Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 80
Filter
1.
Biophys J ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38961622

ABSTRACT

The angular optical trap (AOT) is a powerful instrument for measuring the torsional and rotational properties of a biological molecule. Thus far, AOT studies of DNA torsional mechanics have been carried out using a high numerical aperture oil-immersion objective, which permits strong trapping, but inevitably introduces spherical aberrations due to the glass-aqueous interface. However, the impact of these aberrations on torque measurements is not fully understood experimentally, partly due to a lack of theoretical guidance. Here, we present a numerical platform based on the finite element method to calculate forces and torques on a trapped quartz cylinder. We have also developed a new experimental method to accurately determine the shift in the trapping position due to the spherical aberrations by using a DNA molecule as a distance ruler. We found that the calculated and measured focal shift ratios are in good agreement. We further determined how the angular trap stiffness depends on the trap height and the cylinder displacement from the trap center and found full agreement between predictions and measurements. As a further verification of the methodology, we showed that DNA torsional properties, which are intrinsic to DNA, could be determined robustly under different trap heights and cylinder displacements. Thus, this work has laid both a theoretical and experimental framework that can be readily extended to investigate the trapping forces and torques exerted on particles with arbitrary shapes and optical properties.

2.
bioRxiv ; 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38853956

ABSTRACT

The angular optical trap (AOT) is a powerful instrument for measuring the torsional and rotational properties of a biological molecule. Thus far, AOT studies of DNA torsional mechanics have been carried out using a high numerical aperture oil-immersion objective, which permits strong trapping, but inevitably introduces spherical aberrations due to the glass-aqueous interface. However, the impact of these aberrations on torque measurements is not fully understood experimentally, partly due to a lack of theoretical guidance. Here, we present a numerical platform based on the finite element method to calculate forces and torques on a trapped quartz cylinder. We have also developed a new experimental method to accurately determine the shift in the trapping position due to the spherical aberrations by using a DNA molecule as a distance ruler. We found that the calculated and measured focal shift ratios are in good agreement. We further determined how the angular trap stiffness depends on the trap height and the cylinder displacement from the trap center and found full agreement between predictions and measurements. As further verification of the methodology, we showed that DNA torsional properties, which are intrinsic to DNA, could be determined robustly under different trap heights and cylinder displacements. Thus, this work has laid both a theoretical and experimental framework that can be readily extended to investigate the trapping forces and torques exerted on particles with arbitrary shapes and optical properties. SIGNIFICANCE: We developed a simulation platform based on the finite element method for force and torque calculation for particles in an angular optical trap (AOT), with considerations of tightly focused Gaussian beam, spherical aberrations, and optically anisotropic particles. Experimental measurements of focal shift ratio, force, and torque under multiple conditions were in good agreement with predictions from the simulations. We also demonstrated that intrinsic DNA torsional properties can be robustly measured under different AOT measurement conditions, strongly validating our simulations and calibrations. Our platform can facilitate trapping particle design for single-molecule assays using the AOT.

3.
Curr Dev Nutr ; 8(6): 102168, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38813479

ABSTRACT

Background: Glutamine in milk is believed to play an important role in neonatal intestinal maturation and immune function. For lactating mothers, glutamine utilization is increased to meet the demands of the enlarged intestine and milk production. However, the source of such glutamine during lactation has not been studied. Objectives: We aimed to assess the effects of lactation on the expression of glutamine synthetase (GS) in the mammary gland and other tissues of lactating mice. Methods: Mouse tissues were sampled at 4 time points: 8-wk-old (virgin, control), post-delivery day 5 (PD5, early lactation), PD15 (peak lactation), and involution (4 days after weaning at PD21). We examined the gene expression and protein concentrations of GS and the first 2 enzymes of branched-chain amino acid catabolism: branched-chain aminotransferase 2 (BCAT2) and branched-chain ketoacid dehydrogenase subunit E1α (BCKDHA). Results: The messenger RNA (mRNA) expression and protein concentrations of GS in mammary glands were significantly lower at PD5 and PD15 compared with the control but were restored at involution. Within the mammary gland, GS protein was only detected in adipocytes with no evidence of presence in mammary epithelial cells. Compared with the control, mRNA and protein concentrations of BCAT2 and BCKDHA in mammary glands significantly decreased during lactation and involution. No changes in GS protein concentrations during lactation were found in the liver, skeletal muscle, and lung. In non-mammary adipose tissue, GS protein abundance was higher during lactation compared with the virgin. Conclusions: This work shows that, within the mouse mammary gland, GS is only expressed in adipocytes and that the relative GS abundance in mammary gland sections is lower during lactation. This suggests that mammary adipocytes may be a site of glutamine synthesis in the lactating mouse. Identifying the sources of glutamine production during lactation is important for optimizing milk glutamine concentration to enhance neonatal and maternal health.

4.
Adv Sci (Weinh) ; 11(9): e2307696, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38126671

ABSTRACT

G-quadruplex (G4) is a four-stranded noncanonical DNA structure that has long been recognized as a potential hindrance to DNA replication. However, how replisomes effectively deal with G4s to avoid replication failure is still obscure. Here, using single-molecule and ensemble approaches, the consequence of the collision between bacteriophage T7 replisome and an intramolecular G4 located on either the leading or lagging strand is examined. It is found that the adjacent fork junctions induced by G4 formation incur the binding of T7 DNA polymerase (DNAP). In addition to G4, these inactive DNAPs present insuperable obstacles, impeding the progression of DNA synthesis. Nevertheless, T7 helicase can dismantle them and resolve lagging-strand G4s, paving the way for the advancement of the replication fork. Moreover, with the assistance of the single-stranded DNA binding protein (SSB) gp2.5, T7 helicase is also capable of maintaining a leading-strand G4 structure in an unfolded state, allowing for a fraction of T7 DNAPs to synthesize through without collapse. These findings broaden the functional repertoire of a replicative helicase and underscore the inherent G4 tolerance of a replisome.


Subject(s)
DNA Helicases , DNA, Viral , DNA, Viral/chemistry , DNA, Viral/metabolism , DNA Helicases/chemistry , DNA Helicases/genetics , DNA Helicases/metabolism , DNA Replication , DNA-Directed DNA Polymerase/chemistry , DNA-Directed DNA Polymerase/genetics , DNA-Directed DNA Polymerase/metabolism , Bacteriophage T7/genetics
5.
bioRxiv ; 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37873421

ABSTRACT

Type IIA topoisomerases are essential DNA processing enzymes that must robustly and reliably relax DNA torsional stress in vivo. While cellular processes constantly create different degrees of torsional stress, how this stress feeds back to control type IIA topoisomerase function remains obscure. Using a suite of single-molecule approaches, we examined the torsional impact on supercoiling relaxation of both naked DNA and chromatin by eukaryotic topoisomerase II (topo II). We observed that topo II was at least ~ 50-fold more processive on plectonemic DNA than previously estimated, capable of relaxing > 6000 turns. We further discovered that topo II could relax supercoiled DNA prior to plectoneme formation, but with a ~100-fold reduction in processivity; strikingly, the relaxation rate in this regime decreased with diminishing torsion in a manner consistent with the capture of transient DNA loops by topo II. Chromatinization preserved the high processivity of the enzyme under high torsional stress. Interestingly, topo II was still highly processive (~ 1000 turns) even under low torsional stress, consistent with the predisposition of chromatin to readily form DNA crossings. This work establishes that chromatin is a major stimulant of topo II function, capable of enhancing function even under low torsional stress.

6.
Nat Commun ; 14(1): 6844, 2023 10 27.
Article in English | MEDLINE | ID: mdl-37891161

ABSTRACT

Type IIA topoisomerases are essential DNA processing enzymes that must robustly and reliably relax DNA torsional stress. While cellular processes constantly create varying torsional stress, how this variation impacts type IIA topoisomerase function remains obscure. Using multiple single-molecule approaches, we examined the torsional dependence of eukaryotic topoisomerase II (topo II) activity on naked DNA and chromatin. We observed that topo II is ~50-fold more processive on buckled DNA than previously estimated. We further discovered that topo II relaxes supercoiled DNA prior to plectoneme formation, but with processivity reduced by ~100-fold. This relaxation decreases with diminishing torsion, consistent with topo II capturing transient DNA loops. Topo II retains high processivity on buckled chromatin (~10,000 turns) and becomes highly processive even on chromatin under low torsional stress (~1000 turns), consistent with chromatin's predisposition to readily form DNA crossings. This work establishes that chromatin is a major stimulant of topo II function.


Subject(s)
DNA Topoisomerases, Type II , DNA , DNA Topoisomerases, Type II/metabolism , Chromatin , DNA Topoisomerases, Type I/metabolism , Eukaryotic Cells/metabolism
7.
Nat Chem Biol ; 19(5): 641-650, 2023 05.
Article in English | MEDLINE | ID: mdl-36717711

ABSTRACT

Etoposide is a broadly employed chemotherapeutic and eukaryotic topoisomerase II poison that stabilizes cleaved DNA intermediates to promote DNA breakage and cytotoxicity. How etoposide perturbs topoisomerase dynamics is not known. Here we investigated the action of etoposide on yeast topoisomerase II, human topoisomerase IIα and human topoisomerase IIß using several sensitive single-molecule detection methods. Unexpectedly, we found that etoposide induces topoisomerase to trap DNA loops, compacting DNA and restructuring DNA topology. Loop trapping occurs after ATP hydrolysis but before strand ejection from the enzyme. Although etoposide decreases the innate stability of topoisomerase dimers, it increases the ability of the enzyme to act as a stable roadblock. Interestingly, the three topoisomerases show similar etoposide-mediated resistance to dimer separation and sliding along DNA but different abilities to compact DNA and chirally relax DNA supercoils. These data provide unique mechanistic insights into the functional consequences of etoposide on topoisomerase II dynamics.


Subject(s)
DNA Topoisomerases, Type II , Topoisomerase II Inhibitors , Humans , Etoposide/pharmacology , Topoisomerase II Inhibitors/pharmacology , DNA Topoisomerases, Type II/genetics , DNA
8.
Nat Struct Mol Biol ; 29(12): 1217-1227, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36471058

ABSTRACT

CRISPR (clustered regularly interspaced short palindromic repeats) utility relies on a stable Cas effector complex binding to its target site. However, a Cas complex bound to DNA may be removed by motor proteins carrying out host processes and the mechanism governing this removal remains unclear. Intriguingly, during CRISPR interference, RNA polymerase (RNAP) progression is only fully blocked by a bound endonuclease-deficient Cas (dCas) from the protospacer adjacent motif (PAM)-proximal side. By mapping dCas-DNA interactions at high resolution, we discovered that the collapse of the dCas R-loop allows Escherichia coli RNAP read-through from the PAM-distal side for both Sp-dCas9 and As-dCas12a. This finding is not unique to RNAP and holds for the Mfd translocase. This mechanistic understanding allowed us to modulate the dCas R-loop stability by modifying the guide RNAs. This work highlights the importance of the R-loop in dCas-binding stability and provides valuable mechanistic insights for broad applications of CRISPR technology.


Subject(s)
CRISPR-Associated Proteins , Escherichia coli Proteins , CRISPR-Associated Proteins/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/chemistry , DNA/chemistry , CRISPR-Cas Systems/genetics , RNA, Guide, CRISPR-Cas Systems
9.
Methods Mol Biol ; 2478: 37-73, 2022.
Article in English | MEDLINE | ID: mdl-36063318

ABSTRACT

Angular optical trapping (AOT) is a powerful technique that permits direct angular manipulation of a trapped particle with simultaneous measurement of torque and rotation, while also retaining the capabilities of position and force detection. This technique provides unique approaches to investigate the torsional properties of nucleic acids and DNA-protein complexes, as well as impacts of torsional stress on fundamental biological processes, such as transcription and replication. Here we describe the principle, construction, and calibration of the AOT in detail and provide a guide to the performance of single-molecule torque measurements on DNA molecules. We include the constant-force method and, notably, a new constant-extension method that enables measurement of the twist persistence length of both extended DNA, under an extremely low force, and plectonemic DNA. This chapter can assist in the implementation and application of this technique for general researchers in the single-molecule field.


Subject(s)
DNA , Optical Tweezers , Calibration , DNA/genetics , Rotation , Torque
10.
Nat Commun ; 13(1): 77, 2022 01 10.
Article in English | MEDLINE | ID: mdl-35013276

ABSTRACT

Nanophotonic tweezers represent emerging platforms with significant potential for parallel manipulation and measurements of single biological molecules on-chip. However, trapping force generation represents a substantial obstacle for their broader utility. Here, we present a resonator nanophotonic standing-wave array trap (resonator-nSWAT) that demonstrates significant force enhancement. This platform integrates a critically-coupled resonator design to the nSWAT and incorporates a novel trap reset scheme. The nSWAT can now perform standard single-molecule experiments, including stretching DNA molecules to measure their force-extension relations, unzipping DNA molecules, and disrupting and mapping protein-DNA interactions. These experiments have realized trapping forces on the order of 20 pN while demonstrating base-pair resolution with measurements performed on multiple molecules in parallel. Thus, the resonator-nSWAT platform now meets the benchmarks of a table-top precision optical trapping instrument in terms of force generation and resolution. This represents the first demonstration of a nanophotonic platform for such single-molecule experiments.


Subject(s)
CRISPR-Associated Protein 9/chemistry , DNA, Viral/chemistry , DNA/chemistry , Lab-On-A-Chip Devices , Optical Tweezers , Single Molecule Imaging/methods , Biomechanical Phenomena , CRISPR-Associated Protein 9/metabolism , DNA/metabolism , DNA, Viral/metabolism , Phosphatidylcholines/chemistry , Phosphatidylcholines/metabolism , Protein Binding , Silicon Compounds/chemistry
11.
Article in English | MEDLINE | ID: mdl-34849486

ABSTRACT

Optical tweezers have become the method of choice in single-molecule manipulation studies. In this Primer, we first review the physical principles of optical tweezers and the characteristics that make them a powerful tool to investigate single molecules. We then introduce the modifications of the method to extend the measurement of forces and displacements to torques and angles, and to develop optical tweezers with single-molecule fluorescence detection capabilities. We discuss force and torque calibration of these instruments, their various modes of operation and most common experimental geometries. We describe the type of data obtained in each experimental design and their analyses. This description is followed by a survey of applications of these methods to the studies of protein-nucleic acid interactions, protein/RNA folding and molecular motors. We also discuss data reproducibility, the factors that lead to the data variability among different laboratories and the need to develop field standards. We cover the current limitations of the methods and possible ways to optimize instrument operation, data extraction and analysis, before suggesting likely areas of future growth.

12.
Mol Cell ; 81(15): 3033-3037, 2021 08 05.
Article in English | MEDLINE | ID: mdl-34358454

ABSTRACT

Some biological questions are tough to solve through standard molecular and cell biological methods and naturally lend themselves to investigation by physical approaches. Below, a group of formally trained physicists discuss, among other things, how they apply physics to address biological questions and how physical approaches complement conventional biological approaches.


Subject(s)
Biophysics/methods , Models, Biological , Physics/methods , Single Molecule Imaging , Biology/education , Biophysics/trends , Chromosomes/chemistry , Chromosomes/ultrastructure , Computer Simulation , Humans , Molecular Motor Proteins/chemistry , Origin of Life , Physics/education , Single Molecule Imaging/methods
13.
Phys Rev Lett ; 127(2): 028101, 2021 Jul 09.
Article in English | MEDLINE | ID: mdl-34296898

ABSTRACT

DNA torsional elastic properties play a crucial role in DNA structure, topology, and the regulation of motor protein progression. However, direct measurements of these parameters are experimentally challenging. Here, we present a constant-extension method integrated into an angular optical trap to directly measure torque during DNA supercoiling. We measured the twist persistence length of extended DNA to be 22 nm under an extremely low force (∼0.02 pN) and the twist persistence length of plectonemic DNA to be 24 nm. In addition, we implemented a rigorous data analysis scheme that bridged our measurements with existing theoretical models of DNA torsional behavior. This comprehensive set of torsional parameters demonstrates that at least 20% of DNA supercoiling is partitioned into twist for both extended DNA and plectonemic DNA. This work provides a new experimental methodology, as well as an analytical and interpretational framework, which will enable, expand, and enhance future studies of DNA torsional properties.


Subject(s)
DNA, Superhelical/chemistry , DNA/chemistry , Elasticity , Models, Chemical , Nucleic Acid Conformation , Thermodynamics
14.
Nat Phys ; 17(8): 976, 2021 Aug.
Article in English | MEDLINE | ID: mdl-38645940
15.
Sci Rep ; 10(1): 11239, 2020 07 08.
Article in English | MEDLINE | ID: mdl-32641693

ABSTRACT

Recent technological advances have introduced diverse engineered nanoparticles (ENPs) into our air, water, medicine, cosmetics, clothing, and food. However, the health and environmental effects of these increasingly common ENPs are still not well understood. In particular, potential neurological effects are one of the most poorly understood areas of nanoparticle toxicology (nanotoxicology), in that low-to-moderate neurotoxicity can be subtle and difficult to measure. Culturing primary neuron explants on planar microelectrode arrays (MEAs) has emerged as one of the most promising in vitro techniques with which to study neuro-nanotoxicology, as MEAs enable the fluorescent tracking of nanoparticles together with neuronal electrical activity recording at the submillisecond time scale, enabling the resolution of individual action potentials. Here we examine the dose-dependent neurotoxicity of dextran-coated iron oxide nanoparticles (dIONPs), a common type of functionalized ENP used in biomedical applications, on cultured primary neurons harvested from postnatal day 0-1 mouse brains. A range of dIONP concentrations (5-40 µg/ml) were added to neuron cultures, and cells were plated either onto well plates for live cell, fluorescent reactive oxidative species (ROS) and viability observations, or onto planar microelectrode arrays (MEAs) for electrophysiological measurements. Below 10 µg/ml, there were no dose-dependent cellular ROS increases or effects in MEA bursting behavior at sub-lethal dosages. However, above 20 µg/ml, cell death was obvious and widespread. Our findings demonstrate a significant dIONP toxicity in cultured neurons at concentrations previously reported to be safe for stem cells and other non-neuronal cell types.


Subject(s)
Magnetic Iron Oxide Nanoparticles/toxicity , Neurons/drug effects , Action Potentials/drug effects , Animals , Animals, Newborn , Cell Survival/drug effects , Cells, Cultured , Dextrans/chemistry , Dose-Response Relationship, Drug , Magnetic Iron Oxide Nanoparticles/chemistry , Mice , Neurons/physiology , Primary Cell Culture , Toxicity Tests, Acute
16.
Curr Opin Chem Biol ; 53: 158-166, 2019 12.
Article in English | MEDLINE | ID: mdl-31678712

ABSTRACT

Optical trapping (synonymous with optical tweezers) has become a core biophysical technique widely used for interrogating fundamental biological processes on size scales ranging from the single-molecule to the cellular level. Recent advances in nanotechnology have led to the development of 'nanophotonic tweezers,' an exciting new class of 'on-chip' optical traps. Here, we describe how nanophotonic tweezers are making optical trap technology more broadly accessible and bringing unique biosensing and manipulation capabilities to biological applications of optical trapping.


Subject(s)
Nanotechnology/methods , Optical Tweezers , Biology
17.
Cell ; 179(3): 619-631.e15, 2019 10 17.
Article in English | MEDLINE | ID: mdl-31626768

ABSTRACT

DNA replication in eukaryotes generates DNA supercoiling, which may intertwine (braid) daughter chromatin fibers to form precatenanes, posing topological challenges during chromosome segregation. The mechanisms that limit precatenane formation remain unclear. By making direct torque measurements, we demonstrate that the intrinsic mechanical properties of chromatin play a fundamental role in dictating precatenane formation and regulating chromatin topology. Whereas a single chromatin fiber is torsionally soft, a braided fiber is torsionally stiff, indicating that supercoiling on chromatin substrates is preferentially directed in front of the fork during replication. We further show that topoisomerase II relaxation displays a strong preference for a single chromatin fiber over a braided fiber. These results suggest a synergistic coordination-the mechanical properties of chromatin inherently suppress precatenane formation during replication elongation by driving DNA supercoiling ahead of the fork, where supercoiling is more efficiently removed by topoisomerase II. VIDEO ABSTRACT.


Subject(s)
Chromatin/chemistry , DNA Topoisomerases, Type II/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Torque , Chromatin/metabolism , DNA Replication , DNA, Superhelical/chemistry , HeLa Cells , Humans , Optical Tweezers , Saccharomyces cerevisiae
18.
ACS Appl Mater Interfaces ; 11(28): 25074-25080, 2019 Jul 17.
Article in English | MEDLINE | ID: mdl-31274286

ABSTRACT

Nanophotonic waveguides have enabled on-chip optical trap arrays for high-throughput manipulation and measurements. However, the realization of the full potential of these devices requires trapping enhancement for applications that need large trapping force. Here, we demonstrate a solution via fabrication of high refractive index cylindrical trapping particles. Using two different fabrication processes, a cleaving method and a novel lift-off method, we produced cylindrical silicon nitride (Si3N4) particles and characterized their trapping properties using the recently developed nanophotonic standing-wave array trap (nSWAT) platform. Relative to conventionally used polystyrene microspheres, the fabricated Si3N4 microcylinders attain an approximately 3- to 6-fold trap stiffness enhancement. Furthermore, both fabrication processes permit tunable microcylinder geometry, and the lift-off method also results in ultrasmooth surface termination of the ends of the microcylinders. These combined features make the Si3N4 microcylinders uniquely suited for a broad range of high-throughput, high-force, nanophotonic waveguide-based optical trapping applications.

19.
Proc Natl Acad Sci U S A ; 116(7): 2583-2588, 2019 02 12.
Article in English | MEDLINE | ID: mdl-30635423

ABSTRACT

During transcription, RNA polymerase (RNAP) supercoils DNA as it translocates. The resulting torsional stress in DNA can accumulate and, in the absence of regulatory mechanisms, becomes a barrier to RNAP elongation, causing RNAP stalling, backtracking, and transcriptional arrest. Here we investigate whether and how a transcription factor may regulate both torque-induced Escherichia coli RNAP stalling and the torque generation capacity of RNAP. Using a unique real-time angular optical trapping assay, we found that RNAP working against a resisting torque was highly prone to extensive backtracking. We then investigated transcription in the presence of GreB, a transcription factor known to rescue RNAP from the backtracked state. We found that GreB greatly suppressed RNAP backtracking and remarkably increased the torque that RNAP was able to generate by 65%, from 11.2 pN⋅nm to 18.5 pN·nm. Variance analysis of the real-time positional trajectories of RNAP after a stall revealed the kinetic parameters of backtracking and GreB rescue. These results demonstrate that backtracking is the primary mechanism by which torsional stress limits transcription and that the transcription factor GreB effectively enhances the torsional capacity of RNAP. These findings suggest a broader role for transcription factors in regulating RNAP functionality and elongation.


Subject(s)
DNA-Directed RNA Polymerases/metabolism , Transcription Factors/metabolism , Escherichia coli/enzymology , Escherichia coli Proteins/metabolism , Kinetics , Models, Theoretical , Transcription, Genetic , Transcriptional Elongation Factors/metabolism
20.
Cell ; 175(6): 1445-1448, 2018 11 29.
Article in English | MEDLINE | ID: mdl-30500527

ABSTRACT

The 2018 Nobel Prize in Physics has been awarded jointly to Arthur Ashkin for the discovery and development of optical tweezers and their applications to biological systems and to Gérard Mourou and Donna Strickland for the invention of laser chirped pulse amplification. Here we focus on Arthur Ashkin and how his revolutionary work opened a window into the world of molecular mechanics and spurred the rise of single-molecule biophysics.


Subject(s)
Biophysics , Nanotechnology , Nobel Prize , Optical Tweezers , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...