngeal cartilage development. Mechanistically, Sall4 directs co-phase separation of Tet2/3 with Sall4 to form condensates that mediate 5mC oxidation on the bmp4 promoter, thereby promoting bmp4 expression and enabling sufficient BMP signaling. These findings suggest the TET-BMP-Sall4 regulatory axis is critical for pharyngeal cartilage development. Collectively, our study provides insights into understanding craniofacial development and CFM pathogenesis.


Subject(s)
Cartilage , Zebrafish , Animals , Zebrafish/metabolism , Cartilage/metabolism , Cell Differentiation/genetics , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Chondrogenesis/genetics
8.
Clin Cancer Res ; 30(9): 1945-1958, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38427437

ABSTRACT

PURPOSE: Radiotherapy (RT) is a widely employed anticancer treatment. Emerging evidence suggests that RT can elicit both tumor-inhibiting and tumor-promoting immune effects. The purpose of this study is to investigate immune suppressive factors of radiotherapy. EXPERIMENTAL DESIGN: We used a heterologous two-tumor model in which adaptive concomitant immunity was eliminated. RESULTS: Through analysis of PD-L1 expression and myeloid-derived suppressor cells (MDSC) frequencies using patient peripheral blood mononuclear cells and murine two-tumor and metastasis models, we report that local irradiation can induce a systemic increase in MDSC, as well as PD-L1 expression on dendritic cells and myeloid cells, and thereby increase the potential for metastatic dissemination in distal, nonirradiated tissue. In a mouse model using two distinct tumors, we found that PD-L1 induction by ionizing radiation was dependent on elevated chemokine CXCL10 signaling. Inhibiting PD-L1 or MDSC can potentially abrogate RT-induced metastasis and improve clinical outcomes for patients receiving RT. CONCLUSIONS: Blockade of PD-L1/CXCL10 axis or MDSC infiltration during irradiation can enhance abscopal tumor control and reduce metastasis.


Subject(s)
B7-H1 Antigen , Myeloid-Derived Suppressor Cells , Animals , B7-H1 Antigen/metabolism , Mice , Myeloid-Derived Suppressor Cells/immunology , Myeloid-Derived Suppressor Cells/metabolism , Humans , Neoplasm Metastasis , Cell Line, Tumor , Female , Disease Models, Animal , Chemokine CXCL10/metabolism
9.
Fa Yi Xue Za Zhi ; 40(1): 59-63, 2024 Feb 25.
Article in English, Chinese | MEDLINE | ID: mdl-38500462

ABSTRACT

Important forensic diagnostic indicators of sudden death in coronary atherosclerotic heart disease, such as acute or chronic myocardial ischemic changes, sometimes make it difficult to locate the ischemic site due to the short death process, the lack of tissue reaction time. In some cases, the deceased died of sudden death on the first-episode, resulting in difficulty for medical examiners to make an accurate diagnosis. However, clinical studies on coronary instability plaque revealed the key role of coronary spasm and thrombosis caused by their lesions in sudden coronary death process. This paper mainly summarizes the pathological characteristics of unstable coronary plaque based on clinical medical research, including plaque rupture, plaque erosion and calcified nodules, as well as the influencing factors leading to plaque instability, and briefly describes the research progress and technique of the atherosclerotic plaques, in order to improve the study on the mechanism of sudden coronary death and improve the accuracy of the forensic diagnosis of sudden coronary death by diagnosing different pathologic states of coronary atherosclerotic plaques.


Subject(s)
Coronary Artery Disease , Coronary Thrombosis , Plaque, Atherosclerotic , Humans , Plaque, Atherosclerotic/complications , Plaque, Atherosclerotic/pathology , Coronary Thrombosis/complications , Coronary Thrombosis/pathology , Risk Factors , Coronary Artery Disease/complications , Death, Sudden, Cardiac/etiology , Death, Sudden, Cardiac/pathology , Coronary Vessels/diagnostic imaging , Coronary Vessels/pathology
10.
BMC Infect Dis ; 24(1): 270, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38429664

ABSTRACT

BACKGROUND: The clinical manifestations of COVID-19 range from asymptomatic, mild to moderate, severe, and critical disease. Host genetic variants were recognized to affect the disease severity. However, the genetic landscape differs among various populations. Therefore, we explored the variants associated with COVID-19 severity in the Guangdong population. METHODS: A total of 314 subjects were selected, of which the severe and critical COVID-19 patients were defined as "cases", and the mild and moderate patients were defined as "control". Twenty-two variants in interferon-related genes and FOXP4 were genotyped using the MassARRAY technology platform. RESULTS: IFN signaling gene MX1 rs17000900 CA + AA genotype was correlated with a reduced risk of severe COVID-19 in males (P = 0.001, OR = 0.050, 95%CI = 0.008-0.316). The AT haplotype comprised of MX1 rs17000900 and rs2071430 was more likely to protect against COVID-19 severity (P = 6.3E-03). FOXP4 rs1886814 CC genotype (P = 0.001, OR = 3.747, 95%CI = 1.746-8.043) and rs2894439 GA + AA genotype (P = 0.001, OR = 5.703, 95% CI = 2.045-15.903) were correlated with increased risk of severe COVID-19. Haplotype CA comprised of rs1886814 and rs2894439 was found to be correlated with adverse outcomes (P = 7.0E-04). FOXP4 rs1886814 CC (P = 0.0004) and rs2894439 GA + AA carriers had higher neutralizing antibody titers (P = 0.0018). The CA + AA genotype of MX1 rs17000900 tended to be correlated with lower neutralizing antibody titers than CC genotype (P = 0.0663), but the difference was not statistically significant. CONCLUSION: Our study found a possible association between MX1 and FOXP4 polymorphisms and the severity of COVID-19. Distinguishing high-risk patients who develop severe COVID-19 will provide clues for early intervention and individual treatment strategies.


Subject(s)
COVID-19 , Forkhead Transcription Factors , Polymorphism, Single Nucleotide , Humans , Male , Antibodies, Neutralizing , COVID-19/genetics , COVID-19/metabolism , Forkhead Transcription Factors/genetics , Genotype , Haplotypes , Interferons/metabolism , Myxovirus Resistance Proteins/metabolism
11.
Int J Legal Med ; 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38532207

ABSTRACT

The present study is aimed to address the challenge of wound age estimation in forensic science by identifying reliable genetic markers using low-cost and high-precision second-generation sequencing technology. A total of 54 Sprague-Dawley rats were randomly assigned to a control group or injury groups, with injury groups being further divided into time points (4 h, 8 h, 12 h, 16 h, 20 h, 24 h, 28 h, and 32 h after injury, n = 6) to establish rat skeletal muscle contusion models. Gene expression data were obtained using second-generation sequencing technology, and differential gene expression analysis, weighted gene co-expression network analysis (WGCNA) and time-dependent expression trend analysis were performed. A total of six sets of biomarkers were obtained: differentially expressed genes at adjacent time points (127 genes), co-expressed genes most associated with wound age (213 genes), hub genes exhibiting time-dependent expression (264 genes), and sets of transcription factors (TF) corresponding to the above sets of genes (74, 87, and 99 genes, respectively). Then, random forest (RF), support vector machine (SVM) and multilayer perceptron (MLP), were constructed for wound age estimation from the above gene sets. The results estimated by transcription factors were all superior to the corresponding hub genes, with the transcription factor group of WGCNA performed the best, with average accuracy rates of 96% for three models' internal testing, and 91.7% for the highest external validation. This study demonstrates the advantages of the indicator screening system based on second-generation sequencing technology and transcription factor level for wound age estimation.

12.
Inflammopharmacology ; 32(2): 1277-1294, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38407703

ABSTRACT

OBJECTIVE: Ferroptosis has been reported to play a role in rheumatoid arthritis (RA). Sulfasalazine, a common clinical treatment for ankylosing spondylitis, also exerts pathological influence on the progression of rheumatoid arthritis including the induced ferroptosis of fibroblast-like synoviocytes (FLSs), which result in the perturbated downstream signaling and the development of RA. The aim of this study was to investigate the underlying mechanism so as to provide novel insight for the treatment of RA. METHODS: CCK-8 and Western blotting were used to assess the effect of sulfasalazine on FLSs. A collagen-induced arthritis mouse model was constructed by the injection of collagen and Freund's adjuvant, and then, mice were treated with sulfasalazine from day 21 after modeling. The synovium was extracted and ferroptosis was assessed by Western blotting and immunofluorescence staining. RESULTS: The results revealed that sulfasalazine promotes ferroptosis. Compared with the control group, the expression levels of ferroptosis-related proteins such as glutathione peroxidase 4, ferritin heavy chain 1, and solute carrier family 7, member 11 (SLC7A11) were lower in the experimental group. Furthermore, deferoxamine inhibited ferroptosis induced by sulfasalazine. Sulfasalazine-promoted ferroptosis was related to a decrease in ERK1/2 and the increase of P53. CONCLUSIONS: Sulfasalazine promoted ferroptosis of FLSs in rheumatoid arthritis, and the PI3K-AKT-ERK1/2 pathway and P53-SLC7A11 pathway play an important role in this process.


Subject(s)
Arthritis, Rheumatoid , Ferroptosis , Mice , Animals , Sulfasalazine/pharmacology , Sulfasalazine/therapeutic use , Proto-Oncogene Proteins c-akt/metabolism , Tumor Suppressor Protein p53/metabolism , MAP Kinase Signaling System , Phosphatidylinositol 3-Kinases/metabolism , Arthritis, Rheumatoid/metabolism , Cells, Cultured , Cell Proliferation
13.
Indian J Pathol Microbiol ; 67(1): 102-106, 2024.
Article in English | MEDLINE | ID: mdl-38358197

ABSTRACT

Background: Splenic sclerosing angiomatoid nodular transformation (SANT) is a rare benign nodular lesion in the red medulla of the spleen. In the past, SANT has not been consistently recognized as the name for this condition and was often misdiagnosed for other conditions. In recent years, SANT has been acknowledged by most scholars as multiple reports have been published. Aim: To assess the clinicopathological features of SANT to identify the histological characteristics of SANT to improve diagnosis and clinical treatment. Materials and Methods: We assessed 25 cases of SANT diagnosed at Zhongshan Hospital affiliated with Fudan University from September 2014 to October 2021, including 14 men and 11 women, aged 24-62 years old. Results: Fourteen cases were complicated with benign tumors of the liver, pancreas, kidney, uterus, and prostate. One case was complicated with renal clear cell carcinoma, and one was complicated with hepatocellular carcinoma. The gross neoplasm is multinodular and well defined. Histologically, angiomatoid nodules are composed of fattened, round, or irregular blood vessels, with or without red blood cells in the lumen, with unequal red blood cell extravasation, and fibrocytes around the nodules. The hemangiomatous nodules were positive for CD31 and CD34, while the vascular wall smooth muscle cells and fibrocytes around the nodules were positive for SMA. Conclusion: The diagnosis of SANT requires a combination of immunohistochemical and histological features, and early splenectomy is crucial for treatment.


Subject(s)
Hemangioma , Histiocytoma, Benign Fibrous , Splenic Diseases , Splenic Neoplasms , Male , Humans , Female , Young Adult , Adult , Middle Aged , Splenic Diseases/diagnosis , Splenic Diseases/surgery , Splenic Diseases/pathology , Splenectomy , Hemangioma/diagnosis , Hemangioma/pathology , Splenic Neoplasms/diagnosis , Splenic Neoplasms/surgery , Splenic Neoplasms/pathology
14.
Heliyon ; 10(3): e25601, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38333852

ABSTRACT

Osteoporosis is the result of osteoclast formation exceeding osteoblast production, and current osteoporosis treatments targeting excessive osteoclast bone resorption have serious adverse effects. There is a need to fully understand the mechanisms of osteoclast-mediated bone resorption, identify new drug targets, and find better drugs to treat osteoporosis. Gar C (Gar C) is a major naturally occurring phytochemical isolated from mangosteen, and is a derivative of the naturally occurring phenolic antioxidant lutein. We used an OP mouse model established by ovariectomy (OVX). We found that treatment with Gar C significantly increased bone mineral density and significantly decreased the expression of TRAP, NFATC1 and CTSK relative to untreated OP mice. We found that Garcinone C could disrupt osteoclast activation and resorption functions by inhibiting RANKL-induced osteoclast differentiation as well as inhibiting the formation of multinucleated osteoclasts. Immunoblotting showed that Gar C downregulated the expression of osteoclast-related proteins. In addition, Gar C significantly inhibited RANKL-induced ROS production and affected NF-κB activity by inhibiting phosphorylation Formylation of P65 and phosphorylation and degradation of ikba. These data suggest that Gar C significantly reduced OVX-induced osteoporosis by inhibiting osteoclastogenesis and oxidative stress in bone tissue. Mechanistically, this effect was associated with inhibition of the ROS-mediated NF-κB pathway.

15.
Front Aging Neurosci ; 16: 1329357, 2024.
Article in English | MEDLINE | ID: mdl-38389559

ABSTRACT

Vascular dementia (VD) is a prevalent cognitive disorder among the elderly. Its pathological mechanism encompasses neuronal damage, synaptic dysfunction, vascular abnormalities, neuroinflammation, and oxidative stress, among others. In recent years, extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs) have garnered significant attention as an emerging therapeutic strategy. Current research indicates that MSC-derived extracellular vesicles (MSC-EVs) play a pivotal role in both the diagnosis and treatment of VD. Thus, this article delves into the recent advancements of MSC-EVs in VD, discussing the mechanisms by which EVs influence the pathophysiological processes of VD. These mechanisms form the theoretical foundation for their neuroprotective effect in VD treatment. Additionally, the article highlights the potential applications of EVs in VD diagnosis. In conclusion, MSC-EVs present a promising innovative treatment strategy for VD. With rigorous research and ongoing innovation, this concept can transition into practical clinical treatment, providing more effective options for VD patients.

16.
Medicine (Baltimore) ; 103(8): e37163, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38394503

ABSTRACT

INTRODUCTION: Mucoepidermoid carcinoma (MEC) of the breast is an extremely rare primary breast tumor. Between 1979 and June 2022, only 50 cases were reported. The pathological morphology and biological behavior of breast MEC remain poorly understood. PATIENT CONCERNS: A 47-year-old female was presented with a 10-day-old left breast mass detected by physical examination. DIAGNOSES: Ultrasonography could not distinguish whether the breast tumor was benign or malignant. After a biopsy of a breast tumor excision specimen, combined with immunohistochemical results, the patient was diagnosed with high-grade mucoepidermoid breast carcinoma. INTERVENTIONS: The patient underwent a modified radical mastectomy for her left breast. OUTCOMES: The patient was still free from local recurrence or metastases at 1-year follow-up. CONCLUSION: A high-grade MEC case without MAML2 rearrangement shows good recovery without complications. The diagnosis was confirmed by histomorphology and immunohistochemical markers. It is sometimes necessary to distinguish it from adenosquamous, adenoid cystic, or mucinous carcinoma. The primary treatment is surgical resection, and the prognosis is closely related to the pathological grade.


Subject(s)
Breast Neoplasms , Carcinoma, Mucoepidermoid , Humans , Female , Middle Aged , DNA-Binding Proteins/genetics , Trans-Activators , Breast Neoplasms/genetics , Breast Neoplasms/surgery , Carcinoma, Mucoepidermoid/diagnosis , Carcinoma, Mucoepidermoid/genetics , Carcinoma, Mucoepidermoid/surgery , Mastectomy , Transcription Factors
17.
Plast Reconstr Surg ; 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38391208

ABSTRACT

BACKGROUND: Secondary lymphedema is a chronic, disabling disease impacting over 50% of patients with cancer and lacking effective pharmacological treatment even for early- to mid-disease stages. Metformin reportedly exerts anti-inflammatory and anti-fibrotic effects and is safe, with minimal side effects; We investigated the role of metformin in lymphedema mouse models and examined underlying molecular mechanisms. METHODS: Male C57BL/6 mice (6-8-week-old; n=15/group) received metformin (300 mg/kg/day) by gavage on day 3 after lymphedema surgery; saline and sham groups were administered the same volume of saline. Hindlimb circumference and tail volume were monitored every two days. On day 28, samples were collected for histological assessment, western blotting, and reverse transcription-quantitative PCR analysis of inflammation, fibrosis, and AMPK expression. AMPK activity was assayed in patients with secondary lymphedema (ISL II) and controls following strict inclusion criteria. RESULTS: Compared with the saline group, the metformin group exhibited hindlimb circumference and tail volume reduced by 469.70% and 305.18%, respectively. on day 28. Dermal thickness was reduced by 38.27% and 72.57% in the hindlimbs and tail, respectively. Metformin decreased CD4+ T cell infiltration by 19.73% and expression levels of interleukin (IL)-4, IL-13, IL-17, and transforming growth factor-ß1. Additionally, it lowered collagen I deposition by 33.18%. Compared with the saline group, the number of lymphatic vessels increased by 229.96% in the metformin group. Both the saline group mice and patients with lymphedema showed reduced AMPK activity, while metformin increased p-AMPK expression by 106.12%. CONCLUSION: Metformin alleviated inflammation and fibrosis and increased lymphangiogenesis in lymphedema mouse models by activating AMPK signaling.

18.
J Am Chem Soc ; 146(10): 6665-6674, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38412223

ABSTRACT

RNA-cleaving ribozymes are promising candidates as general tools of RNA interference (RNAi) in gene manipulation. However, compared with other RNA systems, such as siRNA and CRISPR technologies, the ribozyme tools are still far from broad applications on RNAi due to their poor performance in the cellular context. In this work, we report an efficient RNAi tool based on chemically modified hammerhead ribozyme (HHR). By the introduction of an intramolecular linkage into the minimal HHR to reconstruct the distal interaction within the tertiary ribozyme structure, this cross-linked HHR exhibits efficient RNA substrate cleavage activities with almost no sequence constraint. Cellular experiments suggest that both exogenous and endogenous RNA expression can be dramatically knocked down by this HHR tool with levels comparable to those of siRNA. Unlike the widely applied protein-recruiting RNA systems (siRNA and CRISPR), this ribozyme tool functions solely on RNA itself with great simplicity, which may provide a new approach for gene manipulation in both fundamental and translational studies.


Subject(s)
RNA, Catalytic , RNA, Catalytic/chemistry , RNA Interference , RNA, Small Interfering/metabolism , Protein Processing, Post-Translational , Nucleic Acid Conformation
19.
Angew Chem Int Ed Engl ; 63(14): e202319309, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38298112

ABSTRACT

Engineering of genetic networks with artificial signaling pathways (ASPs) can reprogram cellular responses and phenotypes under different circumstances for a variety of diagnostic and therapeutic purposes. However, construction of ASPs between originally independent endogenous genes in mammalian cells is highly challenging. Here we report an amplifiable RNA circuit that can theoretically build regulatory connections between any endogenous genes in mammalian cells. We harness the system of catalytic hairpin assembly with combination of controllable CRISPR-Cas9 function to transduce the signals from distinct messenger RNA expression of trigger genes into manipulation of target genes. Through introduction of these RNA-based genetic circuits, mammalian cells are endowed with autonomous capabilities to sense the changes of RNA expression either induced by ligand stimuli or from various cell types and control the cellular responses and fates via apoptosis-related ASPs. Our design provides a generalized platform for construction of ASPs inside the genetic networks of mammalian cells based on differentiated RNA expression.


Subject(s)
RNA, Catalytic , Animals , RNA, Catalytic/metabolism , RNA/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Apoptosis , Signal Transduction , Gene Regulatory Networks , Mammals/metabolism
20.
Article in English | MEDLINE | ID: mdl-38330566

ABSTRACT

Aim: To explore the influence of online and offline mixed teaching modes based on TPACK on theoretical knowledge and comprehensive ability of tumor gynecology postgraduates. Methods: In this study, a prospective randomized controlled study model was used to select 60 masters of oncology and gynecology who were interned in the Affiliated Hospital of the First Affiliated Hospital of Bengbu Medical College from September 2019 to April 2022 as the research objects. They were divided into a study group and a control group by random number table, with 30 cases in each group. The control group adopted the traditional teaching mode, while the study group adopted the mixed online and offline teaching mode based on TPACK to implement the teaching. The knowledge mastery, problem analysis ability and total ability of the two groups were compared before and after the practice. Results: After the practice, the scores of theoretical knowledge, clinical operation skills and case analysis ability of both groups were improved compared with those before the practice, and the scores of the study group were higher than those of the control group (P < .05). After practice, the scores of problem analysis and clinical work competence in both groups were significantly higher than those before practice, and the study group was higher than the control group (P < .05). After practice, the scores of professional technical knowledge, doctor-patient communication ability, clinical operation skill, disease observation ability and clinical first-aid ability of both groups were improved compared with those before practice, and the scores of the study group were higher than those of the control group (P < .05). Conclusion: In clinical teaching, the online and offline mixed teaching mode based on TPACK has obvious effects on improving the theoretical and clinical operation level of tumor gynecology postgraduates and the total ability of medical staff.

SELECTION OF CITATIONS
SEARCH DETAIL
...