Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters










Publication year range
1.
Phys Chem Chem Phys ; 26(26): 18196-18204, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38904087

ABSTRACT

The Zr-2.5Nb alloy is a typical pressure tube material in heavy water nuclear reactors, and an increase of hydrogen isotope content in the alloy during service can pose major safety risks; hot vacuum extraction-mass spectrometry is an efficient method for evaluating hydrogen isotope concentrations in the Zr-2.5Nb alloy. This work investigates the kinetics and thermodynamic properties of deuterium (D) absorption and desorption of the Zr-2.5Nb alloy using the constant volume adsorption method and the hot vacuum extraction method. In addition to the previously reported volume contraction model, it was observed that at 600 °C and above, the reaction between D2 and Zr-2.5Nb is dominated by diffusion, while the reaction is predominantly influenced by surface adsorption and dissociation below 600 °C. Phase transition sequence of Zr-2.5Nb deuterides during non-isothermal desorption was established using quantitatively calibrated thermal desorption spectra combined with the phase transition process of deuteride decomposition. These results can provide important references for optimizing the process parameters of the hot vacuum extraction-mass spectrometry method.

2.
China CDC Wkly ; 6(15): 312-317, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38736993

ABSTRACT

What is already known about this topic?: Mucosal IgA plays a crucial role in host immunity against respiratory viruses. Recent studies suggest that it has the potential to mitigate the transmission of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant. However, a comprehensive population-based analysis examining mucosal IgA levels following the winter 2022 wave of the coronavirus disease 2019 (COVID-19) pandemic is yet to be conducted. What is added by this report?: In our study involving 3,421 participants, we documented IgA responses subsequent to SARS-CoV-2 infection. A significant proportion of individuals sustained increased levels of IgA for over six months. These levels were also observed in individuals with prior infections who underwent asymptomatic reinfections, indicating an active production of IgA antibodies. Further, individuals with multiple vaccinations or severe symptoms tended to display elevated IgA levels after recovery. What are the implications for public health practice?: IgA in the nasal mucosa is crucial for defense against SARS-CoV-2 infection. These insights can enhance our knowledge of immune responses following infection and have provided certain reference values for disease prevention and control strategies.

3.
Bioorg Chem ; 147: 107374, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38636433

ABSTRACT

The incidence of idiopathic pulmonary fibrosis (IPF) has been steadily increasing each year, posing significant challenges in its treatment. In this study, we conducted the design and synthesis of 23 new inhibitors that specifically target the TGF-ß1/Smad3 pathway. Initially, we employed a cell model of TGF-ß-induced pulmonary fibrosis, using cell survival rate and HYP expression as indicators to identify the potent ingredient 5aa, which demonstrated significant anti-pulmonary fibrosis activity. Subsequently, we induced mice with bleomycin (BLM) to establish an experimental animal model of pulmonary fibrosis, and evaluated the pharmacodynamics of 5aa in vivo against pulmonary fibrosis. The alterations in HYP and collagen levels in BLM-induced pulmonary fibrosis mice were analyzed using ELISA and immunohistochemistry techniques. The results indicated that compound 5aa effectively suppressed the fibrotic response induced by TGF-ß1, inhibited the expression of the fibrotic marker α-SMA, and hindered the EMT process in NIH3T3 cells. Additionally, oral administration of 5aa demonstrated significant therapeutic effects in a mouse model of IPF, comparable to the established drug Nintedanib. Moreover, compound 5aa exhibited higher bioavailability in vivo compared to Nintedanib. These collective outcomes suggest that 5aa holds promise as a potential inhibitor of TGF-ß1/Smad3 signaling for the treatment of IPF.


Subject(s)
Idiopathic Pulmonary Fibrosis , Signal Transduction , Smad3 Protein , Transforming Growth Factor beta1 , Animals , Smad3 Protein/metabolism , Smad3 Protein/antagonists & inhibitors , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/pathology , Idiopathic Pulmonary Fibrosis/chemically induced , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/antagonists & inhibitors , Mice , Signal Transduction/drug effects , Molecular Structure , Humans , Bleomycin , Structure-Activity Relationship , Mice, Inbred C57BL , NIH 3T3 Cells , Dose-Response Relationship, Drug , Male
4.
J Cardiothorac Surg ; 19(1): 216, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627737

ABSTRACT

During a routine physical examination three years ago, a 47-year-old woman received a diagnosis of a nodule in her right upper lung. Since then, she has been regularly attending outpatient clinic appointments for follow-up. Over time, the nodule has shown gradual growth, leading to a suspicion of lung cancer. Through the use of enhanced CT imaging, a three-dimensional reconstruction was performed to examine the bronchi and blood vessels in the patient's chest. This reconstruction revealed several variations in the anatomy of the anterior segment of the right upper lobe. Specifically, the anterior segmental bronchus (B3) was found to have originated from the right middle lung bronchus. Additionally, the medial subsegmental artery of the anterior segmental artery (A3b) and the medial segmental artery (A5) were observed to share a common trunk. As for the lateral subsegmental artery of the anterior segmental artery (A3a), it was found to have originated from the right inferior pulmonary trunk. Furthermore, the apical subsegmental artery of the apical segmental artery (A1a) and the posterior segmental artery (A2) were found to have a shared trunk.


Subject(s)
Lung Neoplasms , Lung , Humans , Female , Middle Aged , Lung/blood supply , Pulmonary Artery/diagnostic imaging , Pulmonary Artery/anatomy & histology , Bronchi/diagnostic imaging , Bronchi/anatomy & histology , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/surgery , Thorax
5.
Bioorg Chem ; 146: 107313, 2024 May.
Article in English | MEDLINE | ID: mdl-38554675

ABSTRACT

A series of new deuterated and non-deuterated N2, N4-diphenylpyridine - 2,4-diamine derivatives were synthesized and evaluated as EGFR C797S-mediated resistance inhibitors. Most of these compounds exhibited potent antiproliferative activity against Baf3-EGFR L858R/T790M/C797S and Baf3-EGFR Del19/T790M/C797S cancel cell lines, with IC50 values in the nanomolar concentration range. Among them, compound 14l represented the most active compound with IC50 values of 8-11 nM. Interestingly, metabolic stability assay with rat liver microsomes indicated that the half-life of the deuterated derivative 14o was significantly increased compared to that of 14l. In xenograft mice models, 14o inhibited tumor growth with excellent inhibitory rate of 75.1 % at the dosage of 40 mg/kg, comparing 73.2 % of the TGI with its non-deuterated compound 14l, at a dosage of 80 mg/kg. Mechanism studies revealed that 14o was a potent EGFR L858R/T790M/C797S and EGFR Del19/T790M/C797S kinase inhibitor, which could downregulate the protein phosphorylation of EGFR and m-TOR signaling pathways, arrest cell cycle at G2/M phase by affecting the expression of CDC25C, and promote cell apoptosis by regulating the expression of cleaved caspase-3. In summary, 14o could serve as a promising deuterated compound for the development of highly efficient anticancer agents.


Subject(s)
Antineoplastic Agents , Lung Neoplasms , Humans , Mice , Rats , Animals , ErbB Receptors , Lung Neoplasms/drug therapy , Mutation , Protein Kinase Inhibitors/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Drug Resistance, Neoplasm , Cell Line, Tumor
6.
Medicine (Baltimore) ; 103(7): e36483, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38363917

ABSTRACT

In this study, a series of novel compounds were synthesized by introducing the 3,4,5-trimethoxyphenyl and isatin groups into the monocarbonyl skeleton of curcumin. The possible biological activities and potential targets for these compounds were explored through network pharmacology. The results revealed that these compounds could significantly inhibit production of the inflammatory factors IL-6 and TNF-α, and suppress phosphorylation of the extracellular signal-regulated kinase (ERK) protein. Moreover, molecular docking experiments showed that the ERK protein was the potential target for these compounds. In summary, this study, through network pharmacology, presents a novel series of methoxy curcumin analogs as potent anti-inflammatory drugs.


Subject(s)
Curcumin , Drugs, Chinese Herbal , Humans , Curcumin/pharmacology , Molecular Docking Simulation , Network Pharmacology , Anti-Inflammatory Agents/pharmacology , Tumor Necrosis Factor-alpha/metabolism
7.
Macromol Rapid Commun ; 45(9): e2300685, 2024 May.
Article in English | MEDLINE | ID: mdl-38339795

ABSTRACT

The air filtration materials with high efficiency, low resistance, and extra antibacterial property are crucial for personal health protection. Herein, a tree-like polyvinylidene fluoride (PVDF) nanofibrous membrane with hierarchical structure (trunk fiber of 447 nm, branched fiber of 24.7 nm) and high filtration capacity is demonstrated. Specifically, 2-hydroxypropyl trimethyl ammonium chloride terminated hyperbranched polymer (HBP-HTC) with near-spherical three-dimensional molecular structure and adjustable terminal positive groups is synthesized as an additive for PVDF electrospinning to enhance the jet splitting and promote the formation of branched ultrafine nanofibers, achieving a coverage rate of branched nanofibers over 90% that is superior than small molecular quaternary ammonium salts. The branched nanofibers network enhances mechanical properties and filtration efficiency (99.995% for 0.26 µm sodium chloride particles) of the PVDF/HBP-HTC membrane, which demonstrates reduced pressure drop (122.4 Pa) and a quality factor up to 0.083 Pa-1 on a 40 µm-thick sample. More importantly, the numerous quaternary ammonium salt groups of HBP-HTC deliver excellent antibacterial properties to the PVDF membranes. Bacterial inhibitive rate of 99.9% against both S. aureus and E. coli is demonstrated in a membrane with 3.0 wt% HBP-HTC. This work provides a new strategy for development of high-efficiency and antibacterial protection products.


Subject(s)
Anti-Bacterial Agents , Escherichia coli , Nanofibers , Polymers , Polyvinyls , Staphylococcus aureus , Nanofibers/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Escherichia coli/drug effects , Staphylococcus aureus/drug effects , Polyvinyls/chemistry , Polymers/chemistry , Polymers/pharmacology , Polymers/chemical synthesis , Membranes, Artificial , Microbial Sensitivity Tests , Air Filters , Quaternary Ammonium Compounds/chemistry , Quaternary Ammonium Compounds/pharmacology , Filtration/methods , Particle Size , Fluorocarbon Polymers
8.
Biochim Biophys Acta Mol Basis Dis ; 1870(3): 167007, 2024 03.
Article in English | MEDLINE | ID: mdl-38185063

ABSTRACT

The development of nonalcoholic fatty liver disease (NAFLD) may worsen due to chronic stress or prolonged use of glucocorticoids. Glycerol-3-phosphate acyltransferase 3 (GPAT3), has a function in obesity and serves as a key rate-limiting enzyme that regulates triglyceride synthesis. However, the precise impact of GPAT3 on corticosterone (CORT)-induced NAFLD and its underlying molecular mechanism remain unclear. For our in vivo experiments, we utilized male and female mice that were GPAT3-/- and wild type (WT) and treated them with CORT for a duration of 4 weeks. In our in vitro experiments, we transfected AML12 cells with GPAT3 siRNA and subsequently treated them with CORT. Under CORT-treated conditions, the absence of GPAT3 greatly improved obesity and hepatic steatosis while enhancing the expression of genes involved in fatty acid oxidation, as evidenced by our findings. In addition, the deletion of GPAT3 significantly inhibited the production of reactive oxygen species (ROS), increased the expression of antioxidant genes, and recovered the mitochondrial membrane potential in AML12 cells treated with CORT. In terms of mechanism, the absence of GPAT3 encouraged the activation of the glycogen synthase kinase 3ß (GSK3ß)/nuclear factor-erythroid 2 related factor 2 (Nrf2) pathway, which served as a defense mechanism against liver fat accumulation and oxidative stress. Furthermore, GPAT3 expression was directly controlled at the transcriptional level by the glucocorticoid receptor (GR). Collectively, our findings suggest that GPAT3 deletion significantly alleviated hepatic steatosis and oxidative stress through promoting GSK3ß/Nrf2 signaling pathways.


Subject(s)
Non-alcoholic Fatty Liver Disease , Male , Female , Mice , Animals , Non-alcoholic Fatty Liver Disease/metabolism , Corticosterone/pharmacology , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Glycogen Synthase Kinase 3 beta/genetics , Glycogen Synthase Kinase 3 beta/metabolism , Oxidative Stress , Obesity/drug therapy , Obesity/genetics , Acyltransferases/metabolism , 1-Acylglycerol-3-Phosphate O-Acyltransferase/genetics , 1-Acylglycerol-3-Phosphate O-Acyltransferase/metabolism
10.
Adv Healthc Mater ; 13(7): e2302606, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37987462

ABSTRACT

Induction of pyroptosis can promote anti-PD-L1 therapeutic efficacy due to the release of pro-inflammatory cytokines, but current approaches can cause off target toxicity. Herein, a phthalocyanine-conjugated mesoporous silicate nanoparticle (PMSN) is designed for amplifying sonodynamic therapy (SDT) to augment oxidative stress and induce robust pyroptosis in tumors. The sub-10 nm diameter structure and c(RGDyC)-PEGylated modification enhance tumor targeting and renal clearance. The unique porous architecture of PMSN doubles ROS yield and enhances pyroptotic cell populations in tumors (25.0%) via a cavitation effect. PMSN-mediated SDT treatment efficiently reduces tumor mass and suppressed residual tumors in treated and distant sites by synergizing with PD-L1 blockade (85.93% and 77.09%, respectively). Furthermore, loading the chemotherapeutic, doxorubicin, into PMSN intensifies SDT-pyroptotic effects and increased efficacy. This is the first report of the use of SDT regimens to induce pyroptosis in liver cancer. This noninvasive and effective strategy has potential for clinical translation.


Subject(s)
Liver Neoplasms , Nanoparticles , Ultrasonic Therapy , Humans , Pyroptosis , B7-H1 Antigen , Cell Line, Tumor , Nanoparticles/chemistry , Immunotherapy
11.
Bioresour Technol ; 391(Pt B): 130004, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37952591

ABSTRACT

Glucose metabolism suppresses the microbial synthesis of sesquiterpenes with a syndrome of "too much of a good thing can be bad". Here, patchoulol production in Escherichia coli was increased 2.02 times by engineering patchoulol synthase to obtain an initial strain. Knocking out the synthetic pathway for cyclic adenosine monophosphate relieved glucose repression and improved patchoulol titer and yield by 27.7 % and 43.1 %, respectively. A glycolysis regulation device mediated by pyruvate sensing was constructed which effectively alleviated overflow metabolism in a high-glucose environment with 10.2 % greater patchoulol titer in strain 070QA. Without fine-tuning the glucose-feeding rate, patchoulol titer further increased to 1675.1 mg/L in a 5-L bioreactor experiment, which was the highest level reported in E. coli. Using strain 070QA as a chassis, the τ-cadinol titer reached 15.2 g/L, representing the first report for microbial production of τ-cadinol. These findings will aid in the industrial production of sesquiterpene.


Subject(s)
Escherichia coli , Sesquiterpenes , Escherichia coli/genetics , Escherichia coli/metabolism , Metabolic Engineering , Glycolysis , Sesquiterpenes/metabolism , Glucose/metabolism
12.
Cell Death Dis ; 14(11): 728, 2023 11 09.
Article in English | MEDLINE | ID: mdl-37945598

ABSTRACT

Multiple tumors are synergistically promoted by c-Met and TRK, and blocking their cross-signalling pathway may give better effects. In this study, we developed a tyrosine kinase inhibitor 1D228, which exhibited excellent anti-tumor activity by targeting c-Met and TRK. Models in vitro, 1D228 showed a significant better inhibition on cancer cell proliferation and migration than the positive drug Tepotinib. Models in vivo, 1D228 showed robust anti-tumor effect on gastric and liver tumor growth with 94.8% and 93.4% of the TGI, respectively, comparing 67.61% and 63.9% of Tepotinib. Importantly, compared with the combination of Larotrectinib and Tepotinib, 1D228 monotherapy in MKN45 xenograft tumor models showed stronger antitumor activity and lower toxicity. Mechanistic studies showed that 1D228 can largely inhibit the phosphorylation of TRKB and c-Met. Interestingly, both kinases, TRKs and c-Met, have been found to be co-expressed at high levels in patients with gastric cancer through IHC. Furthermore, bioinformatics analysis has revealed that both genes are abnormally co-expressed in multiple types of cancer. Cell cycle analysis found that 1D228 induced G0/G1 arrest by inhibiting cyclin D1. Additionally, vascular endothelial cells also showed a pronounced response to 1D228 due to its expression of TRKB and c-Met. 1D228 suppressed the migration and tube formation of endothelial cells, which are the key functions of tumor angiogenesis. Taken together, compound 1D228 may be a promising candidate for the next generation of c-Met and TRK inhibitors for cancer treatment, and offers a novel potential treatment strategy for cancer patients with abnormal expressions of c-Met or NTRK, or simultaneous of them.


Subject(s)
Endothelial Cells , Liver Neoplasms , Humans , Cell Proliferation , Phosphorylation , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Liver Neoplasms/drug therapy , Cell Line, Tumor , Xenograft Model Antitumor Assays
13.
Cancer Sci ; 114(12): 4583-4595, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37752684

ABSTRACT

Amplification of amino acids synthesis is reported to promote tumorigenesis. The serine/glycine biosynthesis pathway is a reversible conversion of serine and glycine catalyzed by cytoplasmic serine hydroxymethyltransferase (SHMT)1 and mitochondrial SHMT2; however, the role of SHTM1 in renal cell carcinoma (RCC) is still unclear. We found that low SHMT1 expression is correlated with poor survival of RCC patients. The in vitro study showed that overexpression of SHMT1 suppressed RCC proliferation and migration. In the mouse tumor model, SHMT1 significantly retarded RCC tumor growth. Furthermore, by gene network analysis, we found several SHMT1-related genes, among which homeobox D8 (HOXD8) was identified as the SHMT1 regulator. Knockdown of HOXD8 decreased SHMT1 expression, resulting in faster RCC growth, and rescued the SHMT1 overexpression-induced cell migration defects. Additionally, ChIP assay found the binding site of HOXD8 to SHMT1 promoter was at the -456~-254 bp region. Taken together, SHMT1 functions as a tumor suppressor in RCC. The transcription factor HOXD8 can promote SHMT1 expression and suppress RCC cell proliferation and migration, which provides new mechanisms of SHMT1 in RCC tumor growth and might be used as a potential therapeutic target candidate for clinical treatment.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Animals , Humans , Mice , Carcinoma, Renal Cell/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Glycine , Glycine Hydroxymethyltransferase/genetics , Glycine Hydroxymethyltransferase/chemistry , Glycine Hydroxymethyltransferase/metabolism , Homeodomain Proteins/genetics , Kidney Neoplasms/genetics , Serine/metabolism , Transcription Factors
14.
Bioorg Chem ; 138: 106653, 2023 09.
Article in English | MEDLINE | ID: mdl-37302317

ABSTRACT

For non-small cell lung cancer patients with dual mutations in EGFR and ALK, there are currently no effective therapies. Consequently, novel EGFR/ALK dual-target inhibitors are urgently needed for the treatment of NSCLC. Here, we designed a series of highly effective small molecule dual inhibitors of ALK and EGFR. The biological evaluation highlighted that most of these new compounds could effectively inhibit both ALK and EGFR in enzymatic and cellular assays. Compound (+)-8l was investigated for its antitumor properties, and it was found that (+)-8l blocked the phosphorylation of EGFR and ALK induced by ligands and inhibited phosphorylation-ERK and phosphorylation-AKT induced by ligands. Furthermore, (+)-8l also induces apoptosis and G0/G1 cell cycle arrest in cancer cells and inhibits proliferation, migration, and invasion. Notably, (+)-8l significantly suppressed tumor growth in the H1975 cell-inoculated xenograft model (20 mg/kg/d, TGI: 96.11%), PC9 cell-inoculated xenograft model (20 mg/kg/d, TGI: 96.61%) and EML4 ALK-Baf3 cell-inoculated xenograft model (30 mg/kg/d, TGI: 80.86%). These results highlight the differentiated potential of (+)-8l to inhibit ALK rearrangement and EGFR mutation in NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Ligands , ErbB Receptors , Phosphorylation , Mutation , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Cell Line, Tumor , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism
15.
Virol J ; 20(1): 135, 2023 Jun 22.
Article in English | MEDLINE | ID: mdl-37349792

ABSTRACT

OBJECTIVE: To isolate a prevalent G9P[8] group A rotavirus (RVA) (N4006) in China and investigate its genomic and evolutionary characteristics, with the goal of facilitating the development of a new rotavirus vaccine. METHODS: The RVA G9P[8] genotype from a diarrhea sample was passaged in MA104 cells. The virus was evaluated by TEM, polyacrylamide gel electrophoresis, and indirect immunofluorescence assay. The complete genome of virus was obtained by RT-PCR and sequencing. The genomic and evolutionary characteristics of the virus were evaluated by nucleic acid sequence analysis with MEGA ver. 5.0.5 and DNASTAR software. The neutralizing epitopes of VP7 and VP4 (VP5* and VP8*) were analyzed using BioEdit ver. 7.0.9.0 and PyMOL ver. 2.5.2. RESULTS: The RVA N4006 (G9P[8] genotype) was adapted in MA104 cells with a high titer (105.5 PFU/mL). Whole-genome sequence analysis showed N4006 to be a reassortant rotavirus of Wa-like G9P[8] RVA and the NSP4 gene of DS-1-like G2P[4] RVA, with the genotype constellation G9-P[8]-I1-R1-C1-M1-A1-N1-T1-E2-H1 (G9P[8]-E2). Phylogenetic analysis indicated that N4006 had a common ancestor with Japanese G9P[8]-E2 rotavirus. Neutralizing epitope analysis showed that VP7, VP5*, and VP8* of N4006 had low homology with vaccine viruses of the same genotype and marked differences with vaccine viruses of other genotypes. CONCLUSION: The RVA G9P[8] genotype with the G9-P[8]-I1-R1-C1-M1-A1-N1-T1-E2-H1 (G9P[8]-E2) constellation predominates in China and may originate from reassortment between Japanese G9P[8] with Japanese DS-1-like G2P[4] rotaviruses. The antigenic variation of N4006 with the vaccine virus necessitates an evaluation of the effect of the rotavirus vaccine on G9P[8]-E2 genotype rotavirus.


Subject(s)
Rotavirus Infections , Rotavirus Vaccines , Rotavirus , Humans , Rotavirus Infections/epidemiology , Phylogeny , Genome, Viral , Genomics , Genotype
16.
J Neurosci ; 43(25): 4559-4579, 2023 06 21.
Article in English | MEDLINE | ID: mdl-37225434

ABSTRACT

Previous studies have shown the essential roles of O-GlcNAc transferase (Ogt) and O-GlcNAcylation in neuronal development, function and neurologic diseases. However, the function of Ogt and O-GlcNAcylation in the adult cerebellum has not been well elucidated. Here, we have found that cerebellum has the highest level of O-GlcNAcylation relative to cortex and hippocampus of adult male mice. Specific deletion of Ogt in granule neuron precursors (GNPs) induces abnormal morphology and decreased size of the cerebellum in adult male Ogt deficient [conditional knock-out (cKO)] mice. Adult male cKO mice show the reduced density and aberrant distribution of cerebellar granule cells (CGCs), the disrupted arrangement of Bergman glia (BG) and Purkinje cells. In addition, adult male cKO mice exhibit aberrant synaptic connection, impaired motor coordination, and learning and memory abilities. Mechanistically, we have identified G-protein subunit α12 (Gα12) is modified by Ogt-mediated O-GlcNAcylation. O-GlcNAcylation of Gα12 facilitates its binding to Rho guanine nucleotide exchange factor 12 (Arhgef12) and consequently activates RhoA/ROCK signaling. RhoA/ROCK pathway activator LPA can rescue the developmental deficits of Ogt deficient CGCs. Therefore, our study has revealed the critical function and related mechanisms of Ogt and O-GlcNAcylation in the cerebellum of adult male mice.SIGNIFICANCE STATEMENT Cerebellar function are regulated by diverse mechanisms. To unveil novel mechanisms is critical for understanding the cerebellar function and the clinical therapy of cerebellum-related diseases. In the present study, we have shown that O-GlcNAc transferase gene (Ogt) deletion induces abnormal cerebellar morphology, synaptic connection, and behavioral deficits of adult male mice. Mechanistically, Ogt catalyzes O-GlcNAcylation of Gα12, which promotes the binding to Arhgef12, and regulates RhoA/ROCK signaling pathway. Our study has uncovered the important roles of Ogt and O-GlcNAcylation in regulating cerebellar function and cerebellum-related behavior. Our results suggest that Ogt and O-GlcNAcylation could be potential targets for some cerebellum-related diseases.


Subject(s)
GTP-Binding Protein alpha Subunits, G12-G13 , Signal Transduction , Mice , Male , Animals , GTP-Binding Protein alpha Subunits, G12-G13/metabolism , N-Acetylglucosaminyltransferases/genetics , Mice, Knockout
17.
Life Sci ; 323: 121703, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37075946

ABSTRACT

AIMS: Activating thermogenic program in brown adipocytes serves as a potential therapeutic target for increasing energy expenditure during the treatment of metabolic diseases. 5(S)-hydroxy-eicosapentaenoic acid (5-HEPE), an omega-3 unsaturated fatty acid metabolite, has been shown to enhance insulin secretion in vitro. However, its role in modulating obesity-related diseases remains largely unclear. MAIN METHODS: To investigate this further, mice were fed with a high-fat diet for 12 weeks and then injected intraperitoneally every other day with 5-HEPE for 4 additional weeks. KEY FINDINGS: In vivo, our results demonstrated that 5-HEPE alleviated the HFD-induced obesity and insulin resistance, leading to a significant decrease in subcutaneous fat and epididymal fat index and an increase in brown fat index. Compared to the HFD group, the 5-HEPE group mice had lower ITT and GTT AUC and lower HOMA-IR. Moreover, 5HEPE effectively increased energy expenditure of mice. 5-HEPE also significantly promoted brown adipose tissue (BAT) activation and browning in white adipose tissue (WAT) by up-regulating genes and proteins expression of UCP1, Prdm16, Cidea, and PGC1α. In vitro, we found 5-HEPE significantly promoted 3T3-L1 browning. Mechanistically, 5-HEPE acts by activating the GPR119/AMPK/PGC1α pathway. In conclusion, this study emphasizes a critical role of 5-HEPE in improving body energy metabolism and adipose tissue browning in HFD-fed mice. SIGNIFICANCE: Our results suggest that 5-HEPE intervention may be an effective target for preventing obesity-related metabolic diseases.


Subject(s)
Eicosapentaenoic Acid , Insulin Resistance , Mice , Animals , Eicosapentaenoic Acid/pharmacology , AMP-Activated Protein Kinases/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Obesity/metabolism , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , Diet, High-Fat/adverse effects , Thermogenesis , Energy Metabolism , Mice, Inbred C57BL
18.
Molecules ; 28(5)2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36903251

ABSTRACT

ALK-positive NSCLC coexisting with EGFR mutations is a frequently occurring clinical phenomenon. Targeting ALK and EGFR simultaneously may be an effective way to treat these cancer patients. In this study, we designed and synthesized ten new dual-target EGFR/ALK inhibitors. Among them, the optimal compound 9j exhibited good activity with IC50 values of 0.07829 ± 0.03 µM and 0.08183 ± 0.02 µM against H1975 (EGFR T790M/L858R) and H2228 (EML4-ALK) cells, respectively. Immunofluorescence assays indicated that the compound could simultaneously inhibit the expression of phosphorylated EGFR and ALK proteins. A kinase assay demonstrated that compound 9j could inhibit both EGFR and ALK kinases; thus, exerting an antitumor effect. Additionally, compound 9j induced apoptosis in a dose-dependent manner and inhibited the invasion and migration of tumor cells. All of these results indicate that 9j is worthy of further study.


Subject(s)
Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , ErbB Receptors/metabolism , Receptor Protein-Tyrosine Kinases , Lung Neoplasms/drug therapy , Protein Kinase Inhibitors/pharmacology , Mutation , Apoptosis , Cell Line, Tumor , Cell Proliferation , Antineoplastic Agents/pharmacology
19.
World J Pediatr ; 19(7): 652-662, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36658452

ABSTRACT

BACKGROUND: The liver manifestations of Alagille syndrome (ALGS) are highly variable, and factors affecting its prognosis are poorly understood. We asked whether the composition of bile acids in ALGS patients with good clinical outcomes differs from that in patients with poor outcomes and whether bile acids could be used as prognostic biomarkers. METHODS: Blood for bile acid profiling was collected from genetically confirmed JAG1-associated ALGS patients before one year of age. A good prognosis was defined as survival with native liver and total bilirubin (TB) < 85.5 µmol/L, while a poor prognosis was defined as either liver transplantation, death from liver failure, or TB ≥ 85.5 µmol/L at the last follow-up. RESULTS: We found that the concentrations of two poly-hydroxylated bile acids, tauro-2ß,3α,7α,12α-tetrahydroxylated bile acid (THBA) and glyco-hyocholic acid (GHCA), were significantly increased in patients with good prognosis compared to those with poor prognosis [area under curve (AUC) = 0.836 and 0.782, respectively] in the discovery cohort. The same trend was also observed in the molar ratios of GHCA to glyco- chenodeoxycholic acid (GCDCA) and tetrahydroxylated bile acid (THCA) to tauro-chenodeoxycholic acid (TCDCA) (both AUC = 0.836). A validation cohort confirmed these findings. Notably, tauro-2ß,3α,7α,12α-THBA achieved the highest prediction accuracy of 88.00% (92.31% sensitivity and 83.33% specificity); GHCA at > 607.69 nmol/L was associated with native liver survival [hazard ratio: 13.03, 95% confidence interval (CI): (2.662-63.753), P = 0.002]. CONCLUSIONS: We identified two poly-hydroxylated bile acids as liver prognostic biomarkers of ALGS patients. Enhanced hydroxylation of bile acids may result in better clinical outcomes.


Subject(s)
Alagille Syndrome , Bile Acids and Salts , Humans , Alagille Syndrome/diagnosis , Prognosis , Chenodeoxycholic Acid , Biomarkers
20.
Front Microbiol ; 14: 1343202, 2023.
Article in English | MEDLINE | ID: mdl-38188584

ABSTRACT

The application of orthopedic implants for bone tissue reconstruction and functional restoration is crucial for patients with severe bone fractures and defects. However, the abiotic nature of orthopedic implants allows bacterial adhesion and colonization, leading to the formation of bacterial biofilms on the implant surface. This can result in implant failure and severe complications such as osteomyelitis and septic arthritis. The emergence of antibiotic-resistant bacteria and the limited efficacy of drugs against biofilms have increased the risk of orthopedic implant-associated infections (OIAI), necessitating the development of alternative therapeutics. In this regard, antibacterial hydrogels based on bacteria repelling, contact killing, drug delivery, or external assistance strategies have been extensively investigated for coating orthopedic implants through surface modification, offering a promising approach to target biofilm formation and prevent OIAI. This review provides an overview of recent advancements in the application of antibacterial hydrogel coatings for preventing OIAI by targeting biofilm formation. The topics covered include: (1) the mechanisms underlying OIAI occurrence and the role of biofilms in exacerbating OIAI development; (2) current strategies to impart anti-biofilm properties to hydrogel coatings and the mechanisms involved in treating OIAI. This article aims to summarize the progress in antibacterial hydrogel coatings for OIAI prevention, providing valuable insights and facilitating the development of prognostic markers for the design of effective antibacterial orthopedic implants.

SELECTION OF CITATIONS
SEARCH DETAIL
...