Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Healthc Mater ; : e2400606, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38683681

ABSTRACT

Emerging organic molecules with emissions in the second near-infrared (NIR-II) region are garnering significant attention. Unfortunately, achieving accountable organic emission intensity over the NIR-IIa (1300 nm) region faces challenges due to the intrinsic energy gap law. Up to the current stage, all reported organic NIR-IIa emitters belong to polymethine-based dyes with small Stokes shifts (<50 nm) and low quantum yield (QY; ≤0.015%). However, such polymethines have proved to cause self-absorption with constrained emission brightness, limiting advanced development in deep-tissue imaging. Here a new NIR-IIa scaffold based on rigid and highly conjugated dibenzofluoran core terminated by amino-containing moieties that reveal emission peaks of 1230-1305 nm is designed. The QY is at least 10 times higher than all synthesized or reported NIR-IIa polymethines with extraordinarily large Stokes shifts of 370-446 nm. DBF-BJ is further prepared as a polymer dot to demonstrate its in vivo 3D stereo imaging of mouse vasculature with a 1400 nm long-pass filter.

2.
Ann Surg Oncol ; 30(13): 8419-8427, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37605084

ABSTRACT

BACKGROUND: Near-infrared (NIR) fluorescence-guided surgery with indocyanine green (ICG) has been demonstrated to provide high sensitivity in sentinel lymph node biopsy (SLNB) for breast cancer but has several limitations, such as unstable pharmacokinetics, limited fluorescence brightness, and undesired diffusion to neighboring tissues. This paper investigates the use of Voluven® as the solvent for ICG fluorescence-guided SLNB (ICG-SLNB). METHODS: The photophysical properties of ICG in water and Voluven® were evaluated in laboratory experiments and in a mouse model. Nine patients with early breast cancer underwent subareolar injection of diluted ICG (0.25 mg/ml) for ICG-SLNB. Six of the nine patients received ICG dissolved in Voluven® (ICG:Voluven®), while three were administered ICG dissolved in water (ICG:water); a repetitive injection-observation protocol was followed for all patients. The mapping image quality was evaluated. RESULTS: Laboratory experiments and in vivo mouse study showed improved fluorescence and better targeting using Voluven® as the solvent. ICG-SLNB with a repetitive injection-observation protocol was successfully performed in all nine patients. ICG:Voluven® administration had an overall better signal-to-background ratio (SBR) in sequential sentinel lymph nodes. The rates of transportation within the lymphatics were also improved using ICG:Voluven® compared with ICG:water. CONCLUSIONS: From basic research to animal models to in-human trial, our study proposes a repetitive injection-observation technique with ICG:Voluven®, which is characterized by better transportation and more stable mapping quality for ICG-SLNB in breast cancer patients.


Subject(s)
Breast Neoplasms , Sentinel Lymph Node , Humans , Animals , Mice , Female , Indocyanine Green , Sentinel Lymph Node/pathology , Breast Neoplasms/surgery , Fluorescence , Sentinel Lymph Node Biopsy/methods , Solvents , Water , Coloring Agents , Lymph Nodes/pathology
4.
Anal Chim Acta ; 1263: 341295, 2023 Jul 04.
Article in English | MEDLINE | ID: mdl-37225338

ABSTRACT

Although three-dimensional (3D) printing technologies can customize a diverse range of devices, cross-3D printing technique/material comparisons aimed at optimizing the fabrication of analytical devices have been rare. In this study, we evaluated the surface features of the channels in knotted reactors (KRs) fabricated using fused deposition modeling (FDM) 3D printing [with poly(lactic acid) (PLA), polyamide, and acrylonitrile butadiene styrene filaments], and digital light processing and stereolithography 3D printing with photocurable resins. Also, their ability to retain Mn, Co, Ni, Cu, Zn, Cd, and Pb ions was evaluated to achieve the maximal sensitivities of these metal ions. After optimizing the techniques and materials for 3D printing of the KRs, the retention conditions, and the automatic analytical system, we observed good correlations (R > 0.9793) for the three 3D printing techniques in terms of the surface roughnesses of their channel sidewalls with respect to the signal intensities of their retained metal ions. The FDM 3D-printed PLA KR provided the best analytical performance, with the retention efficiencies of the tested metal ions all being greater than 73.9% and with the detection limits of the method ranging from 0.1 to 5.6 ng L-1. We used this analytical method to perform analyses of the tested metal ions in several reference materials (CASS-4, SLEW-3, 1643f, and 2670a). Spike analyses of complicated real samples verified the reliability and applicability of this analytical method, highlighting the possibility of tuning 3D printing techniques and materials to optimize the fabrication of mission-oriented analytical devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...