Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
1.
Innovation (Camb) ; 5(5): 100681, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39228856

ABSTRACT

Strains from the Cryptococcus gattii species complex (CGSC) have caused the Pacific Northwest cryptococcosis outbreak, the largest cluster of life-threatening fungal infections in otherwise healthy human hosts known to date. In this study, we utilized a pan-phenome-based method to assess the fitness outcomes of CGSC strains under 31 stress conditions, providing a comprehensive overview of 2,821 phenotype-strain associations within this pathogenic clade. Phenotypic clustering analysis revealed a strong correlation between distinct types of stress phenotypes in a subset of CGSC strains, suggesting that shared determinants coordinate their adaptations to various stresses. Notably, a specific group of strains, including the outbreak isolates, exhibited a remarkable ability to adapt to all three of the most commonly used antifungal drugs for treating cryptococcosis (amphotericin B, 5-fluorocytosine, and fluconazole). By integrating pan-genomic and pan-transcriptomic analyses, we identified previously unrecognized genes that play crucial roles in conferring multidrug resistance in an outbreak strain with high multidrug adaptation. From these genes, we identified biomarkers that enable the accurate prediction of highly multidrug-adapted CGSC strains, achieving maximum accuracy and area under the curve (AUC) of 0.79 and 0.86, respectively, using machine learning algorithms. Overall, we developed a pan-omic approach to identify cryptococcal multidrug resistance determinants and predict highly multidrug-adapted CGSC strains that may pose significant clinical concern.

2.
Appl Environ Microbiol ; : e0113824, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39158312

ABSTRACT

Phosphoglucose isomerase (PGI) links glycolysis, the pentose phosphate pathway (PPP), and the synthesis of cell wall precursors in fungi by facilitating the reversible conversion between glucose-6-phosphate (Glc6p) and fructose-6-phosphate (Fru6P). In a previous study, we established the essential role of PGI in cell wall biosynthesis in the opportunistic human fungal pathogen Aspergillus fumigatus, highlighting its potential as a therapeutic target. In this study, we conducted transcriptomic analysis and discovered that the Δpgi mutant exhibited enhanced glycolysis, reduced PPP, and an upregulation of cell wall precursor biosynthesis pathways. Phenotypic analysis revealed defective protein N-glycosylation in the mutant, notably the absence of glycosylated virulence factors DPP V and catalase 1. Interestingly, the cell wall defects in the mutant were not accompanied by activation of the MpkA-dependent cell wall integrity (CWI) signaling pathway. Instead, nitrate assimilation was activated in the Δpgi mutant, stimulating glutamine synthesis and providing amino donors for chitin precursor biosynthesis. Blocking the nitrate assimilation pathway severely impaired the growth of the Δpgi mutant, highlighting the crucial role of nitrate assimilation in rescuing cell wall defects. This study unveils the connection between nitrogen assimilation and cell wall compensation in A. fumigatus.IMPORTANCEAspergillus fumigatus is a common and serious human fungal pathogen that causes a variety of diseases. Given the limited availability of antifungal drugs and increasing drug resistance, it is imperative to understand the fungus' survival mechanisms for effective control of fungal infections. Our previous study highlighted the essential role of A. fumigatus PGI in maintaining cell wall integrity, phosphate sugar homeostasis, and virulence. The present study further illuminates the involvement of PGI in protein N-glycosylation. Furthermore, this research reveals that the nitrogen assimilation pathway, rather than the canonical MpkA-dependent CWI pathway, compensates for cell wall deficiencies in the mutant. These findings offer valuable insights into a novel adaptation mechanism of A. fumigatus to address cell wall defects, which could hold promise for the treatment of infections.

3.
PNAS Nexus ; 3(7): pgae237, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39035039

ABSTRACT

The study of infectious diseases holds significant scientific and societal importance, yet current research on the mechanisms of disease emergence and prediction methods still face challenging issues. This research uses the landscape and flux theoretical framework to reveal the non-equilibrium dynamics of adaptive infectious diseases and uncover its underlying physical mechanism. This allows the quantification of dynamics, characterizing the system with two basins of attraction determined by gradient and rotational flux forces. Quantification of entropy production rates provides insights into the system deviating from equilibrium and associated dissipative costs. The study identifies early warning indicators for the critical transition, emphasizing the advantage of observing time irreversibility from time series over theoretical entropy production and flux. The presence of rotational flux leads to an irreversible pathway between disease states. Through global sensitivity analysis, we identified the key factors influencing infectious diseases. In summary, this research offers valuable insights into infectious disease dynamics and presents a practical approach for predicting the onset of critical transition, addressing existing research gaps.

4.
Adv Sci (Weinh) ; 11(30): e2309542, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38872263

ABSTRACT

Glioblastoma multiforme (GBM) is the most aggressive and lethal subtype of gliomas of the central nervous system. The efficacy of sonodynamic therapy (SDT) against GBM is significantly reduced by the expression of apoptosis-inhibitory proteins in GBM cells. In this study, an intelligent nanoplatform (denoted as Aza-BD@PC NPs) based on the aza-boron-dipyrromethene dye and phenyl chlorothionocarbonate-modified DSPE-PEG molecules is developed for synergistic ferroptosis-enabled gas therapy (GT) and SDT of GBM. Once internalized by GBM cells, Aza-BD@PC NPs showed effective cysteine (Cys) consumption and Cys-triggered hydrogen sulfide (H2S) release for ferroptosis-enabled GT, thereby disrupting homeostasis in the intracellular environment, affecting GBM cell metabolism, and inhibiting GBM cell proliferation. Additionally, the released Aza-BD generated abundant singlet oxygen (1O2) under ultrasound irradiation for favorable SDT. In vivo and in vitro evaluations demonstrated that the combined functions of Cys consumption, H2S production, and 1O2 production induced significant death of GBM cells and markedly inhibited tumor growth, with an impressive inhibition rate of up to 97.5%. Collectively, this study constructed a cascade nanoreactor with satisfactory Cys depletion performance, excellent H2S release capability, and prominent reactive oxygen species production ability under ultrasound irradiation for the synergistic ferroptosis-enabled GT and SDT of gliomas.


Subject(s)
Ferroptosis , Glioblastoma , Hydrogen Sulfide , Prodrugs , Ferroptosis/drug effects , Animals , Mice , Hydrogen Sulfide/pharmacology , Hydrogen Sulfide/metabolism , Prodrugs/pharmacology , Glioblastoma/therapy , Glioblastoma/metabolism , Glioblastoma/drug therapy , Humans , Cell Line, Tumor , Ultrasonic Therapy/methods , Disease Models, Animal
5.
Nat Microbiol ; 9(7): 1686-1699, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38898217

ABSTRACT

The continuing emergence of invasive fungal pathogens poses an increasing threat to public health. Here, through the China Hospital Invasive Fungal Surveillance Net programme, we identified two independent cases of human infection with a previously undescribed invasive fungal pathogen, Rhodosporidiobolus fluvialis, from a genus in which many species are highly resistant to fluconazole and caspofungin. We demonstrate that R. fluvialis can undergo yeast-to-pseudohyphal transition and that pseudohyphal growth enhances its virulence, revealed by the development of a mouse model. Furthermore, we show that mouse infection or mammalian body temperature induces its mutagenesis, allowing the emergence of hypervirulent mutants favouring pseudohyphal growth. Temperature-induced mutagenesis can also elicit the development of pan-resistance to three of the most commonly used first-line antifungals (fluconazole, caspofungin and amphotericin B) in different Rhodosporidiobolus species. Furthermore, polymyxin B was found to exhibit potent activity against the pan-resistant Rhodosporidiobolus mutants. Collectively, by identifying and characterizing a fungal pathogen in the drug-resistant genus Rhodosporidiobolus, we provide evidence that temperature-dependent mutagenesis can enable the development of pan-drug resistance and hypervirulence in fungi, and support the idea that global warming can promote the evolution of new fungal pathogens.


Subject(s)
Antifungal Agents , Mutagenesis , Animals , Mice , Humans , Virulence/genetics , Antifungal Agents/pharmacology , China , Body Temperature , Disease Models, Animal , Ascomycota/genetics , Ascomycota/pathogenicity , Ascomycota/drug effects , Caspofungin/pharmacology , Microbial Sensitivity Tests , Fluconazole/pharmacology , Mycoses/microbiology , Drug Resistance, Multiple, Fungal/genetics , Drug Resistance, Fungal/genetics
7.
Phys Rev E ; 109(3-1): 034311, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38632735

ABSTRACT

War and peace, spanning history, deeply affect society, economy, and individuals. Grasping their dynamics is vital to lessen harm and foster global peace. Yet, quantifying them remains hard. Our goal is to create a simple qualitative model using landscape and flux theory, exploring war and peace mechanisms. In this symmetric network, they appear as separate attraction basins, dynamically shifting. Analyzing landscape shape gives insights into global stability. Near critical points, indicators like cross correlations, autocorrelation times, and flickering frequency surge, as warnings. We also calculate the irreversible path between war and peace due to rotational flux. Global sensitivity analysis identifies history's role in system stability. In summary, our research unveils a way to understand war and peace complexities, enhancing knowledge of key elements that lead to conflict, aiding resolution.

9.
Cell Host Microbe ; 32(2): 276-289.e7, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38215741

ABSTRACT

Bacterial persisters, a subpopulation of genetically susceptible cells that are normally dormant and tolerant to bactericides, have been studied extensively because of their clinical importance. In comparison, much less is known about the determinants underlying fungicide-tolerant fungal persister formation in vivo. Here, we report that during mouse lung infection, Cryptococcus neoformans forms persisters that are highly tolerant to amphotericin B (AmB), the standard of care for treating cryptococcosis. By exploring stationary-phase indicator molecules and developing single-cell tracking strategies, we show that in the lung, AmB persisters are enriched in cryptococcal cells that abundantly produce stationary-phase molecules. The antioxidant ergothioneine plays a specific and key role in AmB persistence, which is conserved in phylogenetically distant fungi. Furthermore, the antidepressant sertraline (SRT) shows potent activity specifically against cryptococcal AmB persisters. Our results provide evidence for and the determinant of AmB-tolerant persister formation in pulmonary cryptococcosis, which has potential clinical significance.


Subject(s)
Cryptococcosis , Cryptococcus neoformans , Fungicides, Industrial , Pneumonia , Animals , Mice , Amphotericin B/pharmacology , Anti-Bacterial Agents/pharmacology , Antifungal Agents/pharmacology , Cryptococcosis/drug therapy , Cryptococcosis/microbiology , Fungicides, Industrial/pharmacology , Pneumonia/drug therapy , Pneumonia/microbiology
10.
Nat Microbiol ; 9(2): 346-358, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38225460

ABSTRACT

Antibiotic tolerance is the ability of a susceptible population to survive high doses of cidal drugs and has been shown to compromise therapeutic outcomes in bacterial infections. In comparison, whether fungicide tolerance can be induced by host-derived factors during fungal diseases remains largely unknown. Here, through a systematic evaluation of metabolite-drug-fungal interactions in the leading fungal meningitis pathogen, Cryptococcus neoformans, we found that brain glucose induces fungal tolerance to amphotericin B (AmB) in mouse brain tissue and patient cerebrospinal fluid via the fungal glucose repression activator Mig1. Mig1-mediated tolerance limits treatment efficacy for cryptococcal meningitis in mice via inhibiting the synthesis of ergosterol, the target of AmB, and promoting the production of inositolphosphorylceramide, which competes with AmB for ergosterol. Furthermore, AmB combined with an inhibitor of fungal-specific inositolphosphorylceramide synthase, aureobasidin A, shows better efficacy against cryptococcal meningitis in mice than do clinically recommended therapies.


Subject(s)
Cryptococcus neoformans , Meningitis, Cryptococcal , Humans , Animals , Mice , Amphotericin B/pharmacology , Amphotericin B/therapeutic use , Meningitis, Cryptococcal/drug therapy , Meningitis, Cryptococcal/microbiology , Antifungal Agents/pharmacology , Brain , Ergosterol/therapeutic use
11.
Microorganisms ; 11(10)2023 Oct 14.
Article in English | MEDLINE | ID: mdl-37894218

ABSTRACT

Metagenomic data compression is very important as metagenomic projects are facing the challenges of larger data volumes per sample and more samples nowadays. Reference-based compression is a promising method to obtain a high compression ratio. However, existing microbial reference genome databases are not suitable to be directly used as references for compression due to their large size and redundancy, and different metagenomic cohorts often have various microbial compositions. We present a novel pipeline that generated simplified and tailored reference genomes for large metagenomic cohorts, enabling the reference-based compression of metagenomic data. We constructed customized reference genomes, ranging from 2.4 to 3.9 GB, for 29 real metagenomic datasets and evaluated their compression performance. Reference-based compression achieved an impressive compression ratio of over 20 for human whole-genome data and up to 33.8 for all samples, demonstrating a remarkable 4.5 times improvement than the standard Gzip compression. Our method provides new insights into reference-based metagenomic data compression and has a broad application potential for faster and cheaper data transfer, storage, and analysis.

12.
Microbiol Spectr ; 11(6): e0244323, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-37905820

ABSTRACT

IMPORTANCE: Our study indicates that the molecular typing of Cryptococcus gattii is unrelated to virulence. The integration of animal experiments and clinical prognosis demonstrated that pathogenicity did not exhibit a direct correlation with in vitro virulence phenotypes or molecular genotypes, emphasizing the intricate nature of virulence. In conclusion, our research holds the potential to provide valuable insights into understanding the microbiological attributes of C. gattii in China.


Subject(s)
Cryptococcosis , Cryptococcus gattii , Cryptococcus neoformans , Animals , Cryptococcus gattii/genetics , Cryptococcus neoformans/genetics , Virulence , Molecular Typing , Genotype , China , Cryptococcosis/microbiology
13.
Adv Drug Deliv Rev ; 200: 115007, 2023 09.
Article in English | MEDLINE | ID: mdl-37437715

ABSTRACT

Human pathogenic fungi pose a serious threat to human health and safety. Unfortunately, the limited number of antifungal options is exacerbated by the continuous emergence of drug-resistant variants, leading to frequent drug treatment failures. Recent studies have also highlighted the clinical importance of other modes of fungal survival of antifungal treatment, including drug tolerance and persistence, pointing to the complexity of the fungal response to antifungal drugs. A lack of understanding of the fungal drug response has hampered the identification of new targets, the development of alternative antifungal strategies and the design of appropriate delivery systems. In this review we summarize recent advances in the study of antifungal resistance, tolerance and persistence, with an emphasis on promising drug targets and drug delivery systems that may yield important insights into the development of new or improved antifungal therapies against fungal infections.


Subject(s)
Antifungal Agents , Mycoses , Humans , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Mycoses/drug therapy , Fungi/physiology , Drug Tolerance , Drug Delivery Systems
14.
Neural Netw ; 165: 213-227, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37307665

ABSTRACT

In this paper, the stochastic sampled-data exponential synchronization problem for Markovian jump neural networks (MJNNs) with time-varying delays and the reachable set estimation (RSE) problem for MJNNs subjected to external disturbances are investigated. Firstly, assuming that two sampled-data periods satisfy Bernoulli distribution, and introducing two stochastic variables to represent the unknown input delay and the sampled-data period respectively, the mode-dependent two-sided loop-based Lyapunov functional (TSLBLF) is constructed, and the conditions for the mean square exponential stability of the error system are derived. Furthermore, a mode-dependent stochastic sampled-data controller is designed. Secondly, by analyzing the unit-energy bounded disturbance of MJNNs, a sufficient condition is proved that all states of MJNNs are confined to an ellipsoid under zero initial condition. In order to make the target ellipsoid contain the reachable set of the system, a stochastic sampled-data controller with RSE is designed. Eventually, two numerical examples and an analog resistor-capacitor network circuit are provided to show that the textual approach can obtain a larger sampled-data period than the existing approach.


Subject(s)
Neural Networks, Computer , Computer Simulation , Markov Chains , Stochastic Processes , Time Factors
15.
Infect Dis Poverty ; 12(1): 20, 2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36932414

ABSTRACT

BACKGROUND: Emerging fungal pathogens pose important threats to global public health. The World Health Organization has responded to the rising threat of traditionally neglected fungal infections by developing a Fungal Priority Pathogens List (FPPL). Taking the highest-ranked fungal pathogen in the FPPL, Cryptococcus neoformans, as a paradigm, we review progress made over the past two decades on its global burden, its clinical manifestation and management of cryptococcal infection, and its antifungal resistance. The purpose of this review is to drive research efforts to improve future diagnoses, therapies, and interventions associated with fungal infections. METHODS: We first reviewed trends in the global burden of HIV-associated cryptococcal infection, mainly based on a series of systematic studies. We next conducted scoping reviews in accordance with the guidelines described in the Preferred Reporting Items for Systematic Reviews and Meta-analyses extension for Scoping Reviews using PubMed and ScienceDirect with the keyword Cryptococcus neoformans to identify case reports of cryptococcal infections published since 2000. We then reviewed recent updates on the diagnosis and antifungal treatment of cryptococcal infections. Finally, we summarized knowledge regarding the resistance and tolerance of C. neoformans to approved antifungal drugs. RESULTS: There has been a general reduction in the estimated global burden of HIV-associated cryptococcal meningitis since 2009, probably due to improvements in highly active antiretroviral therapies. However, cryptococcal meningitis still accounts for 19% of AIDS-related deaths annually. The incidences of CM in Europe and North America and the Latin America region have increased by approximately two-fold since 2009, while other regions showed either reduced or stable numbers of cases. Unfortunately, diagnostic and treatment options for cryptococcal infections are limited, and emerging antifungal resistance exacerbates the public health burden. CONCLUSION: The rising threat of C. neoformans is compounded by accumulating evidence for its ability to infect immunocompetent individuals and the emergence of antifungal-resistant variants. Emphasis should be placed on further understanding the mechanisms of pathogenicity and of antifungal resistance and tolerance. The development of novel management strategies through the identification of new drug targets and the discovery and optimization of new and existing diagnostics and therapeutics are key to reducing the health burden.


Subject(s)
Cryptococcus neoformans , HIV Infections , Meningitis, Cryptococcal , Mycoses , Humans , Meningitis, Cryptococcal/drug therapy , Meningitis, Cryptococcal/epidemiology , Meningitis, Cryptococcal/complications , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , HIV Infections/drug therapy , Mycoses/complications , Mycoses/drug therapy
17.
Mol Ecol ; 32(23): 6330-6344, 2023 Dec.
Article in English | MEDLINE | ID: mdl-35593386

ABSTRACT

High-throughput sequencing has substantially improved our understanding of fungal diversity. However, the short read (<500 bp) length of current second-generation sequencing approaches provides limited taxonomic and phylogenetic resolution for species discrimination. Longer sequences containing more information are highly desired to provide greater taxonomic resolution. Here, we amplified full-length rRNA operons (~5.5 kb) and established a corresponding fungal rRNA operon database for ONT sequences (FRODO), which contains ONT sequences representing eight phyla, 41 classes, 109 orders, 256 families, 524 genera and 1116 species. We also benchmarked the optimal method for sequence classification and determined that the RDP classifier based on our FRODO database was capable of improving the classification of ONT reads, with an average of 98%-99% reads correctly classified at the genus or species level. We investigated the applicability of our approach in three representative mycobiomes, namely, the soil, marine and human gut mycobiomes, and found that the gut contains the largest number of unknown species (over 90%), followed by the marine (42%) and soil (33.8%) mycobiomes. We also observed a distinct difference in the composition of the marine and soil mycobiomes, with the highest richness and diversity detected in soils. Overall, our study provides a systematic approach for mycobiome studies and revealed that the previous methods might have underestimated the diversity of mycobiome species. Future application of this method will lead to a better understanding of the taxonomic and functional diversity of fungi in environmental and health-related mycobiomes.


Subject(s)
Mycobiome , Nanopore Sequencing , Humans , Mycobiome/genetics , rRNA Operon , Phylogeny , Soil , High-Throughput Nucleotide Sequencing/methods , Fungi/genetics
18.
Nat Commun ; 13(1): 7938, 2022 12 24.
Article in English | MEDLINE | ID: mdl-36566249

ABSTRACT

Pathogenic fungi of the genus Cryptococcus can undergo two sexual cycles, involving either bisexual diploidization (after fusion of haploid cells of different mating type) or unisexual diploidization (by autodiploidization of a single cell). Here, we construct a gene-deletion library for 111 transcription factor genes in Cryptococcus deneoformans, and explore the roles of these regulatory networks in the two reproductive modes. We show that transcription factors crucial for bisexual syngamy induce the expression of known mating determinants as well as other conserved genes of unknown function. Deletion of one of these genes, which we term FMP1, leads to defects in bisexual reproduction in C. deneoformans, its sister species Cryptococcus neoformans, and the ascomycete Neurospora crassa. Furthermore, we show that a recently evolved regulatory cascade mediates pre-meiotic unisexual autodiploidization, supporting that this reproductive process is a recent evolutionary innovation. Our findings indicate that genetic circuits with different evolutionary ages govern hallmark events distinguishing unisexual and bisexual reproduction in Cryptococcus.


Subject(s)
Cryptococcus neoformans , Fungal Proteins , Meningitis, Cryptococcal , Cryptococcus neoformans/growth & development , Cryptococcus neoformans/pathogenicity , Fungal Proteins/genetics , Fungal Proteins/metabolism , Genes, Mating Type, Fungal/genetics , Reproduction, Asexual/genetics , Meningitis, Cryptococcal/parasitology
19.
Cortex ; 157: 155-166, 2022 12.
Article in English | MEDLINE | ID: mdl-36327745

ABSTRACT

Automatic action tendency is reflected by a fast reaction to approach positive stimulus and to avoid negative stimulus (automatic behaviors), while a slow reaction to approach negative stimulus and avoid positive stimulus (controlled behaviors). The dorsolateral prefrontal cortex (DLPFC) is involved in the modulation of the automatic action tendency; however, it remains unclear whether DLPFC modulates the behavior through motor inhibition or excitation, as well as the exact timing of the modulation. We used paired-pulse, dual-site TMS protocols to investigate the connectivity between left/right DLPFC and the left primary motor cortex (M1) during the manikin task performed with the right hand. For the behavioral data, the results from reaction time (RT) and premotor time (PMT), which represents the beginning of finger movements, of the approaching-avoiding behavior in both experiments showed a shorter duration for automatic behavior compared to the controlled behavior. There was stronger facilitation of the left DLPFC-left M1 connectivity at interstimulus-interval of 25 ms in controlled behavior compared to automatic behavior (positive-approaching vs. positive-avoiding: P = .002; negative-avoiding vs. negative-approaching: P = .017). The right DLPFC-left M1 connectivity did not change with the task. The present study confirmed the automatic action tendency from both reaction time and the premotor time. During the right-handed task, the DLPFC contralateral but not ipsilateral to the effector could facilitate the left M1 to speed up the execution of the controlled behavior through a polysynaptic pathway.


Subject(s)
Motor Cortex , Humans , Motor Cortex/physiology , Evoked Potentials, Motor/physiology , Transcranial Magnetic Stimulation/methods , Dorsolateral Prefrontal Cortex , Prefrontal Cortex/diagnostic imaging , Prefrontal Cortex/physiology
20.
Front Bioinform ; 2: 813599, 2022.
Article in English | MEDLINE | ID: mdl-36304301

ABSTRACT

Deciphering the genotypic diversity of within-individual pathogens and verifying the evolutionary model can help elucidate resistant genotypes, virulent subpopulations, and the mechanism of opportunistic pathogenicity. However, observed polymorphic mutations (PMs) are rare and difficult to be detected in the "dominant-lineage" model of bacterial infection due to the low frequency. The four pooled group B Streptococcus (GBS) samples were collected from the genital tracts of healthy pregnant women, and the pooled samples and the isogenic controls were genomically sequenced. Using the PMcalling program, we detected the PMs in samples and compared the results between two technical duplicates, GBS-M001T and GBS-M001C. Tested with simulated datasets, the PMcalling program showed high sensitivity especially in low-frequency PMs and reasonable specificity. The genomic sequence data from pooled samples of GBS colonizing carrier pregnant women were analyzed, and few high-frequency PMs and some low-frequency PMs were discovered, indicating a dominant-lineage evolution model. The PMs mainly were nonsynonymous and enriched in quorum sensing, glycolysis/gluconeogenesis, ATP-binding cassette (ABC) transporters, etc., suggesting antimicrobial or environmental selective pressure. The re-analysis of the published Burkholderia dolosa data showed a diverse-community model, and only a few low-frequency PMs were shared between different individuals. Genes of general control non-repressible 5-related N-acetyltransferases family, major facilitator superfamily (MFS) transporter, and ABC transporter were positive selection candidates. Our findings indicate an unreported nature of the dominant-lineage model of GBS colonization in healthy women, and a formerly not observed mutation pool in a colonized microbial community, possibly maintained by selection pressure.

SELECTION OF CITATIONS
SEARCH DETAIL