Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Front Microbiol ; 14: 1217966, 2023.
Article in English | MEDLINE | ID: mdl-37533822

ABSTRACT

This study was conducted to investigate the capability of the microbial community characteristics and soil variables to promote carbon and nitrogen cycles in maize fields under straw mulch. We covered the surface soil of the maize field with different amounts of wheat straw (0 kg/ha, 2,250 kg/ha, and 4,500 kg/ha) and used 16S rRNA and ITS sequencing, Biology ECO-plate, traditional enzymology, TOC analyzer, and HPLC to measure bacterial and fungal community composition and functions, characteristics of microbial carbon source metabolism, carbon and nitrogen fraction, enzyme activity, and organic acid content in the maize rhizosphere and non-rhizosphere. The results indicated that short-term straw mulch insignificantly affected the alpha diversity of bacterial and fungal communities whereas significantly influenced their beta diversity. The results of functional prediction revealed that straw mulch considerably boosted the relative abundances of bacteria belonging to chemoheterotrophy, aerobic chemoheterotrophy, ureolysis, and nitrogen fixation and inhibited fermentation and nitrate reduction in maize rhizosphere soil. These processes primarily drove the C and N cycles in soil. Straw mulch also improved fungal saprotrophs by raising the proportion of Chaetomiaceae and Chaetosphaeriaceae. The Biology ECO-plate results illustrated that straw mulch weakened the metabolism capacity of microbial labile carbon resources. As a result, the labile C and N fractions were raised under straw mulch. Our results also showed that straw mulch primarily regulated the microbial community structure in rhizosphere soil by significantly decreasing Firmicutes and Ascomycota relative abundance while increasing Basidiomycota. The fungal community structure is more than bacterial for affecting soil microbial biomass carbon, readily oxidizable organic carbon, dissolved organic carbon, available nitrogen, ammonium, and nitrate directly and indirectly through malic acid content and cellulase, protease, and amylase activity. Overall, our findings imply that straw mulch might influence the bacterial and fungal community structures, thereby boosting the production of labile C and N components and accelerating the C and N cycle in maize fields.

2.
Front Nutr ; 9: 997151, 2022.
Article in English | MEDLINE | ID: mdl-36185688

ABSTRACT

Biochar is a kind of organic matter that can be added into soil to improve soil quality. To study the effect of biochar combined with organic and inorganic fertilizers on rapeseed growth and purple soil fertility and microbial community, a completely randomized block design was designed with three levels of biochar (B0: no biochar, B1: low-rate biochar, B2: high-rate biochar); two levels of inorganic fertilizers (F1: low-rate inorganic fertilizer; F2: high-rate inorganic fertilizer); and two levels of organic fertilizers (M1: no organic fertilizer; M2: with organic fertilizer). All combinations were repeated three times. The combined application of biochar and organic and inorganic fertilizers could improve soil pH, soil fertility and soil microbial community richness: The pH of B1F2M1 increased 0.41 compared with the control, the nitrogen, phosphorus and potassium content increased by 103.95, 117.88, and 99.05%. Meanwhile, soil microbial community richness was also improved. Our research showed that biochar could promote the Nutrient Uptake of rapeseed, and the combined application of biochar with organic and inorganic fertilizers could improve soil fertility and increase microbial diversity. Low-rate biochar combined with organic fertilizer and low-rate inorganic fertilizer was the most suitable application mode in rapeseed production in purple soil area of Southwest China.

3.
Huan Jing Ke Xue ; 43(8): 4322-4332, 2022 Aug 08.
Article in Chinese | MEDLINE | ID: mdl-35971728

ABSTRACT

In order to investigate the effects of furrow and ridge rainwater harvesting, straw mulching, and reduced and slow-release fertilizer on soil microbial community structure of rapeseed, a two-year field study was conducted in rainy (2016-2017) and drought (2017-2018) seasons, which included three cultivation patterns:1 conventional flat planting, 2 straw mulching, and 3 ridge-furrow rainfall harvesting system and four fertilization patterns:1 conventional fertilization (100% of the amount), 2 reduced slow-release fertilizer Ⅰ (80% of the amount), 3 reduced slow-release fertilizer Ⅱ (60% of the amount), and 4 no fertilizer. The results indicated that it was rainy in 2016-2017, with seasonal drought during the nutritional growth stage in 2017-2018. The two technologies (straw mulching+80% slow-release fertilizer, J80 and ridge-furrow rainfall harvesting system+80% slow-release fertilizer, M80) were beneficial to boost the soil microbial activity. J80 and M80 increased the microbial biomass carbon by 9.94% and 10.32% and microbial biomass nitrogen by 2.38% and 1.19%, respectively, compared with that of the local cultivation pattern under two different climate conditions. The total amount of microbial phospholipid fatty acid (PLFA) decreased by 30.75% in the rainy year compared with that in the drought year, and mulching technology could effectively increase the total amount of soil PLFA. The PLFA contents of soil bacteria and fungi in the rainy year were 33.67% and 53.21%, respectively, lower than those in the drought year. However, the PLFA content of actinomycetes increased by 13.04%. Microbial communities were sensitive to abnormal precipitation. The bacteria/fungi ratio increased in rainy weather. The drought climate heighted the ratio of straight chain saturated fatty acid/straight chain monounsaturated fatty acid and straight chain monounsaturated fatty acid/cyclopropane acid. In conclusion, adopting the optimal cultivation technologies can stabilize the soil microenvironment under abnormal precipitation, relieve water and nutrient stress, and provide an effective means for rapeseed sustainable development.


Subject(s)
Brassica napus , Brassica rapa , Microbiota , Agriculture , Bacteria , Fatty Acids, Monounsaturated , Fertilizers , Fungi , Soil/chemistry , Soil Microbiology
4.
Front Plant Sci ; 13: 871021, 2022.
Article in English | MEDLINE | ID: mdl-35401604

ABSTRACT

Biochar is a kind of organic matter that can be added into the soil as a soil amendment to improve its quality. What are the effects of using biochar on purple soil and soybeans? Can the use of biochar reduce the use of fertilizers? This is our concern. Therefore, we carried out this study. The objectives of our study were to evaluate the effects of biochar, inorganic and organic fertilizer application on plant growth, chlorophyll content, photosynthetic gas exchange, and yield of soybean as well as fertility and microbial community in purple soil, and to appraise the possible reduction rate of inorganic fertilizer under the biochar application. A pot experiment was conducted with three levels of biochar, two levels of inorganic fertilizer, and two levels of organic fertilizer in a randomized complete block. The results indicated that the low rate of biochar together with half rate of inorganic fertilizer and organic fertilizer increased the plant growth of soybean. Meanwhile, the chlorophyll content, root growth, and yield of soybean were increased by 16.61, 197.73, and 96.7%, respectively, with biochar compared with no biochar. The high rate of biochar with half rate of inorganic fertilizer and organic fertilizer can promote the exchange of photosynthetic gas in soybean, and the photosynthetic rate increased by 45.25% compared with the blank control. At the full pod stage, the nitrogen content, phosphorus content, and potassium content of the whole plant under the high rate of biochar were 28.35, 13.65, and 28.78%, respectively, higher than that of the blank control. The application of biochar increased nitrogen, phosphorus, and potassium uptake of soybean. The high rate of biochar with half rate of inorganic fertilizer and organic fertilizer can improve soil nutrient content and soil microbial community. Compared with no biochar treatments, total organic carbon (TOC) increased by 740.28%, and cation exchange capacity (CEC) increased by 54.17%. Phospholipid fatty acid (PLFA) increased by 65.22%, and all kinds of soil microorganisms increased to varying degrees. In conclusion, the application of biochar can reduce the use of organic and inorganic fertilizers, improve the agronomic traits and yield of soybean, and play a positive role in soil nutrients and soil microorganisms.

5.
Front Plant Sci ; 13: 1093507, 2022.
Article in English | MEDLINE | ID: mdl-36714782

ABSTRACT

Introduction: Intercropping has a potential to reduce the CO2 emission from farmlands. Limited information is available on the underlying reasons. Methods: This study investigated the effect of milk vetch (Astragalus sinicus L.) (MV), rapeseed (Brassica napus L.) monoculture (RS) and intercropping (Intercrop) on soil CO2 emissions, moisture and temperature in a bucket experiment during 210 days from October 2015 to May 2016 on Chongqing, China. Results: The results showed that soil CO2 efflux of MV, RS and Intercrop was 1.44, 1.55 and 2.08 µmol·m-2·s-1 during seedling and stem elongation stages and 3.08, 1.59 and 1.95 µmol·m-2·s-1 during flowering and podding stages. At seeding and stem elongation stages Intercrop had 1.4 times higher soil CO2 efflux than the mean of MV and RS. In contrast, MVhad 1.6 times higher soil CO2 efflux than Intercrop thereafter, which shows it was inhibited if milk vetch presents as Intercrop only. Decreased sensitivity of soil respiration to temperature in 1.4 times and lower soil moisture by Intercrop were found compared to MV. Intercrop decreased soil moisture, especially at the seedling and stem elongation stages, compared to the monoculture. The fluctuation on soil respiration in RS and Intercrop was slight with changes in soil moisture. Conclusion: Thus, milk vetch-rapeseed system has a potential to decrease CO2 emission from farmland, however soil moisture should be regulated properly.

6.
BMC Plant Biol ; 21(1): 574, 2021 Dec 06.
Article in English | MEDLINE | ID: mdl-34872519

ABSTRACT

BACKGROUND: Drought has become a dangerous threat to reduce crop productivity throughout the world. Exogenous applications of regulators, micronutrients, and/or osmoprotectants for inducing drought-tolerance in field crops have been effectively adopted. A controlled pot study was performed to investigate the relative efficacy of salicylic acid (SA), zinc (Zn), and glycine betaine (GB) as foliar applications on the growth, tissues pigments content, relative water content (RWC), leaf gas-exchange, antioxidant enzymes activity, reactive oxygen species (ROS) accumulation, osmolytes contents, and the yield parameters of wheat plants subjected to two soil water conditions (85% field capacity: well-watered, 50% field capacity: water-deficient) during reproductive growth stages. RESULTS: Water deficient conditions significantly decreased the growth, yield parameters, RWC, photosynthesis pigment, and gas-exchange attributes except for intercellular CO2 concentration. However, foliar applications remarkably improved the growth and yield parameters under water deficit conditions. Under drought condition, exogenous applications of SA, Zn, and GB increased the grain yield pot- 1 by 27.99, 15.23 and 37.36%, respectively, as compared to the control treatment. Drought stress statistically increased the contents of hydrogen peroxide (H2O2), superoxide anion radical (O2 •-), and malonaldehyde (MDA), and elevated the harmful oxidation to cell lipids in plants, however, they were considerably reduced by foliar applications. Foliar applications of SA, Zn, and GB decreased MDA content by 29.09, 16.64 and 26.51% under drought stress, respectively, as compared to the control treatment. Activities of all antioxidant enzymes, proline content, and soluble sugar were increased in response to foliar applications under water deficit conditions. CONCLUSIONS: Overall, foliar application of GB, SA, and Zn compounds improved the drought-tolerance in wheat by decreasing the ROS accumulation, promoting enzymatic antioxidants, and increasing osmolytes accumulation. Finally, GB treatment was most effective in thoroughly assessed parameters of wheat followed by SA and Zn applications to alleviate the adverse effects of drought stress.


Subject(s)
Betaine/pharmacology , Droughts , Salicylic Acid/pharmacology , Triticum/growth & development , Zinc/pharmacology , Chlorophyll/metabolism , Photosynthesis , Soil , Stress, Physiological/drug effects , Triticum/drug effects
7.
Sci Rep ; 11(1): 13792, 2021 07 02.
Article in English | MEDLINE | ID: mdl-34215809

ABSTRACT

A two-year consecutive field experiment was conducted in purple soil in southwest China, to clarify the effects of biochar (0, 10, 20 and 40 t ha-1, namely, B0, B10, B20 and B40) combined with nitrogen reduction (100%, 80% and 60% of conventional nitrogen application rate, namely, N100, N80 and N60) on soil fertility. The performance of thirty-four indices related to soil chemical, physical and biological properties was evaluated by gray correlation analysis, principal component analysis and cluster analysis to determine the most appropriate mode for soil fertilization, and to identify the main soil environmental factors affecting rapeseed yield under the biochar combined with nitrogen reduction. The results indicated that available phosphorus, geometric mean diameter of water stability, fungi number, and the utilization of sugars, amino acids, polymers and carboxylic acids by microorganisms could be used as the main soil factors affecting rapeseed yield. The highest score of soil quality was observed in N100B10 treatment, followed by N80B10 and N100B20 treatments, which were almost in line with the results of rapeseed yields. Cluster analysis classified 12 treatments into 5 main groups on the basis of the measured parameters, which was mostly consistent with the result of soil quality scores. Considering both economic and environmental benefits, 10 t ha-1 biochar combined with 144 kg ha-1 nitrogen was the best combination to restore crop productivity and soil quality, and to achieve nitrogen decreasing and benefit increasing. This study provided scientific basis for the rational fertilization and scientific management of biochar combined with nitrogen fertilizer in purple soil area of southwest China.

8.
Plant Mol Biol ; 107(1-2): 21-36, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34302568

ABSTRACT

KEY MESSAGE: NtARF6 overexpression represses nicotine biosynthesis in tobacco. Transcriptome analysis suggests that NtARF6 acts as a regulatory hub that connect different phytohormone signaling pathways to antagonize the jasmonic acid-induced nicotine biosynthesis. Plant specialized metabolic pathways are regulated by a plethora of molecular regulators that form complex networks. In Nicotiana tabacum, nicotine biosynthesis is regulated by transcriptional activators, such as NtMYC2 and the NIC2-locus ERFs. However, the underlying molecular mechanism of the regulatory feedback is largely unknown. Previous research has shown that NbARF1, a nicotine synthesis repressor, reduces nicotine accumulation in N. benthamiana. In this study, we demonstrated that overexpression of NtARF6, an ortholog of NbARF1, was able to reduce pyridine alkaloid accumulation in tobacco. We found that NtARF6 could not directly repress the transcriptional activities of the key nicotine pathway structural gene promoters. Transcriptomic analysis suggested that this NtARF6-induced deactivation of alkaloid biosynthesis might be achieved by the antagonistic effect between jasmonic acid (JA) and other plant hormone signaling pathways, such as ethylene (ETH), salicylic acid (SA), abscisic acid (ABA). The repression of JA biosynthesis is accompanied by the induction of ETH, ABA, and SA signaling and pathogenic infection defensive responses, resulting in counteracting JA-induced metabolic reprogramming and decreasing the expression of nicotine biosynthetic genes in vivo. This study provides transcriptomic evidence for the regulatory mechanism of the NtARF6-mediated repression of alkaloid biosynthesis and indicates that this ARF transcription factor might act as a regulatory hub to connect different hormone signaling pathways in tobacco.


Subject(s)
Gene Expression Profiling , Gene Expression Regulation, Plant , Nicotiana/genetics , Nicotine/biosynthesis , Plant Proteins/genetics , Alkaloids/metabolism , Amino Acid Sequence , Biosynthetic Pathways/genetics , Cluster Analysis , Gene Ontology , Genes, Regulator , Genome, Plant , Organ Specificity/genetics , Phylogeny , Plant Cells/metabolism , Plant Proteins/chemistry , Plant Proteins/metabolism , Plants, Genetically Modified , Promoter Regions, Genetic/genetics , Protein Binding , Saccharomyces cerevisiae/metabolism , Subcellular Fractions/metabolism , Transcriptome/genetics
9.
Metabolites ; 11(3)2021 Feb 24.
Article in English | MEDLINE | ID: mdl-33668385

ABSTRACT

Potassium (K) reduces the deleterious effects of drought stress on plants. However, this mitigation has been studied mainly in the aboveground plant pathways, while the effect of K on root-soil interactions in the underground part is still underexplored. Here, we conducted the experiments to investigate how K enhances plant resistance and tolerance to drought by controlling rhizosphere processes. Three culture methods (sand, water, and soil) evaluated two rapeseed cultivars' root morphology, root exudates, soil nutrients, and microbial community structure under different K supply levels and water conditions to construct a defensive network of the underground part. We found that K supply increased the root length and density and the organic acids secretion. The organic acids were significantly associated with the available potassium decomposition, in order of formic acid > malonic acid > lactic acid > oxalic acid > citric acid. However, the mitigation had the hormesis effect, as the appropriate range of K facilitated the morphological characteristic and physiological function of the root system with increases of supply levels, while the excessive input of K could hinder the plant growth. The positive effect of K-fertilizer on soil pH, available phosphorus and available potassium content, and microbial diversity index was more significant under the water stress. The rhizosphere nutrients and pH further promoted the microbial community development by the structural equation modeling, while the non-rhizosphere nutrients had an indirect negative effect on microbes. In short, K application could alleviate drought stress on the growth and development of plants by regulating the morphology and secretion of roots and soil ecosystems.

10.
Sci Rep ; 11(1): 3195, 2021 02 04.
Article in English | MEDLINE | ID: mdl-33542287

ABSTRACT

Drought is one of the major environmental stresses that negatively affect the maize (Zea mays L.) growth and production throughout the world. Foliar applications of plant growth regulators, micronutrients or osmoprotectants for stimulating drought-tolerance in plants have been intensively reported. A controlled pot experiment was conducted to study the relative efficacy of salicylic acid (SA), zinc (Zn), and glycine betaine (GB) foliar applications on morphology, chlorophyll contents, relative water content (RWC), gas-exchange attributes, activities of antioxidant enzymes, accumulations of reactive oxygen species (ROS) and osmolytes, and yield attributes of maize plants exposed to two soil water conditions (85% field capacity: well-watered, 50% field capacity: drought stress) during critical growth stages. Drought stress significantly reduced the morphological parameters, yield and its components, RWC, chlorophyll contents, and gas-exchange parameters except for intercellular CO2 concentration, compared with well water conditions. However, the foliar applications considerably enhanced all the above parameters under drought. Drought stress significantly (p < 0.05) increased the hydrogen peroxide and superoxide anion contents, and enhanced the lipid peroxidation rate measured in terms of malonaldehyde (MDA) content. However, ROS and MDA contents were substantially decreased by foliar applications under drought stress. Antioxidant enzymes activity, proline content, and the soluble sugar were increased by foliar treatments under both well-watered and drought-stressed conditions. Overall, the application of GB was the most effective among all compounds to enhance the drought tolerance in maize through reduced levels of ROS, increased activities of antioxidant enzymes and higher accumulation of osmolytes contents.

11.
Ying Yong Sheng Tai Xue Bao ; 31(10): 3461-3472, 2020 Oct.
Article in Chinese | MEDLINE | ID: mdl-33314836

ABSTRACT

In order to deal with the frequent seasonal drought and improve water use efficiency and crop photosynthetic efficiency in drylands of southwest China, a field experiment was conducted to investigate the effects of different mulching materials (common white film, common black film, biodegradable film and no film) and ridge-to-furrow ratios (40 cm:40 cm and 40 cm:80 cm) on soil water storage, as well as photosynthetic characteristics, fluorescence parameters and chlorophyll relative content (SPAD) of rapeseed, with the flat planting as the control. The results showed that the average soil water storage under different mulching materials followed the order: ridge with common black film (BR) ≈ ridge with common white film (WR) ≈ ridge with biodegradable film (BDR) > ridge with no film (NR) > flat planting (FP). Meanwhile, ridge-to-furrow ratios did not affect soil water storage. The net photosynthetic rate, stomatal conductance and fluorescence para-meters (Fm, Fv, Fv/Fm, Fv/Fo, qP and qN) of rapeseed under ridge-furrow with film mulching was higher than those under flat planting. Compared with control, SPAD value was improved by 6.1%, 8.6%, 8.5% and 3.6% under WR, BR, BDR and NR, while instantaneous water use efficiency (IWUE) was increased by 18.3%, 11.4%, 16.3% and 10.4% under those treatments, respectively. Rapeseed yield under BR, WR and BDR was significantly higher than that in control, while NR did not increase yield. The treatment of ridge with common black film + 40 cm:40 cm as ridge-to-furrow ratio could gain the highest economic benefit. Ridge-furrow planting of rainfall harvesting could improve soil moisture, increase crop photosynthetic capacity, and raise yield and economic income in rapeseed fields in drylands of southwest China.


Subject(s)
Brassica napus , Soil , Agriculture , China , Photosynthesis , Water/analysis
12.
Environ Sci Pollut Res Int ; 27(25): 31983-31994, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32506409

ABSTRACT

Fertilizer-induced CO2 emission is a primary driver of global warming. The experiment was used to study whether controlled-release urea (CRU) application in winter oilseed rape can play a positive role in mitigating CO2 emission and promoting C utilization by soil microorganisms. Five fertilizer types consisted of N0 (0 g N plant-1), conventional CRU application (CRU100%), monotypic CRU at the 80% of conventional rate (CRU80%), co-application of CRU with uncoated urea (CRC), and organic fertilizer (CRO). Results showed that soil CO2 fluxes were significantly affected by N fertilizer types after the start of the stem growing (P < 0.05). CO2 emissions typically peaked during the seed filling period, with the highest emission of 1.99 µmol m-2 s-1 being registered for CRU100%. CRU100% had 25.00%, 30.60%, and 4.17% greater CO2 emissions than CRU80%, CRC, and CRO practices by harvest, respectively. Compared to the conventional CRU treatment, CRU80% led to a lower root volume and root mass ratio than CRU100%, which could partly contribute to the reduced CO2 emission. Conversely, CRU80% performed better in N agronomic efficiency than that of CRU100% treatment. Also, C source utilization by soil microbiomes as well as microbial diversity indices following CRU80% along with CRO applications was substantially higher than that under the conventional CRU supply. These observations suggest that opportunity exists to maintain N balance by N fertilization practices to mitigate CO2 emission from cropland. Further, a close and positive relationship between soil total nitrogen and CO2 emission also supports this. CRO-treated soils substantially elevated the contents of total carbon and readily oxidation carbon over CK. Moreover, the enzyme activity of ß-glucosidase in CRO soil was about twice as high as the CRU100%. Consequently, CRU amendments by decreasing CRU rate application and the incorporation of organic fertilizer into CRU have the potential for mitigating of CO2 emission and positive effect on the soil microbial functional diversity to improve nitrogen use efficiency of rapeseed.


Subject(s)
Brassica napus , Fertilizers , Agriculture , Carbon , Carbon Dioxide/analysis , Delayed-Action Preparations , Nitrogen , Nitrous Oxide/analysis , Soil , Urea
13.
Plants (Basel) ; 9(6)2020 Jun 06.
Article in English | MEDLINE | ID: mdl-32517168

ABSTRACT

Maize belongs to a tropical environment and is extremely sensitive to drought and chilling stress, particularly at early developmental stages. The present study investigated the individual and combined effects of drought (15% PEG-Solution) and chilling stress (15/12 °C) on morpho-physiological growth, osmolyte accumulation, production of reactive oxygen species (ROS), and activities/levels of enzymatic and non-enzymatic antioxidants in two maize hybrids (i.e., "XD889" and "XD319") and two inbred cultivars (i.e., "Yu13" and "Yu37"). Results revealed that individual and combined exposure of drought and chilling stresses hampered the morpho-physiological growth and oxidative status of maize cultivars, nevertheless, the interactive damage caused by drought + chilling was found to be more severe for all the studied traits. Between two individual stress factors, chilling-induced reductions in seedling length and biomass of maize cultivars were more compared with drought stress alone. Greater decrease in root length and biomass under chilling stress ultimately decreased the volume and surface area of the root system, and restricted the shoot growth. All the stress treatments, particularly chilling and drought + chilling, triggered the oxidative stress by higher accumulation of superoxide anion, hydrogen peroxide, hydroxyl ion, and malondialdehyde contents compared with the control. Variations in response of maize cultivars were also apparent against different stress treatments, and XD889 performed comparatively better than the rest of the cultivars. The better growth and greater stress tolerance of this cultivar was attributed to the vigorous root system architecture, as indicated by higher root biomass, root surface area, and root volume under drought and chilling stresses. Moreover, efficient antioxidant defense system in terms of higher total antioxidant capability, superoxide dismutase, peroxidase, catalase, and glutathione reductase activities also contributed in greater stress tolerance of XD889 over other cultivars.

14.
Environ Sci Pollut Res Int ; 26(19): 19261-19271, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31065988

ABSTRACT

Cadmium (Cd) contamination in agricultural soils is a prevalent environmental issue and poses potential threats to food security. Foliar ascorbic acid might prove a potent tool to alleviate toxicity of Cd toxicity in maize. An experiment was conducted with objectives to study exogenous ascorbic acid-modulated improvements in physiochemical attributes of maize under Cd toxicity. The experiment was conducted under completely randomized design. Treatments were comprised of varying concentrations of foliar ascorbic acid viz. 0.0, 0.1, 0.3, and 0.5 mM of AsA. Toxicity of Cd decreased the maize growth, increased lipid peroxidation, disturbed protein metabolism, and reduced the antioxidant defense capabilities compared with the control. However, foliar AsA significantly improved maize growth and development, photosynthetic capabilities, and protein concentrations in Cd-stressed maize plants. Meanwhile, the malondialdehyde contents and hydrogen peroxide accumulation levels in Cd-stressed maize plants decreased remarkably with increasing AsA concentrations. Furthermore, the combined treatments conspicuously boosted activities of superoxide dismutase, peroxidase, catalase, and glutathione reductase under the Cd stress alone. In addition, the application of AsA reduced the Cd uptake by 10.3-12.3% in grains. Conclusively, foliar ascorbic acid alleviated the negative effects of Cd stress in maize and improved photosynthetic processes, osmolytes, and antioxidant defense systems.


Subject(s)
Antioxidants/metabolism , Ascorbic Acid/pharmacology , Cadmium/toxicity , Soil Pollutants/toxicity , Zea mays/drug effects , Ascorbic Acid/metabolism , Cadmium/metabolism , Dose-Response Relationship, Drug , Lipid Peroxidation/drug effects , Photosynthesis/drug effects , Random Allocation , Soil Pollutants/metabolism , Zea mays/growth & development , Zea mays/metabolism
15.
Sci Rep ; 9(1): 3890, 2019 03 07.
Article in English | MEDLINE | ID: mdl-30846745

ABSTRACT

Maize is a sensitive crop to drought and heat stresses, particularly at the reproductive stages of development. The present study investigated the individual and interactive effects of drought (50% field capacity) and heat (38 °C/30 °C) stresses on morpho-physiological growth, yield, nutrient uptake and oxidative metabolism in two maize hybrids i.e., 'Xida 889' and 'Xida 319'. The stress treatments were applied at tasseling stage for 15 days. Drought, heat and drought + heat stress caused oxidative stress by the over-production of ROS (O2-, H2O2, OH-) and enhanced malondialdehyde contents, which led to reduced photosynthetic components, nutrients uptake and yield attributes. The concurrent occurrence of drought and heat was more severe for maize growth than the single stress. However, both stresses induced the metabolites accumulation and enzymatic and non-enzymatic antioxidants to prevent the oxidative damage. The performance of Xida 899 was more prominent than the Xida 319. The greater tolerance of Xida 889 to heat and drought stresses was attributed to strong antioxidant defense system, higher osmolyte accumulation, and maintenance of photosynthetic pigments and nutrient balance compared with Xida 319.


Subject(s)
Droughts , Heat-Shock Response/physiology , Oxidative Stress/physiology , Stress, Physiological/physiology , Zea mays/physiology , Hydrogen Peroxide/metabolism , Reactive Oxygen Species/metabolism , Zea mays/growth & development
16.
Article in English | MEDLINE | ID: mdl-31906058

ABSTRACT

Reduction of soil fertility and production efficiency resulting from excessive application of chemical fertilizers is universal in rapeseed-growing fields. The main objective of our study was to assess the effects of biochar combined with nitrogen fertilizer reduction on soil aggregate stability and rapeseed yield and to identify the relationship between yield and soil aggregate stability. A two-factor field experiment (2017-2019) was conducted with biochar (0 (C0), 10 (C10), 20 (C20) and 40 t·ha-1 (C40)) and nitrogen fertilizer (180 (N100), 144 (N80) and 108 kg N·ha-1 (N60)). Experimental results indicated that under N100 and N80 treatments, C10 significantly increased the macro-aggregates (R0.25), mean weight diameter (MWD) and geometric mean diameter (GMD) of soil water stable aggregate by 14.28%-15.85%, 14.88%-17.08% and 36.26%-42.22%, respectively, compared with C0. Besides, the overall difference of the soil water-stable aggregate content in 2-5 mm size range among nitrogen treatments was significant under the application of C10, which increased by 17.04%-33.04% compared with C0. Total organic carbon (TOC) in R0.25 of soil mechanical-stable aggregates was basically all increased after biochar application, especially in 0.25-1 mm and 1-2 mm aggregates, and had an increasing trend with biochar increase. C10 significantly increased rapeseed yield by 22.08%-45.65% in 2019, compared with C0. However, the reduction of nitrogen fertilizer reduced the two-year average rapeseed yield, which decreased by 11.67%-31.67% compared with N100. The highest yield of rapeseed was obtained by N100C10 in two consecutive years, which had no statistical difference with N80C10. However, the two-year yields of N80C10 were all higher than those of N100C0 with increase rate of 16.11%, and which would reduce 35.43% nitrogen fertilizer in the case of small yield difference, compared with the highest yield (2.67 t·ha-1) calculated by multi-dimensional nonlinear regression models. The regression analysis indicated R0.25, MWD and GMD had the strong positive associations with rapeseed yield, whereas percentage of aggregate destruction (PAD0.25) had a significant negative correlation with rapeseed yield. This study suggests that the application of biochar into upland purple soil could improve soil structure, increase the content of TOC in macro-aggregates under nitrogen fertilizer reduction as well as replace part of nitrogen fertilizer to achieve relatively high rapeseed yield.


Subject(s)
Brassica napus/growth & development , Charcoal , Crop Production/methods , Fertilizers , Nitrogen , Soil/chemistry , Random Allocation
17.
Huan Jing Ke Xue ; 39(5): 2400-2411, 2018 May 08.
Article in Chinese | MEDLINE | ID: mdl-29965541

ABSTRACT

In order to explore the variation in soil microbial community diversity in paddy fields with different irrigation periods, we collected in situ rice field soils during different biogas irrigation periods and analyzed the microbial community structures of these soils by high-throughput sequencing. The results showed that as the biogas irrigation period increased, the soil pH decreased gradually, while organic matter, nitrate nitrogen, phosphate, and other nutrients were accumulated. Years of continued biogas irrigation was not conducive to improving rice yields. The results showed that as the biogas irrigation period increased, the richness in microbial species in paddy soils decreased gradually, and the diversity in the microbial communities was also reduced. Proteobacteria accounts for the largest proportion in rice paddy soil with biogas slurry irrigation. With the increase of biogas irrigation years, the proportion of ß-Proteobacteria, Bacteroidia, Bacteroidales, Burkholderiales, Bacteroides, and Thiobacillus increased, while the proportion of Gemmatimonadetes and α-Proteobacteria decreased gradually. Dissolved organic carbon (F=2.67, P=0.09) had the greatest effect on microbial community structures in the studied paddy soils.


Subject(s)
Bacteria/classification , Biofuels , Soil Microbiology , Soil/chemistry , Agricultural Irrigation , High-Throughput Nucleotide Sequencing , Oryza
18.
Front Plant Sci ; 9: 393, 2018.
Article in English | MEDLINE | ID: mdl-29692787

ABSTRACT

Plants face a combination of different abiotic stresses under field conditions which are lethal to plant growth and production. Simultaneous occurrence of chilling and drought stresses in plants due to the drastic and rapid global climate changes, can alter the morphological, physiological and molecular responses. Both these stresses adversely affect the plant growth and yields due to physical damages, physiological and biochemical disruptions, and molecular changes. In general, the co-occurrence of chilling and drought combination is even worse for crop production rather than an individual stress condition. Plants attain various common and different physiological and molecular protective approaches for tolerance under chilling and drought stresses. Nevertheless, plant responses to a combination of chilling and drought stresses are unique from those to individual stress. In the present review, we summarized the recent evidence on plant responses to chilling and drought stresses on shared as well as unique basis and tried to find a common thread potentially underlying these responses. We addressed the possible cross talk between plant responses to these stresses and discussed the potential management strategies for regulating the mechanisms of plant tolerance to drought and/or chilling stresses. To date, various novel approaches have been tested in minimizing the negative effects of combine stresses. Despite of the main improvements there is still a big room for improvement in combination of drought and chilling tolerance. Thus, future researches particularly using biotechnological and molecular approaches should be carried out to develop genetically engineered plants with enhanced tolerance against these stress factors.

19.
Huan Jing Ke Xue ; 38(5): 2102-2110, 2017 May 08.
Article in Chinese | MEDLINE | ID: mdl-29965119

ABSTRACT

Soil respiration is an important process for carbon emission. A field study was conducted with four treatments including T (traditional tillage+straw mulching level 0 kg·hm-2), R (ridge tillage+straw mulching level 0 kg·hm-2), RS1 (ridge tillage+straw mulching level 3750 kg·hm-2), and RS2 (ridge tillage+straw mulching level 7500 kg·hm-2), so as to probe the effects of ridge tillage and straw mulching amount on soil respiration and soil organic carbon(SOC) and the relationships of soil respiration rate with soil temperature and water content (SWC) during the growth period of fava bean in the triple intercropping system of fava bean/maize/sweat pomato in dryland region of southwest China known as the purple hilly region. The changes of soil respiration rate were in accordance with crop growing, being firstly increased and then decreased during the whole growth period of fava bean, and there were significant differences in soil respiration rate among different treatments, which could be ranked as RS2[3.365 g·(m2·d)-1] > RS1[2.935 g·(m2·d)-1] > T[2.683 g·(m2·d)-1] > R[2.263 g·(m2·d)-1]. Ridge tillage reduced soil respiration in fava bean farmland, whereas straw mulching treatment increased it, whose variation trend was in accordance with that of straw mulching levels. There was a significant exponential relationship between soil respiration and soil temperature at 5 cm and 10 cm depth, and the exponential model at 10 cm produced better fitness than that at 5 cm. The temperature sensitivity (Q10) at 10 cm could be ranked as RS2 > RS1 > R > T, being 1.751,1.665,1.616, and 1.35, respectively. The combined exponential model indicated that soil temperature and water content (SWC) could jointly explain 68%(R), 79%(RS1) and 76%(RS2) of variation in soil respiration. This study results suggested that ridge tillage and straw mulching significantly increased SOC of 0-5 cm, 5-10 cm, 10-20 cm and 20-30 cm soil layers, and the increase of SOC was in accordance with that of straw mulching levels. The SOC was significantly increased in 5-10 cm and 10-20 cm soil layers, which could be ranked as RS2 > RS1 > R > T, and the increases in SOC at 5-10 cm were especially notable. The weighted average of particulate organic carbon (POC) at 0-30 cm was significantly increased, but the proportion of POC in SOC did not show significant influence.


Subject(s)
Agriculture , Carbon/chemistry , Soil/chemistry , China , Farms , Triticum , Vicia faba
20.
Huan Jing Ke Xue ; 37(3): 1114-20, 2016 Mar 15.
Article in Chinese | MEDLINE | ID: mdl-27337908

ABSTRACT

Under the background of global warming, the farmland soil respiration has become the main way of agricultural carbon emissions. And green manure has great potential to curb greenhouse gas emissions and achieve energy conservation and emissions reduction. However, in purple soil region of Southwest, China, soil respiration under green manure remains unclear, especially in the winter and intercropping. Through the green manure ( Chinese milk vetch) intercropping with rape, therefore, we compared the effects of rape rhizosphere under straw mulching. The soil organic carbon and soil respiration were examined. The results showed, compared with straw mulching, root separation was the major influencing factors of soil organic carbon on rape rhizosphere. Soil organic carbon was significantly decreased by root interaction. In addition, straw mulching promoted while green manure intercropping inhibited the soil respiration. Soil respiration presented the general characteristics of fall-rise-fall due to the strong influence of rape growth period. Therefore, it showed a cubic curve relationship with soil temperature.


Subject(s)
Agriculture/methods , Brassica rapa/growth & development , Carbon/analysis , Manure , Rhizosphere , Soil/chemistry , China , Environmental Monitoring , Seasons , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...