Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
Add more filters










Publication year range
1.
Redox Biol ; 63: 102751, 2023 07.
Article in English | MEDLINE | ID: mdl-37216701

ABSTRACT

Catalase (CAT) is an important antioxidant enzyme that breaks down H2O2 into water and oxygen. Inhibitor-modulating CAT activity in cancer cells is emerging as a potential anticancer strategy. However, the discovery of CAT inhibitors towards the heme active center located at the bottom of long and narrow channel has made little progress. Therefore, targeting new binding site is of great importance for the development of efficient CAT inhibitors. Here, the first NADPH-binding site inhibitor of CAT, BT-Br, was designed and synthesized successfully. The cocrystal structure of BT-Br-bound CAT complex was determined with a resolution of 2.2 Å (PDB ID:8HID), which showed clearly that BT-Br bound at the NADPH-binding site. Furthermore, BT-Br was demonstrated to induce ferroptosis in castration-resistant prostate cancer (CRPC) DU145 cells and eventually reduce CRPC tumors in vivo effectively. The work indicates that CAT has potential as a novel target for CRPC therapy based on ferroptosis inducing.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Humans , Male , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/metabolism , Catalase/genetics , Catalase/metabolism , NADP/metabolism , Hydrogen Peroxide , Antioxidants , Binding Sites , Cell Line, Tumor
2.
J Med Chem ; 66(1): 611-626, 2023 01 12.
Article in English | MEDLINE | ID: mdl-36542759

ABSTRACT

Hematopoietic progenitor kinase 1 (HPK1) is a negative regulator of T-cell activation, and targeting HPK1 is considered a promising strategy for improving responses to antitumor immune therapies. The biggest challenge of HPK1 inhibitor design is to achieve a higher selectivity to GLK, an HPK1 homology protein as a positive regulator of T-cell activation. Herein, we report the design of a series of macrocycle-based HPK1 inhibitors via a conformational constraint strategy. The identified candidate compound 5i exhibited HPK1 inhibition with an IC50 value of 0.8 nM and 101.3-fold selectivity against GLK. Compound 5i also displayed good oral bioavailability (F = 27-49%) in mice and beagles and favorable metabolic stability (T1/2 > 186.4 min) in human liver microsomes. More importantly, compound 5i demonstrated a clear synergistic effect with anti-PD-1 in both MC38 (MSI) and CT26 (MSS) syngeneic tumor mouse models. These results showed that compound 5i has a great potential in immunotherapy.


Subject(s)
Protein Serine-Threonine Kinases , T-Lymphocytes , Dogs , Animals , Mice , Humans , T-Lymphocytes/metabolism , Lymphocyte Activation , Immunotherapy
3.
Research (Wash D C) ; 2022: 9852518, 2022.
Article in English | MEDLINE | ID: mdl-35958113

ABSTRACT

Conventional methods of drug design require compromise in the form of side effects to achieve sufficient efficacy because targeting drugs to specific organs remains challenging. Thus, new strategies to design organ-specific drugs that induce little toxicity are needed. Based on characteristic tissue niche-mediated drug distribution (TNMDD) and patterns of drug metabolism into specific intermediates, we propose a strategy of distribution- and metabolism-based drug design (DMBDD); through a physicochemical property-driven distribution optimization cooperated with a well-designed metabolism pathway, SH-337, a candidate potassium-competitive acid blocker (P-CAB), was designed. SH-337 showed specific distribution in the stomach in the long term and was rapidly cleared from the systemic compartment. Therefore, SH-337 exerted a comparable pharmacological effect but a 3.3-fold higher no observed adverse effect level (NOAEL) compared with FDA-approved vonoprazan. This study contributes a proof-of-concept demonstration of DMBDD and provides a new perspective for the development of highly efficient, organ-specific drugs with low toxicity.

4.
Eur J Med Chem ; 241: 114654, 2022 Nov 05.
Article in English | MEDLINE | ID: mdl-35961071

ABSTRACT

Several secondary tropomyosin receptor kinase (TRK) mutations located in the solvent front, xDFG, and gatekeeper regions, are a common cause of clinical resistance. Mutations in the xDFG motif in particular limit sensitivity to second-generation TRK inhibitors, which represent an unmet clinical need. We designed a series of 3-pyrazolyl-substituted pyrazolo[1,5-a]pyrimidine derivatives toward these secondary mutations using ring-opening and scaffold-hopping strategies. Compound 5n was the most potent, with IC50 values of 2.3 nM, 0.4 nM, and 0.5 nM against TRKAG667C, TRKAF589L, and TRKAG595R, compared to selitrectinib with IC50 values of 12.6 nM, 5.8 nM, and 7.6 nM, respectively (approximately 5.4, 14.5, and 15.2-fold increases). Furthermore, 5n displayed favorable pharmacokinetic properties and satisfactory antitumor efficacy (tumor growth inhibition of 97% at 30 mg/kg and 73% at 100 mg/kg) in TRKAWT and TRKAG667C xenograft mouse models. Collectively, 5n is a promising TRK inhibitor lead compound for overcoming clinically acquired resistance to second-generation inhibitors, particularly for resistant tumors harboring the TRKAG667C mutation in the xDFG motif.


Subject(s)
Antineoplastic Agents , Neoplasms , Animals , Antineoplastic Agents/pharmacology , Disease Models, Animal , Humans , Mice , Neoplasms/drug therapy , Protein Kinase Inhibitors/therapeutic use , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Receptor, trkA
5.
Brief Bioinform ; 23(4)2022 07 18.
Article in English | MEDLINE | ID: mdl-35649390

ABSTRACT

Protein kinases play crucial roles in many cellular signaling processes, making them become important targets for drug discovery. But drug resistance mediated by mutation puts a barrier to the therapeutic effect of kinase inhibitors. Fragment-based drug discovery has been successfully applied to overcome such resistance. However, the complicate kinase-inhibitor fragment interaction and fragment-to-lead process seriously limit the efficiency of kinase inhibitor discovery against resistance caused by mutation. Here, we constructed a comprehensive web platform KinaFrag for the fragment-based kinase inhibitor discovery to overcome resistance. The kinase-inhibitor fragment space was investigated from 7783 crystal kinase-inhibitor fragment complexes, and the structural requirements of kinase subpockets were analyzed. The core fragment-based virtual screening workflow towards specific subpockets was developed to generate new kinase inhibitors. A series of tropomyosin receptor kinase (TRK) inhibitors were designed, and the most potent compound YT9 exhibits up to 70-fold activity improvement than marketed drugs larotrectinib and selitrectinib against G595R, G667C and F589L mutations of TRKA. YT9 shows promising antiproliferative against tumor cells in vitro and effectively inhibits tumor growth in vivo for wild type TRK and TRK mutants. Our results illustrate the great potential of KinaFrag in the kinase inhibitor discovery to combat resistance mediated by mutation. KinaFrag is freely available at http://chemyang.ccnu.edu.cn/ccb/database/KinaFrag/.


Subject(s)
Antineoplastic Agents , Neoplasms , Antineoplastic Agents/therapeutic use , Humans , Mutation , Neoplasms/genetics , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Receptor, trkA/genetics , Receptor, trkA/metabolism
6.
J Med Chem ; 64(20): 15503-15514, 2021 10 28.
Article in English | MEDLINE | ID: mdl-34668694

ABSTRACT

Tropomyosin receptor kinase (TRK) inhibition is an effective therapeutic approach for treatment of a variety of cancers. Despite the use of first-generation TRK inhibitor (TRKI) larotrectinib (1) resulting in significant therapeutic response in patients, acquired resistance develops invariably. The emergence of secondary mutations occurring at the solvent-front, xDFG, and gatekeeper regions of TRK represents a common mechanism for acquired resistance. However, xDFG mutations remain insensitive to second-generation macrocyclic TRKIs selitrectinib (3) and repotrectinib (4) designed to overcome the resistance mediated by solvent-front and gatekeeper mutations. Here, we report the structure-based drug design and discovery of a next-generation TRKI. The structure-activity relationship studies culminated in the identification of a promising drug candidate 8 that showed excellent in vitro potency on a panel of TRK mutants, especially TRKAG667C in the xDFG motif, and improved in vivo efficacy than 1 and 3 in TRK wild-type and mutant fusion-driven tumor xenograft models, respectively.


Subject(s)
Drug Discovery , Macrocyclic Compounds/pharmacology , Protein Kinase Inhibitors/pharmacology , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Receptor, trkA/antagonists & inhibitors , Dose-Response Relationship, Drug , Humans , Macrocyclic Compounds/chemical synthesis , Macrocyclic Compounds/chemistry , Models, Molecular , Molecular Structure , Mutation , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Receptor, trkA/genetics , Receptor, trkA/metabolism , Structure-Activity Relationship
7.
Top Curr Chem (Cham) ; 379(3): 23, 2021 Apr 22.
Article in English | MEDLINE | ID: mdl-33886017

ABSTRACT

Coronavirus disease 2019, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is still a pandemic around the world. Currently, specific antiviral drugs to control the epidemic remain deficient. Understanding the details of SARS-CoV-2 structural biology is extremely important for development of antiviral agents that will enable regulation of its life cycle. This review focuses on the structural biology and medicinal chemistry of various key proteins (Spike, ACE2, TMPRSS2, RdRp and Mpro) in the life cycle of SARS-CoV-2, as well as their inhibitors/drug candidates. Representative broad-spectrum antiviral drugs, especially those against the homologous virus SARS-CoV, are summarized with the expectation they will drive the development of effective, broad-spectrum inhibitors against coronaviruses. We are hopeful that this review will be a useful aid for discovery of novel, potent anti-SARS-CoV-2 drugs with excellent therapeutic results in the near future.


Subject(s)
Antiviral Agents/chemistry , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Viral Matrix Proteins/chemistry , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Angiotensin-Converting Enzyme 2/metabolism , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19/pathology , COVID-19/virology , Drug Repositioning , Humans , SARS-CoV-2/isolation & purification , Serine Endopeptidases/chemistry , Serine Endopeptidases/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Viral Matrix Proteins/metabolism , Virus Internalization/drug effects , COVID-19 Drug Treatment
8.
Molecules ; 25(23)2020 Dec 01.
Article in English | MEDLINE | ID: mdl-33271818

ABSTRACT

A robust, practical, and scalable approach for the construction of 3-substituted 5-chloro-1,6-naphthyridin-4-one derivatives 13 via the addition of Grignard reagents to 4-amino-2-chloronicotinonitrile (15) was developed. Starting with various Grignard reagents, a wide range of 3-substituted 5-chloro-1,6-naphthyridin-4-one derivatives 13 were conveniently synthesized in moderate-to-good yields through addition-acidolysis-cyclocondensation. In addition, the robustness and applicability of this synthetic route was proven on a 100 g scale, which would enable convenient sample preparation in the preclinical development of 1,6-naphthyridin-4-one-based MET-targeting antitumor drug candidates.


Subject(s)
Antineoplastic Agents/chemistry , Indicators and Reagents/chemistry , Naphthyridines/chemistry , Models, Molecular , Molecular Structure , Stereoisomerism , Structure-Activity Relationship
9.
Eur J Med Chem ; 208: 112785, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-32898795

ABSTRACT

As a privileged scaffold, the quinazoline ring is widely used in the development of EGFR inhibitors, while few quinazoline-based MET inhibitors are reported. In our ongoing efforts to develop new MET-targeted anticancer drug candidates, a series of quinazoline-based 1,6-naphthyridinone derivatives were designed, synthesized, and evaluated for their biological activities. The preliminary SARs studies indicate that the quinazoline scaffold was also acceptable for the block A of class II MET inhibitors. The further pharmacokinetic studies led to the identification of the most promising compound 22a with favorable in vitro potency (MET, IC50 = 9.0 nM), human microsomal metabolic stability (t1/2 = 621.2 min) and oral bioavailability (F = 42%). Moreover, 22a displayed good in vivo antitumor efficacy (IR of 81% in 75 mg/kg) in MET-positive human glioblastoma U-87 MG xenograft model. These positive results indicated that 22a is a potential new MET-targeted antitumor drug lead, which is worthy of further development.


Subject(s)
Antineoplastic Agents/therapeutic use , Glioblastoma/drug therapy , Naphthyridines/therapeutic use , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Quinazolines/therapeutic use , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/metabolism , Female , Humans , Mice, Nude , Microsomes, Liver/metabolism , Molecular Docking Simulation , Molecular Structure , Naphthyridines/chemical synthesis , Naphthyridines/metabolism , Protein Binding , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/metabolism , Proto-Oncogene Proteins c-met/metabolism , Quinazolines/chemical synthesis , Quinazolines/metabolism , Rats , Structure-Activity Relationship , Thermodynamics , Xenograft Model Antitumor Assays
10.
Mediators Inflamm ; 2020: 2319616, 2020.
Article in English | MEDLINE | ID: mdl-32565722

ABSTRACT

Exosomes are small membrane vesicles that retain various substances such as proteins, nucleic acids, and small RNAs. Exosomes play crucial roles in many physiological and pathological processes, including innate immunity. Innate immunity is an important process that protects the organism through activating pattern recognition receptors (PRRs), which then can induce inflammatory factors to resist pathogen invasion. Toll-like receptor (TLR) is one member of PRRs and is important in pathogen clearance and nervous disease development. Although exosomes and TLRs are two independent materials, abundant evidences imply exosomes can regulate innate immunity through integrating with TLRs. Herein, we review the most recent data regarding exosome regulation of TLR pathways. Specifically, exosome-containing materials can regulate TLR pathways through the interaction with TLRs. This is a new strategy regulating immunity to resist pathogens and therapy diseases, which provide a potential method to cure diseases.


Subject(s)
Exosomes/metabolism , Immunity, Innate , Neoplasms/metabolism , Neovascularization, Pathologic , Nervous System Diseases/metabolism , Receptors, Pattern Recognition/metabolism , Toll-Like Receptors/metabolism , Animals , Cell Line, Tumor , Cell Membrane/metabolism , Endocytosis , Humans , Lysosomes/metabolism , Mice , RNA, Small Interfering/metabolism , Signal Transduction
11.
ACS Comb Sci ; 22(9): 457-467, 2020 09 14.
Article in English | MEDLINE | ID: mdl-32589005

ABSTRACT

New 8-chloro-2-phenyl-2,7-naphthyridin-1(2H)-one building blocks bearing diverse substitutes on the 2-phenyl group were synthesized via an efficient diaryliodonium salt-based N-arylation strategy with the advantage of mild conditions, short reaction times, and high yields. A small combinatorial library of 8-amino substituted 2-phenyl-2,7-naphthyridin-1(2H)-one was further conveniently constructed based on the above chlorinated naphthyridinones and substituted aniline. Preliminary biochemical screening resulted in the discovery of the new 2,7-naphthyridone-based MET/AXL kinase inhibitors. More importantly, 17c (IC50,MET of 13.8 nM) or 17e (IC50,AXl of 17.2 nM) and 17i (IC50,AXl of 31.8 nM) can efficient selectively inhibit MET or AXL kinase, respectively, while commercial cabozantinib showed no selectivity. The further exploration of the 8-substituted 2-phenyl-2,7-naphthyridin-1(2H)-one combinatorial library would significantly accelerate the discovery of more potent and selective inhibitors against diverse kinases.


Subject(s)
Drug Discovery , Onium Compounds/pharmacology , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Proto-Oncogene Proteins/antagonists & inhibitors , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Dose-Response Relationship, Drug , Humans , Molecular Structure , Onium Compounds/chemistry , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins c-met/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Salts/chemistry , Salts/pharmacology , Structure-Activity Relationship , Axl Receptor Tyrosine Kinase
12.
Eur J Med Chem ; 185: 111803, 2020 Jan 01.
Article in English | MEDLINE | ID: mdl-31677447

ABSTRACT

A potent and novel MET inhibitor, 5-((4-((2-amino-3-chloropyridin-4-yl)oxy)-3-fluorophenyl)amino)-3-(4-fluorophenyl)-1,6-naphthyridin-4(1H)-ones (8), was designed and synthesized via a scaffold-hopping strategy of a 2,7-naphthyridinone MET kinase inhibitor 7. Lead compound 8 had good potency (IC50 of 9.8 nM), but unfavorable pharmacokinetic profiles (F = 12%, CL = 5.0 L/h/kg). Systematic structural optimization of compound 8 resulted in 9g (MET, IC50 = of 9.8 nM) with a comparable MET potency to that of compound 2 and a favorable pharmacokinetic profile (F = 63%, CL = 0.12 L/h/kg). Further study of the derivatization of N(1) amine group of 9g led to the discovery of 23a with good MET potency (IC50 of 7.1 nM), promising VEGFR-2 selectivity (3226-fold), and a markedly drug-likeness improvement (F = 57.7%, CL = 0.02 L/h/kg). The excellent VEGFR-2 selectivity and favorable drug-likeness of 23g suggest that the 1,6-naphthyridine moiety could be used as a new scaffold for kinase inhibitor discovery.


Subject(s)
Antineoplastic Agents/pharmacology , Naphthyridines/pharmacology , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation , Dose-Response Relationship, Drug , Drug Discovery , Drug Screening Assays, Antitumor , Humans , Models, Molecular , Molecular Structure , Naphthyridines/chemical synthesis , Naphthyridines/chemistry , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Proto-Oncogene Proteins c-met/metabolism , Structure-Activity Relationship , Vascular Endothelial Growth Factor Receptor-2/metabolism
13.
Eur J Med Chem ; 178: 705-714, 2019 Sep 15.
Article in English | MEDLINE | ID: mdl-31229873

ABSTRACT

As part of our effort to develop new molecular targeted antitumor drug, a novel 2,7-naphthyridone-based MET kinase inhibitor, 8-((4-((2-amino-3-chloropyridin-4-yl)oxy)- 3-fluorophenyl)amino)-2-(4-fluorophenyl)-2,7-naphthyridin-1(2H)-one (13f), was identified. Knowledge of the binding mode of BMS-777607 in MET led to the design of new inhibitors that utilize novel 2,7-naphthyridone scaffold to conformationally restrain the key pharmacophoric groups (block C). Detailed SAR studies resulted in the discovery of a new MET inhibitor 13f, displaying favorable in vitro potency and oral bioavailability. More importantly, 13f exhibited excellent in vivo efficacy (tumor growth inhibition/TGI of 114% and 95% in 50 mg/kg, respectively) both in the U-87 MG and HT-29 xenograft models. The favorable drug-likeness of 13f indicated that 2,7-naphthyridinone may be used a promising novel scaffold for antitumor drug development. The preclinical studies of 13f are under way.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Development , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Female , Humans , Mice , Mice, Nude , Molecular Docking Simulation , Molecular Structure , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Proto-Oncogene Proteins c-met/metabolism , Structure-Activity Relationship
14.
Front Microbiol ; 9: 585, 2018.
Article in English | MEDLINE | ID: mdl-29636748

ABSTRACT

To investigate tetracycline resistance and resistant genotype in Riemerella anatipestifer, the tetracycline susceptibility of 212 R. anatipestifer isolates from China between 2011 and 2017 was tested. The results showed that 192 of 212 (90.6%) R. anatipestifer isolates exhibited resistance to tetracycline (the MICs ranged from 4 to 256 µg/ml). The results of PCR detection showed that, 170 of 212 (80.2%) R. anatipestifer isolates possessed the tet(X) gene. Other genes, including tet(A), tet(M), tet(Q), tet(O), tet(B), and tet(O/W/32/O), were found at frequencies of 20.8, 4.7, 1.4, 0.9, 0.9, and 0.5%, respectively. However, tet(C), tet(E), tet(G), tet(K), and tet(W) were not detected in any isolate. In these tet gene positive strains, 31 (14.6%), 2 (0.9%), 5 (2.4%), 1 (0.5%), 3 (1.4%) were detected containing tet(A)/tet(X), tet(M)/tet(O), tet(M)/tet(X), tet(O)/tet(X), and tet(Q)/tet(X) simultaneously, respectively. One isolates, R131, unexpectedly contained three tet genes, i.e., tet(M), tet(O), and tet(X). Sequence analysis of the tet gene ORFs cloned from R. anatipestifer isolates confirmed that tet(A), tet(B), tet(M), tet(O), tet(Q) and an unusual mosaic tet gene tet(O/W/32/O) were present in R. anatipestifer. The MIC results of R. anatipestifer ATCC 11845 transconjugants carrying tet(A), tet(B), tet(M), tet(O), tet(O/W/32/O), tet(Q), and tet(X) genes exhibited tetracycline resistance with MIC values ranging from 4 to 64 µg/ml. Additionally, the tet(X) gene could transfer into susceptible strain via natural transformation (transformation frequencies of ~10-6). In conclusion, the tet(A), tet(B), tet(M), tet(O), tet(O/W/32/O), tet(Q), and tet(X) genes were found and conferred tetracycline resistance in R. anatipestifer isolates. Moreover, the tet(X) is the main mechanism of tetracycline resistance in R. anatipestifer isolates. To our knowledge, this is the first report of tet(A), tet(B), tet(M), tet(O), tet(Q), and mosaic gene tet(O/W/32/O) in R. anatipestifer.

15.
Int J Antimicrob Agents ; 51(1): 136-139, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28843817

ABSTRACT

The Gram-negative bacterium Riemerella anatipestifer CH-2 is resistant to lincosamides, having a lincomycin (LCM) minimum inhibitory concentration (MIC) of 128 µg/mL. The G148_1775 gene of R. anatipestifer CH-2, designated lnu(H), encodes a 260-amino acid protein with ≤41% identity to other reported lincosamide nucleotidylyltransferases. Escherichia coli RosettaTM (DE3) containing the pBAD24-lnu(H) plasmid showed four- and two-fold increases in the MICs of LCM and clindamycin (CLI), respectively. A kinetic assay of the purified Lnu(H) enzyme for LCM and CLI showed that the protein could inactive lincosamides. Mass spectrometry analysis demonstrated that the Lnu(H) enzyme catalysed adenylylation of lincosamides. In addition, an lnu(H) gene deletion strain exhibited 512- and 32-fold decreases in LCM and CLI MICs, respectively. The wild-type level of lincosamide resistance could be restored by complementation with a shuttle plasmid carrying the lnu(H) gene. The transformant R. anatipestifer ATCC 11845 [lnu(H)] acquired by natural transformation also exhibited high-level lincosamide resistance. Moreover, among 175 R. anatipestifer field isolates, 56 (32.0%) were positive for the lnu(H) gene by PCR. In conclusion, Lnu(H) is a novel lincosamide nucleotidylyltransferase that inactivates LCM and CLI by nucleotidylylation, thus conferring high-level lincosamide resistance to R. anatipestifer CH-2.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Drug Resistance, Bacterial/genetics , Flavobacteriaceae Infections/veterinary , Lincosamides/pharmacology , Nucleotidyltransferases/genetics , Riemerella/drug effects , Riemerella/genetics , Animals , China , Clindamycin/pharmacology , Ducks/microbiology , Flavobacteriaceae Infections/microbiology , Microbial Sensitivity Tests , Plasmids/genetics , Riemerella/isolation & purification
16.
Front Microbiol ; 8: 2435, 2017.
Article in English | MEDLINE | ID: mdl-29276505

ABSTRACT

Riemerella anatipestifer is an important pathogenic bacterium that infects ducks. It exhibits resistance to multiple classes of antibiotics. Multidrug efflux pumps play a major role as a mechanism of antimicrobial resistance in Gram-negative pathogens and they are poorly understood in R. anatipestifer. In this study, a gene encoding the B739_0873 protein in R. anatipestifer CH-1, which belongs to the resistance-nodulation-cell division (RND) efflux pump family, was identified. With respect to the substrate specificity of B739_0873, the antibiotic susceptibility testing showed that the B739_0873 knockout strain was more sensitive to aminoglycosides and detergents than the wild-type strain. The transcription of B739_0873 was up-regulated when R. anatipestifer CH-1 was exposed to sub-inhibitory levels of these substrates. From the gentamicin accumulation assay, we concluded that B739_0873 was coupled to the proton motive force to pump out gentamicin. Furthermore, site-directed mutagenesis demonstrated that Asp 400, Asp 401, Lys 929, Arg 959, and Thr 966 were the crucial function sites of B739_0873 in terms of its ability to extrude aminoglycosides and detergents. Finally, we provided evidence that B739_0873 is co-transcribed with B739_0872, and that both B739_0872 and B739_0873 are required for aminoglycoside and detergent resistance. In view of these results, we designate B739_0873 as RaeB (Riemerella anatipestifer efflux).

17.
Cell Death Dis ; 8(4): e2749, 2017 04 13.
Article in English | MEDLINE | ID: mdl-28406478

ABSTRACT

Apoptosis, an important innate immune mechanism that eliminates pathogen-infected cells, is primarily triggered by two signalling pathways: the death receptor pathway and the mitochondria-mediated pathway. However, many viruses have evolved various strategies to suppress apoptosis by encoding anti-apoptotic factors or regulating apoptotic signalling pathways, which promote viral propagation and evasion of the host defence. During its life cycle, α-herpesvirus utilizes an elegant multifarious anti-apoptotic strategy to suppress programmed cell death. This progress article primarily focuses on the current understanding of the apoptosis-inhibition mechanisms of α-herpesvirus anti-apoptotic genes and their expression products and discusses future directions, including how the anti-apoptotic function of herpesvirus could be targeted therapeutically.


Subject(s)
Alphaherpesvirinae/physiology , Apoptosis Regulatory Proteins/metabolism , Apoptosis , Herpesviridae Infections/metabolism , Viral Proteins/metabolism , Animals , Herpesviridae Infections/pathology , Herpesviridae Infections/therapy , Humans
18.
Front Microbiol ; 8: 297, 2017.
Article in English | MEDLINE | ID: mdl-28298905

ABSTRACT

Riemerella anatipestifer causes serositis and septicaemia in domestic ducks, geese, and turkeys. Traditionally, the antibiotics were used to treat this disease. Currently, our understanding of R. anatipestifer susceptibility to chloramphenicol and the underlying resistance mechanism is limited. In this study, the cat gene was identified in 69/192 (36%) R. anatipestifer isolated from different regions in China, including R. anatipestifer CH-2 that has been sequenced in previous study. Sequence analysis suggested that there are two copies of cat gene in this strain. Only both two copies of the cat mutant strain showed a significant decrease in resistance to chloramphenicol, exhibiting 4 µg/ml in the minimum inhibitory concentration for this antibiotic, but not for the single cat gene deletion strains. Functional analysis of the cat gene via expression in Escherichia coli BL21 (DE3) cells and in vitro site-directed mutagenesis indicated that His79 is the main catalytic residue of CAT in R. anatipestifer. These results suggested that chloramphenicol resistance of R. anatipestifer CH-2 is mediated by the cat genes. Finally, homology analysis of types A and B CATs indicate that R. anatipestifer comprises type B3 CATs.

19.
Genome Announc ; 4(5)2016 Sep 01.
Article in English | MEDLINE | ID: mdl-27587804

ABSTRACT

Mycobacterium avium is an important pathogenic bacterium in birds and has never, to our knowledge, reported to be isolated from domestic ducks. We present here the complete genome sequence of a virulent strain of Mycobacterium avium, isolated from domestic Pekin ducks for the first time, which was determined by PacBio single-molecule real-time technology.

20.
Avian Dis ; 60(3): 677-80, 2016 09.
Article in English | MEDLINE | ID: mdl-27610730

ABSTRACT

Avian tuberculosis is a contagious disease affecting various domestic and wild bird species, and is caused by Mycobacterium avium . It is reported extremely rarely in commercial poultry flocks and has not been reported in commercial domestic ducks to date, with domestic ducks reported to be moderately resistant to M. avium infection. Here, we report the outbreak of avian tuberculosis in commercial Pekin duck ( Anas platyrhynchos domestica) flocks. Postmortem and histopathologic findings included nodules presenting in the visceral organs of ducks, and granulomas with central caseous necrosis surrounded by infiltrating lymphocytes. The M. avium pathogen was isolated and further identified by Ziehl-Neelsen staining and PCR based on insert sequence IS901 and the 16S rRNA gene. We highlight that avian tuberculosis not only has economic significance for the duck industry, but also presents a potential zoonotic hazard to humans.


Subject(s)
Disease Outbreaks/veterinary , Ducks , Mycobacterium avium/isolation & purification , Poultry Diseases/epidemiology , Tuberculosis, Avian/epidemiology , Animals , China/epidemiology , DNA Transposable Elements/genetics , Mycobacterium avium/classification , Mycobacterium avium/genetics , Poultry Diseases/microbiology , Poultry Diseases/pathology , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA/veterinary , Tuberculosis, Avian/microbiology , Tuberculosis, Avian/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...